
Incremental Learning via Rate Reduction

Ziyang Wu∗

Cornell

zw287@cornell.edu

Christina Baek∗

UC Berkeley

ke.baek@berkeley.edu

Chong You

UC Berkeley

cyou@berkeley.edu

Yi Ma

UC Berkeley

yima@eecs.berkeley.edu

Abstract

Current deep learning architectures suffer from catas-

trophic forgetting, a failure to retain knowledge of

previously learned classes when incrementally trained on

new classes. The fundamental roadblock faced by deep

learning methods is that the models are optimized as “black

boxes,” making it difficult to properly adjust the model

parameters to preserve knowledge about previously seen

data. To overcome the problem of catastrophic forgetting,

we propose utilizing an alternative “white box” architec-

ture derived from the principle of rate reduction, where

each layer of the network is explicitly computed without

back propagation. Under this paradigm, we demonstrate

that, given a pretrained network and new data classes,

our approach can provably construct a new network that

emulates joint training with all past and new classes.

Finally, our experiments show that our proposed learning

algorithm observes significantly less decay in classification

performance, outperforming state of the art methods on

MNIST and CIFAR-10 by a large margin and justifying the

use of “white box” algorithms for incremental learning

even for sufficiently complex image data.

1. Introduction

Humans are capable of acquiring new information con-

tinuously while retaining previously obtained knowledge.

This seemingly natural capability, however, is extremely

difficult for deep neural networks (DNNs) to achieve. In-

cremental learning (IL), also known as continual learning

or life-long learning, thus studies the design of machine

learning systems that can assimilate new information with-

out forgetting past knowledge.

In incremental learning, models go through rounds of

training sessions to accumulate knowledge for a particular

objective (e.g. classification). Specifically, under class in-

cremental learning (class-IL), an agent has access to train-

ing data from a subset of the classes, known as a task, at

each training session and is evaluated on all seen classes

at inference time. The overarching goal is to precisely fine-

∗ The first two authors contributed equally to this work.

tune a model trained on previously seen tasks to additionally

classify new classes of data. However, due to the absence

of old data, such models often suffer from catastrophic for-

getting [14], which refers to a drastic drop in performance

after training incrementally on different tasks.

In the last few years, a flurry of continual learning al-

gorithms have been proposed for DNNs, aiming to alle-

viate the effect of catastrophic forgetting. These meth-

ods can be roughly partitioned into three categories: 1)

regularization-based methods that often involve knowledge

distillation [12, 6, 19, 25], 2) exemplar-based methods that

keep partial copies of data from previously learned tasks

[16, 1, 22], and 3) modified architectures that attempt to

utilize network components specialized for different tasks

[17, 19, 11]. In practice, these algorithms exhibit vary-

ing performance across different datasets and their ability

to mitigate catastrophic forgetting is inadequate. Factors

including domain shift [18] across tasks and imbalance of

new and past classes [22] are part of the reason.

The fundamental roadblock in deep continual learning

is that DNNs are trained and optimized in a “black box”

fashion. Each model contains millions of mathematical op-

erations and its complexity prevents humans from follow-

ing the mapping from data input to prediction. Given our

current limited understanding of network parameters, it is

difficult, if not impossible, to precisely control the parame-

ters of a pre-trained model such that the decision boundary

learned fits to new data without losing its understanding of

old data.

In this work, we take a drastically different approach to

incremental learning. We avoid “black box” architectures

entirely, and instead utilize a recently proposed “white box”

DNN architecture derived from the principle of rate reduc-

tion [2]. Termed ReduNet, each layer of this DNN can be

explicitly computed in a forward-propagation fashion and

each parameter has precise statistical interpretations. The

so-constructed network is intrinsically suitable for incre-

mental learning because the second-order statistics of any

previously-seen training data is preserved in the network

parameters to be leveraged for future tasks.

We propose a new incremental learning algorithm utiliz-

1125



ing ReduNet to demonstrate the power and scalability of de-

signing more interpretable networks for continual learning.

Specifically, we prove that a ReduNet trained incrementally

can be constructed to be equivalent to one obtained by joint

training, where all data, both new and old, is assumed to be

available at training time. Finally, we observe that ReduNet

performs significantly better on MNIST [9] and CIFAR-10

[7] in comparison to current continual DNN approaches.

2. Related Work

Since the early success of deep learning in classification

tasks such as object recognition, attention has lately shifted

to the problem of incremental learning in hopes of design-

ing deep learning systems that are capable of continuously

adapting to data from non-stationary and changing distribu-

tions.

Incremental learning can refer to different problem set-

tings and most studies focus on three widely accepted sce-

narios [20]. Most of the earlier works [12, 17, 6, 19] study

the task incremental (task-IL) setting, where a model, after

trained on multiple tasks, must be able to classify on data

belonging to all the classes it has seen so far. However,

the model is additionally provided a task-ID indicating the

task or subset of classes each datapoint belongs to. Mod-

els trained under this setting are thus required to distinguish

among typically only a small number of classes. Recent

works [23, 26] explore the more difficult class incremen-

tal (class-IL) setting, where task-ID is withheld at inference

time. This setting is considerably more difficult since with-

out the task-ID, each datapoint could potentially belong to

any of the classes the model has seen so far. The other set-

ting, known as domain incremental learning (domain-IL)

differs from the previous two settings in that each task con-

sists of all the classes the model needs to learn. Instead, a

task-dependent transformation is applied to the data. For

example, each task could contain the same training data ro-

tated by differing degrees and the model must learn to clas-

sify images of all possible rotations without access to the

task-ID.

Deep continual learning literature from the last few years

can be roughly partitioned into three categories as follows:

Regularization-based methods usually attempt to pre-

serve some part of the network parameters deemed impor-

tant for previously learned tasks. Knowledge distillation

[4] is a popular technique utilized to preserve knowledge

obtained in the past. Learning without Forgetting (LwF)

[12], for example, attempts to prevent the model parameters

from large drifts during the training of the current task by

employing cross-entropy loss regularized by a distillation

loss. Alternatively, elastic weight consolidation (EWC) [6]

attempts to curtail learning on weights based on their im-

portance to previously seen tasks. This is done by imposing

a quadratic penalty term that encourages weights to move

along directions with low Fisher information. Schwarz et

al. [19] later proposed an online variant (oEWC) that re-

duces the cost of estimating the Fisher information matrix.

Similarly, Zenke et al. [25] limits the changes of important

parameters in the network by using an easy-to-compute sur-

rogate loss during training.

Exemplar-based methods typically use a memory buffer

to store a small set of data from previous tasks in order to al-

leviate catastrophic forgetting. The data stored is used along

with the data from the current task to jointly train the model.

Rebuffi et al. [16] proposed iCaRL which uses a herding al-

gorithm to decide which samples from each class to store

during each training session. This technique is combined

with regularization with a distillation loss to further encour-

age knowledge retention [16]. A recent work by Wu et al.

[22] achieved further improvements by correcting the bias

towards new classes due to data imbalance, which they em-

pirically show causes degradation in performance for large-

scale incremental learning settings. This is accomplished

by appending a bias-correction layer at the end of the net-

work. Another increasingly popular approach is to train a

generative adversarial network (GAN) [5, 21] on previously

seen classes and use the generated synthetic data to facili-

tate training on future tasks.

Architecture-based methods either involve designing

specific components in the architecture to retain knowledge

of previously seen data or appending new parameters or en-

tire networks when encountering new classes of data. Pro-

gressive Neural Network (PNN) [17], for example, instan-

tiates a new network for each task with lateral connection

between networks in order to overcome forgetting. This

results in the number of networks to grow linearly with re-

spect to the number of tasks as training progresses. Progress

& Compress (P & C) [19] utilizes one network component

to learn the new task, then distills knowledge into a main

component that aggregates knowledge from previously en-

countered data. Li et al. [11], proposes a neural architec-

ture search method that utilizes a separate network to learn

whether to reuse, adapt, or add certain building blocks of

the main classification network for each task encountered.

Our work studies the more difficult class-IL scenario and

does not involve regularization or storing any exemplars.

Our method thus can be characterized as an architecture-

based approach. However, our method differs with the

aforementioned works in several important aspects. First,

we use a “white box” architecture that is computed exactly

in a feed-forward manner. Moreover, the network, when

trained under class-IL scenario, can be shown to perform

equivalently to one obtained from joint training while most

existing works [11, 19, 17] based on modified architectures

target the less challenging task-IL setting. We discuss the

differences in more detail later in Section 4, after we have

introduced our method properly.

1126



3. Preliminaries

In this section, we provide a brief background on the

principle of rate reduction and the “white box” network ar-

chitecture (i.e., ReduNet) derived from such a principle.

3.1. Principle of Rate Reduction

Given a set of training data {xi} and their corresponding

labels {yi}, classical deep learning aims to learn a nonlinear

mapping h(·) : x → y, implemented as a series of simple

linear and nonlinear maps, that minimizes the cross-entropy

loss. One popular way to interpret the role of multiple lay-

ers is to consider the output of each intermediate layer as

a latent representation space. Then, the beginning layers

aim to learn a latent representation z = f(x, θ) ∈ R
d that

best facilitates the later layers y = g(z,w) for the down-

stream classification task. As a concrete example, in image

recognition tasks, f(·) is a convolutional backbone that en-

codes an image x ∈ R
H×W×C into a vector representation

z = f(x, θ) ∈ R
d and g(z) = w · z is a linear classifier

where w ∈ R
k×d and k is the number of labels. There-

fore, it is unclear to what extent the feature representation

captures any intrinsic structure of the data. Recent work

[15] shows that this direct label fitting leads to a phenom-

ena called neural collapse, where within-class variability

and structural information are completely suppressed.

To address the aforementioned problem, a recent work

by Yu et al. [24] presented a framework for learning useful

and geometrically meaningful representation by maximiz-

ing the coding rate reduction (i.e., MCR2). Given m train-

ing samples of d dimension X = [x1, . . . ,xm] ∈ R
d×m

that belong to k classes, let Z = [f(x1, θ), ..., f(xm, θ)] ∈
R

d×m be the latent representation. Let Π = {Πj}kj=1 be

the membership of the data in the k classes, where each

Πj ∈ R
m×m is a diagonal matrix such that Πj(i, i) is the

probability of xi belonging to class j. Then, MCR2 aims to

learn a feature representation Z by maximizing the follow-

ing rate reduction:

∆R(Z) = R(Z)−Rc(Z,Π), (1)

subjecting to the constraint that Z is properly normalized,

e.g., with the Frobenius norm of class features Zj = ZΠj

to scale with the number of samples in class j: ‖Zj‖2F =
mj = tr(Πj). In above, we denote

R(Z) =
1

2
log det

(

I + αZZ⊤
)

, and (2)

Rc(Z,Π) =

k∑

j=1

γj
2

log det
(

I + αjZΠjZ⊤
)

. (3)

where α = d/(mǫ2), αj = d/(tr(Πj)ǫ2), γj = tr(Πj)/m,

and ǫ > 0 is a prescribed quantization error. R(Z), known

as the expansion term, represents the total coding length of

all features Z while Rc(Z,Π), named compression term,

measures the sum of coding lengths of each latent class dis-

tribution. They are called expansion and compression terms

respectively, since to maximize ∆R, the first coding rate

term is maximized and the second coding rate term is min-

imized. This coding rate measure utilizes local ǫ-ball pack-

ing to estimate the coding rate of the latent distribution from

finite samples [13].

In [24], it is demonstrated empirically and theoretically

that maximizing ∆R(Z) enforces the latent class distribu-

tions to be low-dimensional subspace-like distributions of

approximately d/k dimension. In addition, these class dis-

tributions are orthogonal to each other. By doing so, the

representation is between-class discriminative, whilst main-

taining intra-class diversity. Moreover, these features have

precise statistical and geometric interpretations.

3.2. Rate Reduction Network

While an existing neural network architecture (such as

ResNet) can be used for feature learning with MCR2, a

follow-up work [2] showed that a novel architecture can be

explicitly constructed without back-propagation via emulat-

ing the projected gradient ascent scheme for maximizing

∆R(Z). This produces a “white box” network, called Re-

duNet, which has precise statistical and geometric interpre-

tations. We review the construction of ReduNet as follows.

Let Z be initialized as the training data, i.e., Z0 = X .

Then, the projected gradient ascent step for optimizing the

rate reduction ∆R(Z) in (1) is given by

Zℓ+1 ∝ Zℓ + η

(
∂∆R

∂Z

∣
∣
∣
Zℓ

)

= Zℓ + η
(

EℓZℓ −

k∑

j=1

γjC
j
ℓZ

j
ℓ

)

s.t. ‖Zj
ℓ+1‖

2
F = tr(Πj) = mj ∀j ∈ {1, .., k},

(4)

where we use Z
j
ℓ = ZℓΠ

j ∈ R
d×m to denote the feature

matrix associated with the j-th class at the ℓ-th iteration,

and η > 0 is the learning rate. The matrices Eℓ and C
j
ℓ are

obtained by evaluating the derivative ∂∆R
∂Z

at Zℓ, given by

Eℓ = α
(

I + αZℓZ
⊤

ℓ

)−1

, (5)

C
j
ℓ = αj

(

I + αjZ
j
ℓZ

j⊤
ℓ

)−1

. (6)

Observe that Eℓ ∈ R
d×d is applied to all features Zℓ and

it expands the coding length of the entire data. Meanwhile,

C
j
ℓ ∈ R

d×d is applied to features from class j, i.e., Z
j
ℓ , and

it compresses the coding lengths of the j-th class.

Once the projected gradient ascent is completed, each

gradient step can be interpreted as one layer of a neural

1127



Figure 1. ReduNet Architecture in which we here adopt a slightly

different normalization than [2] but is more suitable for the incre-

mental learning as we will see in our derivation.

network, composed of matrix multiplication and subtrac-

tion operators, with Eℓ and C
j
ℓ being parameters associ-

ated with the ℓ-th layer. Then, given a test data x ∈ R
d, its

feature can be computed by setting z0 = x and iteratively

carrying out the following incremental transform

zℓ+1 ∝ zℓ + η
(

Eℓzℓ −

k∑

j=1

γjC
j
ℓzℓπ

j(zℓ)
)

. (7)

Notice that the increment depends on πj(zℓ), the member-

ship of the feature zℓ, which is unknown for the test data.

Therefore, [2] presented a method that replaces πj(zℓ) in

(7) by the following estimated membership

π̂
j
ℓ(z) =

exp
(

−λk‖Cj
ℓz‖

)

∑k
j=1 exp

(

−λk‖Cj
ℓz‖

) ∈ [0, 1], (8)

where λ > 0 is a confidence parameter. This leads to a non-

linear operator σ
(

C1
ℓzℓ, . . . ,C

k
ℓzℓ

)
.
=

∑k
j=1 γjC

j
ℓzℓπ̂

j
ℓ

that, after being plugged into (7), produces a nonlinear layer

as summarized in Figure 2. Stacking multiple such layers

produces a multi-layer neural network for extracting dis-

criminative features. Then, a nearest subspace classifier as

the one presented in Section 5.3 can classify the data. In ad-

dition, each layer is interpretable and computed explicitly.

4. Incremental Learning with ReduNet

In this paper, we tackle the task of class incre-

mental learning, formalized as follows. Suppose we

have a stream of tasks D1,D2, . . . ,Dt, . . ., where each

task Dt consists of data from kt classes, i.e, Dt =
{X(t−1)·kt+1, . . . ,Xt·kt} where Xj is a set of points in

class j. The classes in different tasks are assumed to be

mutually exclusive. Furthermore, it is assumed that the

tasks arrive in an online setting, meaning that at timestep

t when data Dt arrives, the data associated with old tasks

{Di, i < t} becomes unavailable. Therefore, the objec-

tive is to design a learning system that can adapt the model

from the old tasks so as to correctly classify on all tasks

hitherto, i.e., D1, . . . ,Dt. In addition, we assume that we

are not given the information on the task a test data belongs

to, making this problem significantly more challenging than

task-IL.

In this section, we show that ReduNet can perfectly adapt

to a new task without forgetting old tasks. Specifically, we

present an algorithm to adapt the ReduNet constructed from

data {Di, i < t} by using only the data in Dt, so that the

updated ReduNet is exactly the same as the ReduNet con-

structed as if data from all tasks {Di, i ≤ t} were available.

4.1. Derivation of Incrementally­Trained ReduNet

Without loss of generality, we consider the simple case

with two tasks t and t′ where t is treated as the old task and

t′ is treated as the new task. Assume that t and t′ contain

mt, mt′ training samples and kt, kt′ distinct classes, re-

spectively. We denote such training data by Z0,t ∈ R
d×mt

(for task t) and Z0,t′ ∈ R
d×mt′ (for task t′), and assume

that they have been normalized by Frobenius norm as de-

scribed in (4). For ease of notation, we label the classes as

{1, ..., kt} for task t and {kt + 1, ..., kt + kt′} for task t′.
Let Θt be the ReduNet of depth L trained on task t as

described in Section 3.2. Given the new task Z0,t′ , our ob-

jective is to train a network Θt→t′ that adapts Θt to have

good performance for both tasks t and t′. Next, we show

that a network Θt→t′ can be constructed from Θt and Z0,t′

such that it is equivalent to Θ obtained from training on

Z0 = [Z0,t|Z0,t′ ] ∈ R
d×m where m = mt +mt′ .

To start, consider the initial expansion term E0 ∈ R
d×d

and compression terms C
j
0 at layer 0 of the joint network

Θ given by

E0 = α
(

I + αZ0Z
⊤

0

)−1

= α
(

I + α
(
Z0,tZ

⊤

0,t +Z0,t′Z
⊤

0,t′
))−1

,

(9)

and

C
j
0 =







αj

(

I + αjZ
j
0,tZ

j⊤
0,t

)−1

, if j ≤ kt,

αj

(

I + αjZ
j
0,t′Z

j⊤
0,t′

)−1

, else,
(10)

where α = d/(mǫ2) and αj = d/(tr(Π
j
)ǫ2).

Note that the term Z
j
0,t′Z

j⊤
0,t′ can be directly computed

from input data Z
j
0,t′ . On the other hand, the term Z

j
0,tZ

j⊤
0,t

cannot be directly computed from input data as Z
j
0,t is from

the old task, which is no longer available under the IL setup.

Our key observation is that Z
j
0,tZ

j⊤
0,t can be computed from

1128



the network Θt. Specifically, by denoting the compression

matrices of Θt as {Cj
ℓ,t} for ℓ ∈ {0, ..., L− 1}, we have

Z
j
0,tZ

j⊤
0,t =

(

(Cj
0,t/αj)

−1 − I
)

/αj . (11)

Next, we show by induction that one can recursively

compute Eℓ and {Cj
ℓ} of Θ for ℓ > 0 from (9) and (10). To

construct layer 1 of Θ, we observe that the output features

of class j at layer 0 before normalization is as follows.

P
j
0 = (Z0 + ηE0Z0 − η

k∑

i=1

γiC
i
0Z

i
0)Π

j (12)

= Z
j
0 + ηE0Z

j
0 − ηγjC

j
0Z

j
0 (13)

=
(
I + ηE0 − ηγjC

j
0

︸ ︷︷ ︸

L
j
0
∈Rd×d

)
Z

j
0. (14)

Notice the term L
j
0 only depends on quantities already ob-

tained at layer 0. To compute E1 and C
j
1, we need the

covariance matrix of P
j
0, which we observe to be

T
j
1 = P

j
0P

j⊤
0 = L

j
0Z

j
0Z

j⊤
0 L

j⊤
0 . (15)

Notice that T
j
1 can be expressed with known quantities of

L
j
0 and Z

j
0,tZ

j⊤
0,t if j ≤ kt or Z

j
0,t′Z

j⊤
0,t′ if j > kt. The

remaining step would be to re-scale T
j
1 as the updated rep-

resentation P
j
0 needs to be normalized to get Z

j
1. Recall

that we adopt the normalization scheme that imposes the

Frobenius norm of each class Zj to scale with mj :

‖Zj
1‖

2
F = mj ⇐⇒ tr

(
Z

j
1Z

j
1

⊤)
= mj . (16)

The re-scaling factor is then easy to calculate:

Z
j
1Z

j⊤
1 =

mj

tr(T j
1)
T

j
1. (17)

From above, we see that we can obtain the correct value of

the covariance matrix Z
j
1Z

j⊤
1 , from which we can derive

E1 and C
j
1 for layer 1 of the joint network Θ and obtain

Z
j
2,t′ . With these values, we can compute T

j
2.

By the same logic, we can recursively update Eℓ and

C
j
ℓ for all ℓ > 1. Specifically, once we have obtained

Z
j
ℓ−1Z

j⊤
ℓ−1 and L

j
ℓ−1, it is straightforward to compute

T
j
ℓ = Lℓ−1Z

j
ℓ−1Z

j⊤
ℓ−1L

j⊤
ℓ−1 and therefore obtain

Z
j
ℓZ

j⊤
ℓ =

mj

tr(T j
ℓ)
T

j
ℓ . (18)

Note that we never need to access Z0,t ∈ R
d×mt di-

rectly. Instead, we iteratively update the covariance matrix

Z
j
ℓ−1,tZ

j⊤
ℓ−1,t ∈ R

d×d for each class j using the procedure

described. This concludes our induction and Algorithm 1

describes the entire training process for incremental learn-

ing on two tasks. The procedure is illustrated in Figure 2.

This procedure can be naturally extended to settings with

more than two tasks.

Figure 2. The joint network can be derived using simply Z0,tZ
⊤

0,t.

We do not need the task t data Z0,t directly.

Algorithm 1 Incremental Learning with ReduNet

1: Input: Network Θt with parameters Eℓ,t and {Cj
ℓ,t},

data Z
j
0,t′ ∀j ∈ {kt + 1, ..., kt + kt′}.

2: Compute Σj
0,t = Z

j
0,tZ

j⊤
0,t , ∀j ∈ {1, ..., kt} by (11).

3: for ℓ = 0, 1, 2, ..., L− 1 do

4: Σℓ,t =
∑kt

j=1 Σ
j
ℓ,t,

5: Σℓ,t′ =
∑kt+kt′

j=kt+1 Z
j
ℓ,t′Z

j⊤
ℓ,t′ ,

6: Eℓ = α
(
I + α(Σℓ,t +Σℓ,t′)

)−1
,

7: L
j
ℓ = I + ηEℓ − ηγjC

j
ℓ ∀j ∈ {1, ..., kt},

8: for j = 1, 2, ..., kt do

9: C
j
ℓ = αj

(
I + αjΣ

j
ℓ

)−1
,

10: T
j
ℓ+1,t = L

j
ℓΣ

j
ℓ,tL

j⊤
ℓ ,

11: Σj
ℓ+1,t =

mj

tr(T j

ℓ+1,t)
T

j
ℓ+1,t.

12: end for

13: Zℓ+1,t′ ∝ Zℓ,t′ + ηEℓZℓ,t′ − η
kt+kt′∑

i=kt+1

γiC
i
ℓZ

i
ℓ,t′

14: s.t. ‖Zj
ℓ+1,t′‖

2
F = mj .

15: end for

16: Output: Network Θ with parameters Eℓ and {Cj
ℓ}.

4.2. Comparison to Existing Methods

Incremental learning with ReduNet offers several nice

properties: 1) Each parameter of the network has an ex-

plicit purpose, computed precisely to emulate the gradient

ascent on the feature representation. 2) It does not require a

memory buffer which is often needed in many state-of-the-

art methods [16, 22, 1]. 3) It can be proven to behave like a

network reconstructed from joint training, thus eliminating

the problem of catastrophic forgetting.

Note that many existing works without relying on ex-

emplars [12, 6, 19, 25] regularize the original weights of

the model at each training session, effectively freezing cer-

1129



tain parts of the network. Different tasks, however, tend

to depend on different parts of the network, which eventu-

ally leads to conflicts on which parameters to regularize as

the number of tasks to learn increases. These methods, as

we see later in Figure 3, empirically perform sub-optimally

in the class-IL setting. This in fact reveals the fundamen-

tal limitation that underlies in many incremental learning

methods: a lack of understanding of how individual weights

impact the learned representation of data points. ReduNet,

on the other hand, sidesteps this problem by utilizing a fully

interpretable architecture.

One notable property of ReduNet, at its current form, is

that its width grows linearly with the number of classes as a

new compression term C
j
ℓ is appended to each layer when-

ever we see a new class. On the surface, this makes Re-

duNet similar to some architecture-based methods [11, 17]

that dynamically expand the capacity of the network. How-

ever, there exists a major difference. ReduNet is natu-

rally suited for class-IL scenario, whilst the aforementioned

works do not address class-IL directly. Instead they only di-

rectly address task-IL, which they accomplish by optimiz-

ing a sub-network per task. These networks, which are de-

signed to accomplish each task individually, fail to properly

share information between the sub-networks to discriminate

between classes of different tasks. ReduNet accomplishes

class-IL by not only appending the class compression terms

Cj to the network, but also modifying the expansion term

Eℓ to share information about classes of all previous tasks.

For class-IL, such methods that also append new param-

eters to the architecture fail to completely address the prob-

lem of catastrophic forgetting. One can see why with a

simple example. Consider an ensemble learning technique

where for each class j, we train an all-versus-one model that

predicts whether a data point belongs to class j or not. At

each task, we can feed the available data points into each

model, labeled as 1 if it belongs in that class or 0 other-

wise. However, by optimizing such “black box” models by

back-propagation, we again arrive at the problem of catas-

trophic forgetting. Specifically, the model only sees training

points of its own class only for one task or training session.

For the remaining tasks, all data points that it must train

will be of label 0, which prevents standard gradient descent

from correctly learning the desired all-versus-one decision

boundary, and there is no clear way to precisely address this

optimization problem.

Although it is natural to expect the network to expand

as the number of classes increases, it remains interesting to

see if the growth of certain variations of the ReduNet can be

sublinear instead of linear in the number of classes.

5. Experiments

We evaluate the proposed method on MNIST and

CIFAR-10 datasets in a class-IL scenario and compare the

results with existing methods. In short, for both MNIST

and CIFAR-10, the 10 classes are split into 5 incremental

batches or tasks of 2 classes each. After training on each

task, we evaluate the model’s performance on test data from

all classes the model has seen so far. The same setting is ap-

plied to all other methods we compared to.

5.1. Datasets

We compare the incremental learning performance of

ReduNet on the following two standard datasets.

MNIST [10]. MNIST contains 70,000 greyscale images of

handwritten digits 0-9, where each image is of size 28 × 28.

The dataset is split into training and testing sets, where the

training set contains 60,000 images and the testing dataset

contains 10,000 images.

CIFAR-10 [8]. CIFAR-10 contains 60,000 RGB images of

10 object classes, where each image is of size 32 × 32. Each

class has 5,000 training images and 1,000 testing images.

We normalize the input data by dividing the pixel values by

255, and subtracting the mean image of the training set.

5.2. Implementation Details

We implement ReduNet for each training dataset in the

following manner.

ReduNet on MNIST. To construct a ReduNet on MNIST,

we first flatten the input image and represent it by a vec-

tor of dimension 784. Then, with a precision ǫ = 0.5 in the

MCR2 objective (1), we apply 200 iterations of projected

gradient iterations to compute Eℓ and C
j
ℓ matrices for each

iteration ℓ. The learning rate is set to η = 0.5 × 0.933ℓ

at the ℓ-th iteration. These matrices are the parameters of

the constructed ReduNet. Given a test data, its feature can

be extracted with the incremental transform in (7) with es-

timated labels computed as in (8) with parameter λ = 1. At

each training session, we update the ReduNet by the proce-

dure described in Algorithm 1.

We note that hyper-parameter tuning in ReduNet does

not require a training/validation splitting as in regular super-

vised learning methods. The hyper-parameters described

above for ReduNet are chosen based on the training data.

This is achieved by evaluating the estimated label through

(8) on the training data, and comparing such labels with

ground truth labels. Then, the model parameter ǫ, learning

rate η and the softmax confidence parameter λ are chosen

as those that gives the highest accuracy with the estimated

labels (at the final layer).

ReduNet on CIFAR-10. We apply 5 random Gaussian ker-

nels with stride 1, size 3×3 on the input RGB images.1 This

lifts each image to a multi-channel signal of size 32×32×5,

1This choice is limited by our current computational resources. Al-

though this choice is not adequate to achieve top classification perfor-

mance, it is adequate to verify the advantages of our method in the in-

cremental setting.

1130



which is subsequently flattened to be a R
5,120 dimensional

vector. Subsequently, we construct a 50-layer ReduNet with

all other hyper-parameters the same as those for MNIST.

All hyperparameters stated above, including the depth of

the network, were chosen such that the ∆R loss has suffi-

ciently converged.

Comparing Methods. We compare our approach to the

following state of the art algorithms: iCaRL [16], LwF

[12], oEWC [19], SI [25] and DER [1]. For these algo-

rithms, we utilize the same benchmark and training pro-

tocol as Buzzega et al. [1]. For MNIST, we employ a

fully-connected network with two hidden layers comprised

of 100 ReLU units. For CIFAR-10, we rely on ResNet18

without pre-training [3]. All the networks were trained by

stochastic gradient descent. For MNIST, we train on one

epoch per task. For CIFAR-10, we train on 100 epochs

per task. The number of epochs were chosen based on the

complexity of the dataset. For each algorithm, batch size,

learning rate, and specific hyperparameters for each algo-

rithm were selected by performing a grid-search using 10%

of the training data as a validation set and selecting the hy-

perparameter that achieves the highest final accuracy. The

optimal hyperparameters utilized for the benchmark exper-

iments are reported in [1].

The performance of state of the art algorithms utilizing

a replay buffer highly depends on the number of exemplars,

or samples from previous tasks, it is allowed to retain. We

test on two exemplar-based algorithm, iCaRL and DER. For

both MNIST and CIFAR-10, we set the total number of ex-

emplars to 200.

5.3. Nearest Subspace Classification

By the principle of maximal rate reduction, the ReduNet

f(X, θ) extracts features such that each class lies in a low-

dimensional linear subspace and different subspaces are or-

thogonal. As suggested by the original MCR2 work [2],

we utilize a nearest subspace classifier to classify the test

data featurized to maximize ∆R. Given a test sample

ztest = f(xtest, θ), the label predicted by a nearest sub-

space classifier is

y = argmin
y∈1,...,k

∥
∥
∥(I −UyUy⊤)ztest

∥
∥
∥

2

2
, (19)

where Uy is a matrix containing the top x principal compo-

nents of the covariance of the training data passed through

ReduNet, i.e. ZtrainZ
⊤

train for Ztrain = f(Xtrain, θ).

Since we do not have access to Ztrain during evalua-

tion, we instead collect the Cj matrices at the very last layer

L and extract the covariance matrix Σj
L to be further pro-

cessed by SVD. For MNIST, we utilize the top 28 principal

components. For CIFAR-10, we utilize the top 15 principal

components.

2 3 4 5 6 7 8 9 10
Classes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MNIST dataset

UB
ReduNet(Ours)
LwF
EWC
SI
iCarl
DER

2 3 4 5 6 7 8 9 10
Classes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 dataset

UB
ReduNet(Ours)
LwF
EWC
SI
iCarl
DER

Figure 3. Incremental learning results (accuracy) on MNIST and

CIFAR-10. Both datasets have 5 incremental batches. We also

provide the upper bound (UB) given by joint training a model uti-

lizing the same architecture as the baseline methods. In solid lines

are regularization-based methods and in dashed are exemplar-

based methods, which saves 200 samples from previous tasks.

Note that the decay in the performance in ReduNet is simply be-

cause classification is harder to accomplish with more classes, not

because of catastrophic forgetting.

5.4. Results and Analysis

In this section, we evaluate the class-IL performance

of incremental ReduNet against three regularization-based

methods (oEWC, SI, LwF) and two replay-based methods

leveraging 200 exemplars (iCaRL, DER) on MNIST and

CIFAR-10. We also provide the upper bound (UB) achieved

by joint training a model utilizing the same architecture as

the baseline methods. After the model is trained on each

task, performance is evaluated by computing the accuracy

on test data from all classes the model has seen so far. To

observe the degree of forgetting, we record the model’s per-

formance on Task 1 after training on each subsequent task.

For both MNIST and CIFAR-10, we observe a substan-

tial performance increase by utilizing incremental ReduNet

as shown in Figure 3. Additionally, we observe ReduNet

shows significantly less forgetting (see Table 1).

1131



Table 1. Test Accuracy (%) on Task 1 After Each Training Session on MNIST and CIFAR-10.

Algorithm MNIST CIFAR-10

Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 3 Task 4 Task 5

LwF 0.999 0.009 0.0 0.0 0.0 0.979 0.0 0.0 0.0 0.0

oEWC 1.0 0.004 0.0 0.0 0.0 0.981 0.0 0.0 0.0 0.0

SI 0.997 0.004 0.001 0.0 0.0 0.989 0.0 0.0 0.0 0.0

iCaRL (200 Exemplars) 0.999 0.806 0.708 0.612 0.596 0.964 0.720 0.427 0.362 0.313

DER (200 Exemplars) 0.999 0.967 0.941 0.883 0.735 0.985 0.816 0.608 0.404 0.292

ReduNet(Ours) 0.999 0.994 0.993 0.989 0.987 0.875 0.754 0.714 0.642 0.562

Upper Bound (UB) 0.999 0.995 0.990 0.988 0.982 0.989 0.971 0.957 0.963 0.920

On MNIST, we observe a 3% decay in accuracy across

the tasks on ReduNet versus a 20-80% decay on benchmark

methods (see Figure 3). We measure decay as the differ-

ence in average accuracy between the first and last task.

ReduNet retains a classification accuracy of 96%. This is

of no surprise since MNIST is relatively linearly separable,

allowing second-order information about the data to be suf-

ficient for ReduNet to correctly classify the digits. We ob-

serve that even for a very simple task as MNIST, compet-

ing continual learning algorithms fail spectacularly due to

catastrophic forgetting. In fact, as shown in Table 1, mod-

els trained by regularization-based methods retain 0% accu-

racy for classes 0 and 1 after incrementally training on dig-

its 2 to 5 (up to Task 3). The drastic decay in performance

of benchmark methods is expected and replicated often in

class-IL literature [1, 23]. Note that ReduNet observes no

catastrophic forgetting and the decay in performance is due

to the fact that classification is increasingly harder to ac-

complish with more classes.

Similar improvement in performance utilizing ReduNet

is also observed on CIFAR-10, a more complex image

dataset. We observe a 42-80% decay in accuracy for bench-

mark methods, whereas incremental ReduNet observes a

34% decrease (in Figure 3). The algorithm that achieves

the closest performance to ReduNet is iCaRL and DER,

exemplar-based methods that require access to 200 previ-

ously observed exemplars. Certainly, as can be seen by

the 88% accuracy on Task 1 of CIFAR-10, ReduNet at

its current basic form (only using 5 randomly initialized

kernels without back-propagation) is not able to reach the

same classification accuracy as ResNet-18 for complex im-

age classification tasks. It is thus not surprising that DER,

based on more established network architectures, exceeds

ReduNet in terms of average accuracy. However, as shown

in Table 1, ReduNet decays gracefully and significantly out-

performs other methods in terms of forgetting, retaining

over 55% accuracy on Task 1 versus less than 30% by DER.

We note that ReduNet is currently a slower training

framework given its current naive implementation using

CuPy. Utilizing a single NVIDIA TITAN V GPU, each

task training session took approximately 1500 seconds for

MNIST and 9200 seconds for CIFAR10. On the other hand,

joint training a model by back-propagation for each task

took 23 and 2500 seconds for MNIST and CIFAR10, re-

spectively.

6. Conclusions and Future Work

In this work, we have demonstrated through an in-

cremental version of the recently proposed ReduNet, the

promise of leveraging interpretable network design for con-

tinual learning. The proposed network has shown signifi-

cant performance increases in both synthetic and complex

real data, even without utilizing any fine-tuning with back-

propagation. It has clearly shown that if knowledge of past

learned tasks are properly utilized, catastrophic forgetting

needs not to happen as new tasks continue to be learned.

We want to emphasize that it is not the purpose of this

work to push the state of art classification accuracy or effi-

ciency on any single large-scale real-world dataset. Rather

we want to use the simplest experiments to show beyond

doubt the remarkable effectiveness and great potential of

this new framework. Using CIFAR-10 as an example, sim-

ply utilizing a relatively small set of 5 random lifting kernels

was already sufficient for a decent incremental classification

performance. We believe that to achieve better performance

for more complex tasks and datasets, judicious design or

learning of more convolution kernels would be needed. This

leaves plenty of room for further improvements.

This work also opens up a few promising new exten-

sions. As we have mentioned earlier, the current framework

requires the width of the network to grow linearly in the

number of classes. It would be interesting to see if some

of the filters can be shared among old/new classes so that

the growth can be sublinear. To a large extent, the rate re-

duction gives a unified measure for learning discriminative

representations in supervised, semi-supervised, and unsu-

pervised settings. We believe our method can be easily ex-

tended to cases when some of the new data do not have class

information.

Acknowledgement Yi Ma acknowledges support from

ONR grant N00014-20-1-2002 and the joint Simons

Foundation-NSFDMS grant #2031899.

1132



References

[1] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S.

Calderara. Dark experience for general continual learning: a

strong, simple baseline. Adv. Neural Inform. Process. Syst.,

2020. 1, 5, 7, 8

[2] Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John

Wright, and Yi Ma. Deep networks from the principle of

rate reduction. arXiv preprint arXiv:2010.14765, 2020. 1, 3,

4, 7

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. IEEE Conf.

Comput. Vis. Pattern Recog., 2016. 7

[4] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 2

[5] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. arXiv preprint

arXiv:1711.10563, 2017. 2

[6] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei Rusu, Kieran Milan,

John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,

Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and

Raia Hadsell. Overcoming catastrophic forgetting in neural

networks. PNAS, 2017. 1, 2, 5

[7] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009. 2

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 6

[9] Yann LeCun. The mnist database of handwritten digits.

http://yann. lecun.com/exdb/mnist/, 1998. 2

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

6

[11] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and

Caiming Xiong. Learn to grow: A continual structure learn-

ing framework for overcoming catastrophic forgetting. arXiv

preprint arXiv:1904.00310, 2019. 1, 2, 6

[12] Zhizhong Li and Derek Hoiem. Learning without forgetting.

Eur. Conf. Comput. Vis., 2016. 1, 2, 5, 7

[13] Yi Ma, Harm Derksen, Wei Hong, and John Wright. Seg-

mentation of multivariate mixed data via lossy data coding

and compression. IEEE transactions on pattern analysis and

machine intelligence, 29(9):1546–1562, 2007. 3

[14] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation, vol-

ume 24, pages 109–165. Elsevier, 1989. 1

[15] Vardan Papyan, X.Y. Han, and David Donoho. Prevalence

of neural collapse during the terminal phase of deep learning

training. PNAS, 2020. 3

[16] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph Lampert. icarl: Incremental classifier

and representation learning. IEEE Conf. Comput. Vis. Pat-

tern Recog., 2017. 1, 2, 5, 7

[17] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 1, 2, 6

[18] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-

rell. Adapting visual category models to new domains. In

European conference on computer vision, pages 213–226.

Springer, 2010. 1

[19] Jonathan Schwarz, Jelena Luketina, Wojciech Czarnecki,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & compress: A scalable

framework for continual learning. ICML, 2018. 1, 2, 5, 7

[20] Gido van de Ven and Andreas Tolias. Three scenarios for

continual learning. Adv. Neural Inform. Process. Syst., 2018.

2

[21] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer,

Bogdan Raducanu, et al. Memory replay gans: Learning to

generate new categories without forgetting. In Advances in

Neural Information Processing Systems, pages 5962–5972,

2018. 2

[22] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incre-

mental learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 374–382,

2019. 1, 2, 5

[23] Lu Yu, Bartomiej Twardowski, Xialei Liu, Luis Herranz, Kai

Wang, Yongmei Cheng, Shangling Jui, and Joost van de Wei-

jer. Semantic drift compensation for class-incremental learn-

ing. IEEE Conf. Comput. Vis. Pattern Recog., 2020. 2, 8

[24] Yaodong Yu, Ryan Chan, Chong You, Chaobing Song, and

Yi Ma. Learning diverse and discriminative representations

via the principle of maximal coding rate reduction. Adv. Neu-

ral Inform. Process. Syst., 2020. 3

[25] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. ICML, 2017. 1,

2, 5, 7

[26] Junting Zhang, Jie Zhang, Shalini Ghosh, Dawei Li, Serafet-

tin Tasci, Larry Heck, Heming Zhang, and C-C Jay Kuo.

Class-incremental learning via deep model consolidation. In

The IEEE Winter Conference on Applications of Computer

Vision, pages 1131–1140, 2020. 2

1133


