

Threshold-Based Admission Control
Policies for Multimedia Servers

ING-RAY CHEN AND CHI-MING CHEN

Institute of Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
Email: irchen@iie.ncku.edu.tw

Traditional admission control algorithms for on-demand multimedia servers concern the
acceptance decisions for new clients' requests so as to guarantee that continuous services to all
clients are executed. These algorithms determine whether a new client can be accepted, based
on the consideration whether the underlying hardware can satisfy the quality of service (QoS)
requirements of admitted client requests. In this paper, we consider a richer class of admission
control algorithms that make acceptance/rejection decisions not only to satisfy the hardware
requirements of client requests but also to optimize the reward of the system based on a performance
criterion as it services clients of different priority classes. We divide the server capacity into
a number of `priority threshold values' based on which the system decides whether to accept
clients of different priority classes dynamically in order to maximize the system value. The
resulting threshold-based admission control algorithm is developed based on the idea that admission
control can be driven not only by hardware requirements, but also by knowledge regarding the
workload characteristics of client requests, thus allowing the system to adjust dynamically the
threshold values in response to changes in client workload characteristics. We derive a close-form
expression for the value which the system can obtain when operating under the threshold-based
algorithm as a function of model parameters, and discuss how the server can utilize the analytical
solution at run time so as to maximize the system value dynamically without violating clients'

continuity requirements.

Received February 23, 1996; revised February 6, 1997

1. INTRODUCTION

Multimedia servers [1, 2, 3, 4, 5] are designed to provide
continuous services to clients on demand. This can be
achieved by having the server periodically execute the
clients' tasks (e.g. for media data processing) such that
the periodic deadline requirement of each client is satis"ed.
A promising approach for guaranteeing continuous services
is based on the design concept of capacity reservation [6]
by which a fraction of the server capacity is reserved for
each new client, and once a reservation has been made, the
client is guaranteed of the availability of the server capacity
reserved until it terminates. For example, in designing an
on-demand multimedia server [4], the capacity reservation
concept is implemented by allocating a portion of the server
capacity to retrieve a speci"ed number of disk blocks in
a repeated service cycle for each admitted client, so as to
meet the play-back rate requirements of all admitted clients.
When the server capacity is used up by existing clients, a
newly arriving client may be rejected so as to guarantee
continuous services to clients that have been admitted. The
rejected client is then `lost', representing some type of loss
to the system in overloaded situations.
One issue in the design of such on-demand multimedia

servers is to make the loss rate of clients as small as possible
when the system is overloaded. This issue may involve
dynamically lowering the quality of service (QoS) levels of

existing clients so as to make room for newly arriving clients
and may involve the design of some negotiation protocols
[7]. Another design issue is an admission control policy
based on which the server accepts/rejects new requests. This
paper concerns the second design issue.

Existing admission control algorithms make accep-
tance/rejection decisions merely based on the consideration
whether the underlying hardware can satisfy the QoS re-
quirements of clients [8, 4, 9, 10], e.g. based on the play-
back rate requirements of media streams. Two classes of
admission control algorithms have so far been considered in
the literature, namely, `deterministic' and `best-effort.' Ran-
gan et al. [4, 9] developed deterministic admission control
algorithms by considering different ways of performing data
placement and disk access scheduling. They derived a for-
mula for the maximum number of clients which the system
can admit based on the theoretical worst-case time bounds
with absolute guarantees. Vin et al. [10] subsequently com-
pared deterministic algorithms with predictive algorithms
which allow momentary violations of the clients' QoS re-
quirements to be tolerated, as long as the fraction of media
data delivered on time is larger than a speci"ed threshold
value, say α, speci"ed as part of a client's QoS requirement.
Based on this concept, they developed predictive admission
control algorithms using average-case service times obtained
from extrapolation data based on past measurements. They

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

758 I.-R. CHEN AND C.-M. CHEN

claimed by simulation that the maximum number of clients
which can be admitted by the server with predictive services
is greatly increased with the server utilization being greatly
improved, when compared with deterministic services. It
was also demonstrated that these bene"ts are obtained with-
out sacri"cing the QoS requirements speci"ed by clients re-
questing predictive services. Another study of best-effort
admission control is by Chang and Zakhor [8] who inves-
tigated a class of statistical admission control strategies for
buffer management for variable bit rate (VBR) video servers.
They used a statistical QoS control strategy to determine
whether a client can be admitted based on a statistical es-
timation of the probability that the total data requested by
all of the users exceeds the server capacity. A new client to
the system is rejected if this probability at the arrival instant
is found to be greater than a speci"ed threshold probability
value. They showed that statistical admission control is more
effective than deterministic admission control for interactive
video server systems.
All these past studies discussed above do not consider

priority scheduling in operating environments in which
multiple service classes exist. Their main research goal
was to accept as many clients as possible without violating
or compromising too much of their QoS requirements.
In this paper, we address priority scheduling issues
and develop admission control algorithms which make
acceptance/rejection decisions not only to satisfy the QoS
requirements of client requests but also to make the
system bene"t the most from the perspective of `reward
optimization'. We borrow the concept of transaction values
in scheduling real-time transactions1 [11, 12] and introduce
the notions of `reward' and `penalty' associated with each
client into our cost model. Speci"cally, we consider that
every client can be assigned a reward indicating its value
to the system (e.g. monetary value) when the client is
successfully serviced, and conversely a penalty indicating
the negative value (e.g. loss of pro"t) imparted to the
system when the client is rejected in overloaded situations.
These positive/negative parameters re#ect the bene"t/loss to
the server system. Notice that only specifying the reward
parameter without specifying the penalty parameter, or vice
versa, is not suf"cient. For example, ignoring penalties
will lead to the naive design of reserving most or all of
the system resources for low-priority clients in situations
where low-priority clients arrive more frequently than high-
priority clients, as there is no consequence in rejecting a
high-priority client which may otherwise impose a very high
penalty.
The motivation for introducing the reward/penalty param-

eters is to create a performance index which accounts for
both the QoS and priority (importance) requirements of the
client. It provides a basis for mathematically assessing the

1Scheduling real-time transactions with values also concerns maximiz-
ing the system's added value; however, the main thrust is to design a trans-
action processing protocol by which the execution sequence of transaction
operations can be ordered, possibly by aborting existing transactions or by
delaying the commitment of transactions, so as to maximize the system
value.

trade-off between priority reservation and no priority reser-
vation designs. Under the priority reservation scheme, the
server can reserve its capacity discriminatively for differ-
ent priority-class clients for the purpose of `reward opti-
mization', considering that a high-priority user is associated
with a higher `value' if it is served successfully and, cor-
respondingly, a higher `penalty' if it is rejected. With this
reward/penalty concept, the design of admission control al-
gorithms can be considered as a reward optimization prob-
lem, i.e. designing an admission control algorithm which
can dynamically adjust priority reservation policies as the in-
put characteristics of client requests change dynamically, so
as to maximize the system value. Dynamic workload change
can happen during the peak/off-peak hours of an on-demand
multimedia server system.
In this paper, we develop a class of `threshold-based'

admission control algorithms, with `threshold' referring
to the amount of server capacity reserved for different
priority clients. We divide the server capacity into a
number of `priority threshold values' based on which the
system can decide whether to accept high-priority or low-
priority clients dynamically in order to maximize the system
value. The resulting threshold-based admission control
algorithm is developed based on the idea that admission
control can be driven not only by hardware requirements,
but also by knowledge of the workload characteristics
of client requests, thus allowing the system dynamically
to adjust the threshold values in response to changes in
client workload characteristics. We derive a close-form
expression for the value which the system can obtain when
operating under the threshold-based algorithm as a function
of model parameters, and discuss how the server can utilize
the analytical solution at run time so as to maximize
the system value dynamically. The contribution of our
work with respect to previous works is that we vitalize
the role of an admission control algorithm from a passive
role, i.e. preventing system overload, to an active role,
or maximizing system performance while still satisfying
requests' continuity requirement. We achieve this goal by
identifying the best priority reservation strategy when given
a set of client workload characteristics. Our approach can
handle multiple priority classes.
The rest of the paper is organized as follows. Section 2

presents the system model based on which several admission
control algorithms are analysed, namely, free-threshold,
"xed-threshold and dynamic-threshold admission policies.
A performance criterion is de"ned which uses a combined
reward/penalty performance metric for evaluating various
threshold-based algorithms. Using simple queueing theory
arguments, Section 3 derives closed-form expressions based
on a performance metric in the form of POx (t̄, s̄) where t̄
is a set of priority threshold values and s̄ is a set of input
parameter values characterizing the behaviour of arriving
clients in different priority classes. Section 4 discusses the
optimality of the dynamic threshold-based algorithm, that is,
being able to "nd an optimal t̄ which maximizes POx (t̄, s̄)
for each s̄ given. It also discusses how the analytical
expressions derived in Section 3 can be used by the server

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

THRESHOLD-BASED ADMISSION CONTROL POLICIES 759

system at run time to adjust dynamically its threshold values
so as to maximize the system value. Section 5 shows some
numerical examples and gives physical interpretations of the
result. Finally, Section 6 summarizes the paper and outlines
some future research areas.

2. SYSTEMMODEL

We assume that the on-demand multimedia server adopts
the capacity reservation mechanism such that a server
capacity reservation is made at the time a new client
arrives. A new client is accepted if the remaining capacity
can accommodate it, otherwise, the client is turned away.
Consequently, there exists a maximum number of client
requests that the system can service without overloading, as
has been addressed in previous works in admission control
[8, 10]. Note that the above argument holds for both
deterministic and best-effort admission control.
For ease of exposition, we "rst consider the case when

there exist two priority classes of clients, each class being
characterized by its own arrival/departure rates as well as its
reward/penalty values. We will later relax this assumption in
Section 3.
For trackability2, we assume that the inter-arrival times of

high-priority and low-priority clients are exponentially dis-
tributed with average times of 1/λh and 1/λl , respectively.
Once a reservation is made, a client is assured of the server
capacity until its task is completed. The real-time compu-
tational requirement of each client is characterized by a pe-
riod T and a computation time C within the period. To pro-
vide a real-time, continuous service to each client, a thread
may be created by the server at the time the client is ad-
mitted into the system and is invoked afterward periodi-
cally, utilizing a fraction C/T of the server capacity, until
the client completes its requested service. For simplicity,
the inter-departure time of either the high-priority or low-
priority clients is assumed to be exponentially distributed
with an average time of 1/µ, although the analysis which
follows can handle different departure rates.
The capacity reservation mechanism of the server system

is modelled as follows. We assume that a high-priority
client reserves a fraction 1/n of the capacity (corresponding
to C/T above), whereas a low-priority client reserves a
fraction 1/m, m ≥ n, of the capacity. In general, m ≥
n since a low-priority client may request a lower QoS
requirement than a high-priority client. This paper considers
the special case in which m = n, corresponding to the
case where all clients' hardware requirement (e.g. playback
rate of media streams) is the same but some clients are
more important than others. From the perspective of the
server system, the system behaves as if it contains n capacity
slots. When all slots are used up, the server rejects a newly
arriving client so as to guarantee continuous services to all

2Our approach can be applied to general distributions (e.g. a semi-
Markov model) except that we will not be able to obtain analytical solutions
and also a software tool which analyses stochastic models such as SHARPE
[15] will have to be used to obtain numerical solutions on a case by case
basis.

clients that have been admitted. An example for which
this assertion is justi"ed occurs in the design of a real-time
on-demand multimedia server [4] where the parameter n
corresponds to the maximum number of subscriber requests
with the same playback rate that can be serviced by the
server. In such cases, as long as the system does not admit
over n client requests, continuous services to all admitted
client requests can be guaranteed.
The pay-off to the server when a client completes its

service is characterized by each client's reward and penalty
parameters. We assume that the rewards of high-priority and
low-priority clients are vh and vl , respectively, with vh ≥ vl ,
and the penalties to the system when high-priority and low-
priority clients are rejected are qh and ql , respectively, with
qh ≥ ql .
The performance metric being considered in the paper

takes both rewards and penalties of clients into considera-
tion. It is called the system's total pay-off rate, de"ned as
the average amount of reward received by the server per time
unit. In other words, under a particular admission policy if
the system on average services Nh high-priority clients and
Nl low-priority clients per unit time while rejects Mh high-
priority clients and Ml low-priority clients per unit time, then
the system total pay-off rate is

Nhvh + Nlvl − Mhqh − Mlql .

Formally, the problem we are thus interested in solving is to
identify the best admission control policy under which this
performance metric is maximized, as a function of model
input variables, including n, λh , λl , µ, vh , vl , qh and ql
de"ned above. Table 1 summarizes the notation used in this
paper.

3. THRESHOLD-BASED ADMISSION CONTROL

In this section, we develop three threshold-based admission
control algorithms in increasing order of reward maximiza-
tion, at the expense of increased time complexity, and anal-
yse their behaviours. We "rst derive analytical expressions
for the system reward obtainable when only two priority
classes exist. Later we will extend the analysis to the more
general case when more than two priority classes exist.

3.1. Free threshold

The simplist admission policy, termed `free-threshold', is to
accept any new arriving client regardless of its priority type,
as long as there is a slot to accommodate it. In essence, it
is equivalent to the "rst come, "rst served policy without
applying any reward-based control. We will use this policy
as the base policy against which other more sophisticated
admission policies can be compared. Essentially, under this
policy, there is no priority distinction among clients and the
system behaves like a classic M/M/n/n system [14] with
the arrival rate λ = λh + λl and the departure rate iµ when
there are i clients in the system. The loss rate of clients in

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

760 I.-R. CHEN AND C.-M. CHEN

TABLE 1. Notation.

λh Arrival rate of high-priority clients
λl Arrival rate of low-priority clients
µ Departure rate of clients
vh Reward of a high-priority client if the client is serviced successfully
vl Reward of a low-priority client if the client is serviced successfully
qh Penalty of a high-priority client if the client is rejected on admission
ql Penalty of a low-priority client if the client is rejected on admission
POx Total system pay-off rate under admission policy x , e.g. income

rate of the company running the on-demand multimedia service business
n Maximum number of server capacity slots for servicing clients
nh Number of slots reserved for high-priority clients only, 0 ≤ nh ≤ n
nl Number of slots reserved for low-priority clients only, 0 ≤ nl ≤ n

and also nh + nl ≤ n
nm Number of slots that can be used to service either type of client,

nm = n − nh − nl
T A time period in which a client's computation is executed periodically
C The amount of computation time within T for each client; C/T = 1/n

this case is equal to

(λh + λl) ×
1

n!

(
λh + λl

µ

)n

1+
n∑
j=1

1

j!

(
λh + λl

µ

) j ,

where the "rst term is the collective arrival rate of high- and
low-priority clients and the second term is the probability of
all n slots being occupied.
Using only one component in the state representation, the

M/M/n/n model does not keep track of the number of high-
priority or low-priority clients in each state. However, since
with probability λh/(λh + λl) a new client is a high-priority
client and conversely with probability λl/(λh + λl) it is a
low-priority client, each state i (representing that there are
i clients in the system in the steady state) can be associated
with a pay-off reward rate of

iµ ×
(

vh × λh

λh + λl
+ vl × λl

λh + λl

)
.

On the other hand, state n (representing that all slots are used
up) can be associated with a penalty rate of

qh × λh + ql × λl .

Consequently, the system pay-off rate under the free-
threshold policy, PO f ree, can be obtained by summing
the pay-off reward rates weighted by their individual state
probabilities, and subtracting the penalty rates due to
rejection when all n slots are occupied, i.e.

PO f ree(n, λh, λl , µ, vh, vl , qh, ql)

=
n∑
i=1

iµ ×
(

vh × λh

λh + λl
+ vl × λl

λh + λl

)

×
1

i!

(
λh + λl

µ

)i

1+
n∑
j=1

1

j!

(
λh + λl

µ

) j

− (qh × λh + ql × λl) ×
1

n!

(
λh + λl

µ

)n

1+
n∑
j=1

1

j!

(
λh + λl

µ

) j

.

(1)
Note that here the total system pay-off rate PO f ree is
expressed as a function of n, λh , λl , µ, vh , vl , qh and ql .

3.2. Fixed threshold

Under the "xed-threshold admission policies, we allocate
nh slots, nh ≤ n, to high-priority clients only, while the
remaining slots nl = n − nh slots are allocated to low-
priority clients only. When all the slots allocated to high-
priority (correspondingly low-priority) clients are exhausted,
a new arriving high-priority (low-priority) client is rejected
by the server even if there are still available slots in the
slots allocated to low-priority (high-priority) clients. This
situation is likely when we have a priori knowledge of the
arrival rates of clients such that it is justi"ed to reserve
some capacity for high- or low- priority clients in order to
maximize the system pay-off.
In this case, the server behaves as if it is managing two

separate, concurrent queues: one is an M/M/nh/nh queue
for high-priority clients only with the arrival rate equal to
λh , service rate equal to iµ when there are i high-priority

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

THRESHOLD-BASED ADMISSION CONTROL POLICIES 761

clients being serviced, and the number of slots equal to nh ,
while the other is an M/M/nl/nl queue designated for low-
priority clients only with the arrival rate equal to λl , service
rate equal to iµ when there are i low-priority clients being
serviced, and the number of slots equal to nl .
The loss rate of clients in this case is equal to the sum of

that due to low-priority clients and that due to high-priority
clients, i.e.

λh ×
1

nh!

(
λh

µ

)nh

1+
nh∑
j=1

1

j!

(
λh

µ

) j + λl ×
1

nl!

(
λl

µ

)nl

1+
nl∑
j=1

1

j!

(
λl

µ

) j .

By associating a pay-off reward rate of iµ × vh
(correspondingly iµ × vl) for state i in the M/M/nh/nh
queue for high-priority (correspondingly in the M/M/nl/nl
queue for low-priority) clients and subtracting the penalty
rate for the case when nh (correspondingly nl) slots are used
up for high-priority (low-priority) clients, we can compute
the system pay-off rate as

PO f i xed(nh, nl , λh, λl , µ, vh, vl , qh, ql)

=
nh∑
i=1

iµ × vh ×
1

i!

(
λh

µ

)i

1+
nh∑
j=1

1

j!

(
λh

µ

) j

+
nl∑
i=1

iµ × vl ×
1

i!

(
λl

µ

)i

1+
nl∑
j=1

1

j!

(
λl

µ

) j

− λhqh ×
1

nh!

(
λh

µ

)nh

1+
nh∑
j=1

1

j!

(
λh

µ

) j

− λlql ×
1

nl!

(
λl

µ

)nl

1+
nl∑
j=1

1

j!

(
λl

µ

) j

.

(2)

3.3. Dynamic threshold

Under the dynamic-threshold admission policy, the n slots
are divided into three parts: nh , nl and nm , with nh
speci"cally allocated to high-priority clients, nl allocated
to low-priority clients while the remaining nm slots
shareable with both types of clients. When a high-priority
(correspondingly a low-priority) client arrives, if there is a
slot available in the nh (correspondingly nl) or nm part, then
the client is accepted; otherwise, it is rejected. The policy

always "lls in the slots in nh and nl for high- and low-priority
clients, respectively, before "lling in a slot in nm .
This policy encompasses the previous two admission

policies: in the case when nm = 0, this policy degenerates to
the "xed-threshold admission policy, while in the case when
nh = nl = 0, it degenerates to the free-threshold policy.
It also covers the interesting case of nl = 0 wherein high-
priority clients can use the nm slots open to both high- and
low-priority clients (as long as there is a space), but no low-
priority clients can use any of the nh slots allocated to high-
priority clients.
The closed-form solution to the system pay-off rate

under the dynamic admission policy can be obtained by
considering a two-level hierarchical model. The high-level
model is like the one for the free-threshold admission policy,
i.e. an M/M/nm/nm queue with the arrival rate equal to
3h + 3l , and the service rate equal to µ. Here, 3h and
3l denote the arrival rates of high-priority and low-priority
clients after nh and nl slots have been occupied by high-
priority and low-priority clients, respectively. These two
arrival rates associated with the `spill-over' processes (which
are Markov processes themselves [13]) can be obtained from
two low-level models, one for each type of clients, like the
ones we have used for the "xed-threshold admission policy.
Speci"cally,

3h = λh ×
1

nh!

(
λh

µ

)nh

1+
nh∑
j=1

1

j!

(
λh

µ

) j

and

3l = λl ×
1

nl!

(
λl

µ

)nl

1+
nl∑
j=1

1

j!

(
λl

µ

) j .

The system pay-off rate in this case is the sum of that due to
the nh and nl slots assigned to high- and low-priority clients
only, and that due to the sharable nm slots, i.e.

POdynamic(nh, nm, nl , λh, λl , µ, vh, vl , qh, ql)

=
nh∑
i=1

iµ × vh ×
1

i!

(
λh

µ

)i

1+
nh∑
j=1

1

j!

(
λh

µ

) j

+
nl∑
i=1

iµ × vl ×
1

i!

(
λl

µ

)i

1+
nl∑
j=1

1

j!

(
λl

µ

) j

+ PO f ree(nm, 3h, 3l , µ, vh, vl , qh, ql),

(3)

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

762 I.-R. CHEN AND C.-M. CHEN

where the expression for PO f ree(. . .) is given earlier in
Equation 1. We check the boundary conditions below.
For the special case when nh = nl = 0, we have
3h = λh , 3l = λl , the "rst two terms being zeros, and
therefore POdynamic (0, n, 0, . . .) = PO f ree(n, . . .) in
which the dynamic admission policy degenerates to the free
admission policy. For the special case when nm = 0,
we have PO f ree(0, . . .) = −qh3h − ql3l , and therefore
POdynamic(nh, 0, nl , . . .) = PO f i xed(nh, nl , . . .) in which
the dynamic admission policy degenerates to the "xed
admission policy. Equation 3 correctly satis"es these
boundary conditions.

3.4. Multiple priority classes

Equations 1, 2 and 3 can easily be generalized to the case
when there exist more than two priority classes. Assume that
there are M priority classes, of which class 1 is the highest
priority class, while class M is the lowest. Class k, 1 ≤
k ≤ M , is characterized by its own set of parameters (λk ,
vk , qk). Other than the free algorithm, the threshold value
speci"cally reserved for class k is nk , with

∑M
k=1 nk = n for

the "xed algorithm and nm + ∑M
k=1 nk = n for the dynamic

algorithm with nm being the threshold value shareable to all
priority classes. The generalization is straightforward and
here we will only show the results without proof. Equations
4, 5 and 6 below give these reward rate expressions under the
free, "xed and dynamical control algorithms, respectively,
when M priority classes exist.

POM
f ree(n, λ1...λM , µ, v1...vM , q1...qM)

=
n∑
i=1

iµ ×


M∑
k=1

vkλk

λ
×

1

i!

(
λ

µ

)i

1+
n∑
j=1

1

j!

(
λ

µ

) j



−
M∑
k=1

qkλk ×
1

n!

(
λ

µ

)n

1+
n∑
j=1

1

j!

(
λ

µ

) j

(4)

where λ = ∑M
k=1 λk .

POM
f ixed(n1...nM , λ1...λM , µ, v1...vM , q1...qM)

=
M∑
k=1


nk∑
i=1

iµ × vk ×
1

i!

(
λk

µ

)i

1+
nk∑
j=1

1

j!

(
λk

µ

) j



−
M∑
k=1

λkqk ×
1

nk!

(
λk

µ

)nk

1+
nk∑
j=1

1

j!

(
λk

µ

) j

 .

(5)

POM
dynamic(n1...nM , nm, λ1...λM , µ, v1...vM , q1...qM)

=
M∑
k=1


nk∑
i=1

iµ × vk ×
1

i!

(
λk

µ

)i

1+
nk∑
j=1

1

j!

(
λk

µ

) j


+ POM

f ree(nm, 31...3M , µ, v1...vM , q1...qM)

(6)
where the expression for 3k was derived earlier in Section
3.3.

4. ALGORITHM COMPLEXITY AND SOLUTION
TECHNIQUE

The inputs to the threshold-based admission control
algorithms discussed above are the arrival and departure
rates, i.e. λh , λl and µ, plus the reward and penalty
parameters, i.e. vh , vl , qh and ql . The output is the
overall system value, PO f ree for free, PO f i xed for "xed
and POdynamic for dynamic. In particular, for the last
two outputs, we are interested in obtaining the system
value obtainable at optimal conditions, that is, the largest
PO f i xed optimal value (nh, nl) under the "xed algorithm,
and the largest POdynamic optimal value (nh, nm, nl) under
the dynamic algorithm. Determining the optimal point
in these cases can be done by enumerating all possible
combinations and applying Equation 2 or Equation 3 to
select the highest value. Speci"cally, the number of possible
cases, which is the same as the number of ways of dividing
n into K distinct groups (thresholds), is C(n+K−1, K−1)
with C(x, y) = x!/(y!(x− y)!). Consequently, for the "xed
and dynamic algorithms discussed in Subsections 3.2 and
3.3, the number of cases to be tested will be C(n + 1, 1) =
n + 1 and C(n + 2, 2) = (n + 2)(n + 1)/2, respectively.
The time complexity involved in enumerating and applying
Equation 2 or 3 is thus O(n) for "xed and is O(n2) for
dynamic.
It is easy to show that under a given set of parameter

values, there always exists an optimal threshold value set

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

THRESHOLD-BASED ADMISSION CONTROL POLICIES 763

FIGURE 1. A 3-D graph showing (nh, nm, nl) vs. POdynamic. The maximum point is (7, 13, 0).

of (nh, nm, nl) under which the system value is maximized
under the dynamic algorithm. The reason is twofold. First,
the number of cases which can be enumerated for a given n
under the dynamic algorithm is "nite, i.e. (n + 2)(n + 1)/2
to be exact. Therefore, by using Equation 3 to compute
the system value obtained for each case, we can determine
the optimal set which yields the maximum system value.
Second, all the cases enumerated by either the free or "xed
algorithm are just subcases which can be enumerated under
the dynamic algorithm. The free algorithm generates one
special case for which nh = nl = 0 and nm = n, while
the "xed algorithm generates n + 1 special cases for which
nm = 0. Therefore, the optimal threshold value set will
always be uncovered by the dynamic algorithm.

There are two ways of applying the analysis result
obtained in this paper to real-time admission control. The
"rst way is to statically generate a table and then do a table
lookup at run time. This method is applicable when vh ,
vl , qh and ql can statically be determined by the system
designer at the design time based on the characteristics
of client service classes and the application environment.
In this case, we can evaluate optimal (nh, nm, nl) sets
statically for various combinations of λh , λl and µ which
are likely to change dynamically. A symbolic mathematical

software package such as Mathematica [16] can be used
for this purpose. Figure 1 shows a three-dimensional graph
generated byMathematica. It showsPOdynamic as a function
of (nh, nm, nl) for the case when n = 20, vh = 10, vl =
2, qh = 2, ql = 1 and λh = 5, λl = 40 and µ = 1.
Note that nm is not shown on the graph because it is equal to
n−nh−nl . The optimal set as determined byMathematica in
this case is (7, 13, 0). After the table is statically established
this way to cover a range of client arrival and departure
rates, the system can (a) collect run-time client arrival and
departure data periodically; (b) estimate the average arrival
and departure rates in the period; and (c) adjust the optimal
threshold value set by using a look-up table so as to optimize
the system pay-off value dynamically on a period by period
basis. This method is feasible for video server designs since
it is reasonable to assign clients in different priority classes
with distinct reward/penalty values at the design time based
on the belief of the designer.

The second way is to treat vh , vl , qh and ql also as
variables and apply enumeration methods and Equation 3
at run-time to select the optimal threshold values. Since
the algorithm's complexity is O(n2), it should be done only
periodically, perhaps by executing a background process
which periodically estimates average parameter values and

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

764 I.-R. CHEN AND C.-M. CHEN

recomputes the next set of optimal (nh, nm, nl) values to be
used by the server in the next period. The server can continue
using the old set of (nh, nm, nl) values to admit users while
the background process computes the new optimal set.

5. NUMERICAL EXAMPLES

We use the design of an on-demand multimedia server [10]
as an example to demonstrate the utility of our analysis
result. One reported experiment used an array of 128 disks
each with a storage capacity of 0.5 Gbyte to implement the
server. The playback rate is assumed to be 30 frames/s
per client request. Successive media blocks (each of 512
kbyte) of a video stream are assumed to be randomly stored
on disk. Under the hardware constraints of the disk array
used the maximum number of client requests that can be
served concurrently was found to be around n = 16 if
deterministic admission control is considered and n = 84 if
best-effort admission control is considered with a read-ahead
buffer of 1 media block per client. The latter is different
from the former in that the server admits clients based on
the observed performance characteristics of the server with
predictive guarantee, rather than based on theoretical worst-
case time bounds with absolute guarantee [10]. It should
be noted that this analysis was purely based on resource
capacity limitations, without considering the importance or
criticality of requests.
Tables 2 and 3 list the optimal (nh, nm, nl) threshold

value sets with respect to some selected sets of model
parameter values characterizing various client workload
possibilities for the server system, for n = 16 and n = 84,
respectively. Tables 2 and 3 are generated by applying
Equations 1 and 3. In addition, the values listed in the
column labelled `optimal (nh, nm, nl)' are uncovered by
the dynamic admission control algorithm based on the
mechanism discussed in Section 4.
Here we observe that the pay-off rate at the optimizing

condition under dynamic-threshold admission can be much
higher than that under free-threshold admission. Moreover,
the total pay-off rate can be negative if requests are served
indiscriminatively. Another observation is that as the arrival
rate (λh), reward (vh) or penalty (qh) of high-priority clients
increases, more slots will be reserved for high-priority
clients. An example is entry 1 of Table 2 for which the
number of slots reserved for high-priority clients is zero and
therefore a high-priority client (who still presumably pays
more) will have to compete with low-priority clients for the
shareable slots. The reason is that the arrival rate of high-
priority clients in entry 1 is an order of magnitude lower
than that of low-priority clients (i.e. 1 versus 10) and also
the reward of accepting a high-priority client is not high
compared to that of accepting a low-priority client (i.e. 2
versus 1). The last entry of Table 2 shows that as both
the arrival rate and reward of high-priority clients increase
(relative to those of low-priority clients), more and more
slots will be reserved for high-priority clients by the system
in order to maximize the total system pay-off.
Figure 2 demonstrates the effect of applying dynamic

TABLE 2. Optimizing threshold values (n = 16).
(λh, λl , µ, vh, vl , qh, ql) optimal dynamic free

(nh, nm, nl) PO PO

(1, 10, 1, 2, 1, 2, 1) (0,7,9) 12 11
(1, 10, 1, 5, 1, 2, 1) (1,7,8) 15 14
(1, 10, 1, 10, 1, 2, 1) (1,7,8) 19 18
(5, 10, 1, 2, 1, 2, 1) (3,10,3) 15 14
(5, 10, 1, 5, 1, 2, 1) (5,10,1) 28 27
(5, 10, 1, 10, 1, 2, 1) (6,10,0) 52 48
(10, 10, 1, 2, 1, 2, 1) (8,8,0) 14 12
(10, 10, 1, 5, 1, 2, 1) (12,4,0) 41 33
(10, 10, 1, 10, 1, 2, 1) (14,2,0) 88 69

TABLE 3. Optimizing threshold values (n = 84).
(λh, λl , µ, vh, vl , qh, ql) optimal dynamic free

(nh, nm, nl) PO PO

(10, 100, 1, 2, 1, 2, 1) (7,60,17) 59 57
(10, 100, 1, 5, 1, 2, 1) (10,68,6) 86 79
(10, 100, 1, 10, 1, 2, 1) (12,72,0) 134 117
(50, 100, 1, 2, 1, 2, 1) (50,34,0) 49 20
(50, 100, 1, 5, 1, 2, 1) (56,28,0) 192 103
(50, 100, 1, 10, 1, 2, 1) (60,24,0) 436 242
(100, 100, 1, 2, 1, 2, 1) (84,0,0) 22 −50
(100, 100, 1, 5, 1, 2, 1) (84,0,0) 263 75
(100, 100, 1, 10, 1, 2, 1) (84,0,0) 666 283

threshold admission control more clearly. It displays the
difference between the optimal pay-off rate and that without
control (i.e. with free-threshold), with λh varying in the
range of [10, 150] in increments of 10 and λl varying in the
range of [50, 150] in increments of 50, and with n = 100.
We set the reference reward/penalty parameter values for
low-priority clients at 1 and let vh/vl > qh/ql , meaning
that the loss the system suffers from rejecting a high-priority
client is lower in absolute value than the reward that it
receives from accepting the same high-priority client. We
study this case because it is generally true that the system
would not lose a value due to turning away a client more than
it would gain due to accepting the same client, especially
for high-priority clients. The trend exhibited in Figure 2
can be explained as follows. When the system load is light
(corresponding to the left part of the graph) the effect of
threshold-based admission control is not signi"cant because
the system can accommodate a new arriving client with a
high probability, so that free admission is just as good as
threshold-based admission. As the system load becomes
moderate to heavy (corresponding to the middle part of the
graph) the effect of threshold admission control becomes
manifested because the server can effectively manage the
server capacity (with thresholds) based on the knowledge
regarding workload characteristics so as to optimize the pay-
off rate. Finally, when the load is very heavy (corresponding
to the right part of the graph) the effect of threshold
admission control becomes less signi"cant again because too
many clients are lost even if the dynamic control algorithm

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

THRESHOLD-BASED ADMISSION CONTROL POLICIES 765

50 100 150

100

200

300

400

500

◦ ◦ ◦ ◦ ◦
◦

◦

◦

◦
◦ ◦ ◦ ◦ ◦ ◦

• •
•

•
•

•

•

•

•
• • • • • •

∗
∗

∗
∗

∗

∗

∗

∗

∗
∗ ∗ ∗ ∗ ∗ ∗

λh

POdynamic − PO f ree

◦ λl = 50
• λl = 100
∗ λl = 150

n = 100
µ = 1
vh = 10
vl = 1
qh = 2
ql = 1

FIGURE 2. Difference in reward rate as a result of applying threshold-based reward-optimization admission control.

is in effect.
It should be noted that the trend exhibited in Figure 2 is

not universally true for all cases. It depends on the relative
ratios of vh/vl and qh/ql and, in general, the characteristics
of the workload for the server system in question. The
equations derived in the paper allow the designer to identify
the optimizing (nh, nm, nl) set under a speci"ed workload
condition, and quantitatively predict how much bene"t the
system can gain (e.g. in terms of reward rate) by employing
the threshold-based admission control algorithm.

6. CONCLUSIONS

In this paper, we have analysed a design concept
for implementing reward-optimization admission control
algorithms for on-demand multimedia systems. The design
concept is based on the idea that an admission control
program should consider not only the underlying hardware
limitation of the system, but also the bene"t it can bring to
the system as a result of accepting/rejecting client requests.
We illustrated our concept by using the system's reward
rate (e.g. the income rate of a company that runs the on-
demand multimedia server business) as a metric to guide the
design of admission control algorithms. We investigated a
class of threshold-based admission control algorithms for
maximizing this metric. Analytical expressions for the
system pay-off rate under these threshold-based admission
control algorithms were derived. They can be used to
determine the optimal condition for accepting/rejecting
client requests and help the system designer determine in
a quantitative way how much bene"t the system will gain
as a result of applying a threshold-based admission control
algorithm. Finally, the effectiveness of our approach was
demonstrated by a realistic on-demand multimedia server.
Our approach is particularly useful for situations where

the system's client-priority/workload characteristics may
change dynamically during its peak/off-peak hours. The
technique presented in the paper can be used to adjust
dynamically the threshold values based on the system
characteristics so that the system can always receive the best
reward without violating its continuity requirement.
Some future research areas include (a) coupling the

concept of reward-optimization with lowering the quality of
service (QoS) levels of existing clients so as to make room
for new arriving clients; and (b) designing threshold-based
admission control algorithms for on-demand multimedia
systems in which clients may have different rewards or
penalties when successfully or unsuccessfully served as well
as different QoS requirements.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Council of R.O.C. under grant NSC-86-2745-E-006-020.

REFERENCES

[1] Mei, G. G., Lin, M. H., Hu, L. and Chang, H. (1992) A real-
time multimedia system for video applications. 26th IEEE
Conf. Signals, Systems and Computers, Paci"c Grove, CA,
pp. 1031�1036.

[2] Oomoto, E. and Tanaka, K. (1993) OVID: Design and
implementation of a video-object database system. IEEE
Trans. Know. Data Engng, 5, 629�643.

[3] Oyang, Y. J., Wen, C. H., Cheng, C. Y., Lee, M. H. and
Li, J. T. (1995) A multimedia storage system for on-demand
playback. IEEE Trans. Consumer Electronics, 41, 53�64.

[4] Rangan, P. V., Vin, H. M. and Ramanathan, S. (1992) Design-
ing an on-demand multimedia service. IEEE Commun., 30,
56�64.

[5] Vina, A., Lerida, J. L., Molano, A., and del Val, D.
(1994) Real-time multimedia systems. 13th IEEE Symp. Mass

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

766 I.-R. CHEN AND C.-M. CHEN

Storage Systems,, Annecy, France, pp. 77�83.
[6] Mercer, C. W., Savage, S. and Tokuda, H. (1994) Processor

capacity reserves: Operating system support for multimedia
applications. 1st IEEE Inter. Conf. on Multimedia Computing
and Systems, Boston, pp. 90�99.

[7] Fujikawa, K. et al. (1995) Application level QoS modeling for
a distributed multimedia system. 1995 Paci"c Workshop Dist.
Multimedia Systems, Honolulu, Hawaii, pp. 44�51.

[8] Chang, E. and Zakhor, A. (1996) Cost analysis for VBR video
servers. IEEE Multimedia, 3, 56�71.

[9] Ramanathan, S. and Rangan, P. V. (1994) Architecture for
personalized multimedia. IEEE Multimedia, 1, 37�46.

[10] Vin, H. M., Goyal, A. and Goyal, P. (1995) Algorithms for
designing multimedia servers. Computer Commun., 18, 192�
203.

[11] Bestavros, A. and Braoudakis, S. (1995) Value-cognizant

speculative concurrency control. VLDB'95: The International
Conf. on Very Large Databases, Zurich, Switzerland,
September, pp. 122�133.

[12] Locke, C. (1986) Best Effort Decision Making for Real-
Time Scheduling. Ph.D. Thesis, Carnegie-Mellon University,
Department of Computer Science, Pitterburg, PA.

[13] Sahner, R. A., Trivedi, K. S. and Pulia"to, A. (1996)
Performance and Reliability Analysis of Computer Systems.
Kluwer Academic Publishers, Boston, MA, pp. 71�72.

[14] Kleinrock, L. (1975) Queueing Systems, Vol. 1: Theory. John
Wiley and Sons, New York.

[15] Sahner, R. A. and Trivedi, K. S. (1991) SHARPE Language
Description. Duke University, Durham, NC.

[16] Wolfram, S. (1996) Mathematica 3.0. Cambridge University
Press, Cambridge, UK.

THE COMPUTER JOURNAL, Vol. 39, No. 9, 1996

