Bayesian statistics with R

3. Analyses by hand

Olivier Gimenez

November-December 2024

Back to Bayes

- Let us take a simple example to fix ideas.
- 120 deer were radio-tracked over winter.
- 61 close to a plant, 59 far from any human activity.
- Question: is there a treatment effect on survival?

	Released	Alive	Dead	Other
treatment	61	19	38	4
control	59	21	38	0

So, n = 57 deer were assigned to the treatment group of which k = 19 survived the winter.

- So, n = 57 deer were assigned to the treatment group of which k = 19 survived the winter.
- Of interest is the probability of over-winter survival, call it θ, for the general population within the treatment area.

- So, n = 57 deer were assigned to the treatment group of which k = 19 survived the winter.
- Of interest is the probability of over-winter survival, call it θ, for the general population within the treatment area.
- The obvious estimate is simply to take the ratio k/n = 19/57.

- So, n = 57 deer were assigned to the treatment group of which k = 19 survived the winter.
- Of interest is the probability of over-winter survival, call it θ, for the general population within the treatment area.
- The obvious estimate is simply to take the ratio k/n = 19/57.
- How would the classical statistician justify this estimate?

• Our model is that we have a Binomial experiment (assuming independent and identically distributed draws from the population).

- Our model is that we have a Binomial experiment (assuming independent and identically distributed draws from the population).
- K the number of alive individuals at the end of the winter, so that $P(K = k) = {n \choose k} \theta^k (1 \theta)^{n-k}$.

- Our model is that we have a Binomial experiment (assuming independent and identically distributed draws from the population).
- K the number of alive individuals at the end of the winter, so that
 P(K = k) = (ⁿ_k)θ^k(1 − θ)^{n−k}.
- The classical approach is to maximise the corresponding likelihood with respect to θ to obtain the entirely plausible MLE:

$$\hat{\theta} = k/n = 19/57$$

• The Bayesian starts off with a prior.

- The Bayesian starts off with a prior.
- Now, the one thing we know about θ is that is a continuous random variable and that it lies between zero and one.

- The Bayesian starts off with a prior.
- Now, the one thing we know about θ is that is a continuous random variable and that it lies between zero and one.
- Thus, a suitable prior distribution might be the Beta defined on [0,1].

- The Bayesian starts off with a prior.
- Now, the one thing we know about θ is that is a continuous random variable and that it lies between zero and one.
- Thus, a suitable prior distribution might be the Beta defined on [0,1].
- What is the Beta distribution?

$$q(\theta \mid \alpha, \beta) = rac{1}{\mathsf{Beta}(\alpha, \beta)} heta^{lpha - 1} (1 - heta)^{eta - 1}$$

with $\mathsf{Beta}(\alpha, \beta) = rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha + eta)}$ and $\Gamma(n) = (n - 1)!$

• We assume a priori that $\theta \sim Beta(a, b)$ so that $\Pr(\theta) = \theta^{a-1}(1-\theta)^{b-1}$

- We assume a priori that $\theta \sim Beta(a, b)$ so that $\Pr(\theta) = \theta^{a-1}(1-\theta)^{b-1}$
- Then we have:

$$egin{aligned} & {\it Pr}(heta \mid k) \propto inom{n}{k} heta^k (1- heta)^{n-k} heta^{artheta-1} (1- heta)^{b-1} \ & \propto heta^{(artheta+k)-1} (1- heta)^{(b+n-k)-1} \end{aligned}$$

- We assume a priori that $heta \sim Beta(a,b)$ so that $\mathsf{Pr}(heta) = heta^{a-1}(1- heta)^{b-1}$
- Then we have:

$$egin{aligned} & \mathsf{Pr}(heta \mid k) \propto inom{n}{k} heta^k (1- heta)^{n-k} heta^{artheta-1} (1- heta)^{b-1} \ & \propto heta^{(artheta+k)-1} (1- heta)^{(b+n-k)-1} \end{aligned}$$

That is:

$$\theta \mid k \sim Beta(a+k, b+n-k)$$

- We assume a priori that $\theta \sim Beta(a, b)$ so that $\Pr(\theta) = \theta^{a-1}(1-\theta)^{b-1}$
- Then we have:

$$egin{aligned} & \mathsf{Pr}(heta \mid k) \propto inom{n}{k} heta^k (1- heta)^{n-k} heta^{artheta-1} (1- heta)^{b-1} \ & \propto heta^{(artheta+k)-1} (1- heta)^{(b+n-k)-1} \end{aligned}$$

That is:

$$\theta \mid k \sim Beta(a+k, b+n-k)$$

• Take a Beta prior with a Binomial likelihood, you get a Beta posterior (conjugacy)

Posterior distribution of survival is θ ∼ Beta(a + k, b + n − k).

- Posterior distribution of survival is θ ∼ Beta(a + k, b + n − k).
- If we take a Uniform prior, i.e. Beta(1,1), then we have:

Application to the deer example

- Posterior distribution of survival is θ ∼ Beta(a + k, b + n − k).
- If we take a Uniform prior, i.e. Beta(1,1), then we have:
- $\theta_{treatment} \sim Beta(1+19, 1+57-19) = Beta(20, 39)$

- Posterior distribution of survival is $\theta \sim Beta(a+k, b+n-k)$.
- If we take a Uniform prior, i.e. Beta(1,1), then we have:
- $\theta_{treatment} \sim Beta(1+19, 1+57-19) = Beta(20, 39)$
- Note that in this specific situation, the posterior has an explicit expression, easy to manipulate.

- Posterior distribution of survival is $\theta \sim Beta(a+k, b+n-k)$.
- If we take a Uniform prior, i.e. *Beta*(1, 1), then we have:
- $\theta_{treatment} \sim Beta(1+19, 1+57-19) = Beta(20, 39)$
- Note that in this specific situation, the posterior has an explicit expression, easy to manipulate.

• In particular, $E(Beta(a, b)) = \frac{a}{a+b} = 20/59$ to be compared with the MLE 19/57.

This is a general result, the Bayesian and frequentist estimates will always agree if there is sufficient data, so long as the likelihood is not explicitly ruled out by the prior.

Prior Beta(1,1) and posterior survival Beta(20,39)

Prior Beta(1,1) and posterior survival Beta(20,39)

Our model so far

 $y \sim {\sf Binomial}(N, heta) \ heta \sim {\sf Beta}(1,1)$

[likelihood] [prior for θ]

