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Abstract In this paper, we present an efficient failure recovery scheme for mobile
database applications based on movement-based checkpointing and logging. Current
approaches take checkpoints periodically without regard to the mobility behavior of
mobile users. Our movement-based checkpointing scheme takes a checkpoint only
after a threshold of mobility handoffs has been exceeded. The optimal threshold is
governed by the failure rate, log arrival rate, and the mobility rate of the mobile host.
This allows the tuning of the checkpointing rate on a per-user basis. We identify the
optimal movement threshold which will minimize the recovery cost per failure as a
function of the mobile node’s mobility rate, failure rate and log arrival rate. We derive
the mobile database application recoverability, i.e., the probability that the recovery
can be done by a specified recovery time deadline. Numeric data are presented to
demonstrate the feasibility of our approach with its applicability given.

Keywords Mobile database application - Mobile data management - Failure
recovery - Checkpoint - Logging - Recoverability - Mobility handoff

1 Introduction

Advancement in wireless networking and portable devices is revolutionizing the way

individuals and businesses view computing. Many industries are now trying to pro-
vide services to this market and mobile applications are expected to become the norm
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in the near future. However, certain inherent properties of mobile computing—a type
of distributed computing involving hosts that may be mobile while retaining network
connectivity through wireless communications—such as host mobility, disconnec-
tions, wireless bandwidth limitations, makes these applications susceptible to fail-
ures typically not encountered in the traditional computing environments. This paper
concerns failure recovery of mobile database applications.

Mobile database application recovery is different from database transaction re-
covery since an application may involve multiple database transactions, multiple
states and it lacks a formal definition of application state similar to the mathemat-
ical foundations of database transactions [5]. Typically, distributed systems achieve
fault-tolerance through schemes such as checkpointing, logging and rollback recov-
ery [3]. During failure-free operation, processes save their state to a stable storage
periodically, called checkpoints. Upon failure, a failed process recovers by rolling
back to the latest checkpoint and restarting computation from this intermediate state.
However, inter-process dependencies may result in cascading rollbacks, which in the
extreme case may take the system all the way back to its initial state, often termed
the domino effect. Asynchronous recovery of a failed process is achieved by combin-
ing checkpointing with logging, where all the non-deterministic events that a process
executes as well as the information necessary to replay these events are logged to the
stable storage in addition to the checkpoints. During recovery, the failed process rolls
back to the latest checkpoint and replays all the logged events in their original order,
there by recreating its pre-failure state independently.

Many approaches have been proposed that refines these basic mechanisms for im-
provements in performance and cost during failure-free operations and recovery [8].
In spite of that, mobile computing introduces new challenges that preclude the direct
application of these mechanisms to mobile distributed systems. The properties of the
mobile computing environment that drives the rethinking of failure recovery mech-
anisms are mobility of hosts, low bandwidth and unreliable network connectivity,
limited battery life of host devices, lack of stable storage on host devices, and dif-
ferent types of failures—voluntary disconnection, long term hardware failures, and
short-term software failures.

Due to these characteristics, traditional recovery schemes suffer from many short-
comings when applied to the mobile computing environment. At the same time, the
failure-prone nature of the environment makes it essential to provide some form of
explicit recovery mechanism. In light of the above discussion, this paper presents a
novel movement-based checkpointing strategy combined with logging for recovery
of individual hosts in mobile computing environments. The approach takes check-
points after a certain number of host migrations across cells rather than periodically.
This movement threshold is a function of failure rate, log arrival rate, and the mo-
bility rate of the application and the mobile host (MH), which allows adaptation to
user and application behavior. To the best of our knowledge, none of the existing al-
gorithms consider the effects of mobility on checkpoint intervals, but rather assume
periodic checkpointing. Mobility is factored only into the management of recovery
information such as when to consolidate logs dispersed across many mobile support
stations (MSSs) [10]. The performance of the proposed scheme is evaluated through
analytic methods and results are presented later in the paper. In addition, this paper
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demonstrates that there exist optimal movement thresholds depending on operating
conditions and recovery deadline.

The proposed movement-based checkpointing and recovery algorithm is suitable
to a wide range of database applications in mobile environments since it considers ap-
plication/user behavior as defined by its recovery deadline and log arrival rate, nature
of the mobile environment defined by failure rate and MH behavior defined by its mo-
bility rate, in determining the optimum movement threshold to trigger checkpointing.
As an example, consider a mission critical application providing communications and
shared situational awareness to an active military unit. The failure rate in such a mo-
bile environment is likely to be very high; mobility rate of users is also likely to be
high. At the same time, fast recovery from failures is more important than minimizing
cost of failure-free operations. Note that recovery time is governed by how far away
the last checkpoint is located from the MSS in which a host recovers, how many log
entries must be transferred to the recovery MSS, how dispersed these logs are, and the
time it takes to load and execute them at the MH. The proposed scheme allows the dy-
namic determination of an optimum movement threshold, and hence checkpointing
rate, that will minimize recovery time while balancing cost of recovery. This opti-
mum threshold will ensure that the checkpoints stay close to the recovery MSS and
that the logs are not too widely dispersed. In contrast, schemes that employ constant
periodic checkpointing do not consider the effect of user mobility on checkpointing.
If the chosen checkpoint rate is too low, the last checkpoint may be located very far
from the recovery MSS and there may be a large number of logs dispersed across
many MSS resulting in a large recovery time. If the rate is too high, precious wireless
resources may be unnecessarily consumed in taking and managing checkpoints.

The rest of this paper is organized as follows. Section 2 surveys related work and
highlights differences from our approach. Section 3 describes the mobile computing
system assumed in this paper. Section 4 elaborates the proposed movement-based
checkpointing, logging and recovery mechanism. Section 5 shows the modeling and
performance analysis of the proposed scheme along with mathematical formulations
of relevant performance parameters such as time required for failure recovery and to-
tal recovery cost. Finally, Section 6 summarizes the paper, discusses the applicability,
and outlines future research areas.

2 Related work

Application failure recovery in the mobile computing environment has received con-
siderable attention in the recent years. The schemes that have been proposed employ
checkpointing, logging or a combination of both, recognizing the inherent limitations
of the mobile computing environment.

Acharya et al. in [1] describes a distributed uncoordinated checkpointing scheme,
where multiple MHs can arrive at a global consistent checkpoint without coordina-
tion messages. However, this paper does not describe how failure recovery is achieved
nor does it address the issue of recovery information management in the face of MH
movement. Neves and Fuchs [7] also proposed a checkpointing only scheme that
achieves global consistent checkpoint without additional messaging but is unique in
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that it uses time to synchronize checkpoint creation. Pradhan, Krishna, and Vaidya
[11] proposed a recovery scheme that combines various checkpointing and logging
schemes for different mobile environments. They describe two uncoordinated check-
point protocols, no-logging and logging and three strategies for recovery information
management due to MH mobility: pessimistic, lazy and trickle strategies.

T. Park et al. in [10] proposed a recovery mechanism that enables independent
recovery by MHs by employing periodic checkpointing and a combination of pes-
simistic and optimistic logging. The main feature of this paper that we have adapted
in our scheme is the notion of movement-based management of recovery informa-
tion. In their approach, checkpoints are triggered periodically and when a MH moves
outside of a certain range, the recovery information is transferred reactively to the
local MSS. In contrast to [10] and [11], our approach considers a MH’s movement
pattern in the checkpointing strategy in order to avoid costly transfers of all recovery
information. In [9], T. Park et al. proposed an asynchronous recovery scheme using
checkpointing and logging. However, in this paper, they also consider the case of un-
reliable MSSs where the recovery information of a MH may be lost due to failure of a
MSS. In this case, in order to enable consistent recovery, every other dependent MHs
must be traced and rolled back.

Yao, Ssu and Fuchs [13] proposed an algorithm that combines checkpointing and
message logging in the Mobile IP environment. Its components execute on the MSS,
the Home Agent (HA) and the MH. All messages are logged and the MH takes check-
points periodically and stored at the MSS that is serving as the current Foreign Agent.
When a MH leaves a cell, the old MSS informs the HA of the ids of the checkpoint
and logs stored at the MSS. Thus, the HA maintains the latest itinerary of the MH
and can be queried upon recovery to collect the distributed recovery information. Hi-
gake and Takizawa [6] proposed a hybrid checkpoint recovery scheme. A mobile host
leaves an agent on every MSS in its itinerary. During recovery processes MHs roll
back to a consistent state with the help of these agent processes. Chen et al. [2] con-
sidered recoverability issue of mobile applications with periodic checkpointing. Our
paper extends the analysis to mobility-based checkpointing and logging for efficient
fault recovery of database applications in mobile environments.

3 Mobile computing system

The mobile computing system assumed in this paper follows the model presented
in [1]. The system consists of a set of mobile hosts (MHs) that are free to move
around. At any time, they maintain network connectivity through a wireless link to
a static mobile support station (MSS). The MSSs are interconnected through high
speed static wired networks. A MSS handles all communications to and from MHs
within its area of influence known as a cell usually determined by the range of wire-
less transmission. Assuming a hexagonal shape for each cell, a hexagonal network
coverage model will be formed by a community of cells. Thus, sending a message to
another MH consists of two one-hop wireless transmissions between the sender and
receiver MHs and their respective local MSSs in addition to an arbitrary number of
hops across the wired infrastructure between the sender’s MSS and receiver’s MSS.
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The wired and wireless network protocols are assumed to provide reliable FIFO de-
livery of messages with arbitrary delay to the application.

Considering that the MH’s disk cannot be assumed to be stable, each MSS is
equipped with enough volume of stable storage to store the state and log information
for all the MHs currently in its cell as well as those that were recently in its cell. How-
ever, due to the fact that MSSs must support multiple concurrent MHs, this storage
must be efficiently managed.

The interactions between the MH and the network infrastructure most relevant to
failure recovery are handoff, disconnect and reconnect. When a MH crosses a cell
boundary due to mobility, it first establishes connection with the new MSS in the
new cell giving the MSS its ID and the ID of the previous MSS. It then disconnects
from the previous MSS. This process usually occurs instantaneously and is called a
handoff. A MH may also disconnect voluntarily from the network to conserve power
and reconnect at a later time. Due to mobility of hosts, it is common for a MH to
disconnect in one MSS and reconnect in another. In this case, the MH sends the ID of
the previous MSS to the new MSS, which in turn initiates proper handoff procedures.

In this paper a distributed computation is assumed to consist of a number of
processes executing concurrently on multiple hosts. A single process may be in ei-
ther one of three states at any point of time: normal, save or recovery. In the normal
state, it may be executing application related computations, receiving user inputs or
sending and receiving messages. Occasionally, each process saves its state as a check-
point to the stable storage (save state). During this operation, the MH stops execution
and compiles the current values of all non-transient state variables into a message,
assigns it a unique id and sends it to the MSS for storage. Between checkpoints the
application performs logging activities to record incremental state changes. The ap-
plication’s logging behavior assumed in this paper follows the model described in [1].
Application state may change due to receipt of messages or due to user inputs. These
are commonly referred to as ‘write events’. If the write event is a message received
from another MH or a server, the MSS first receives it, logs it to stable storage and
then forwards it to the MH. Thus no overhead is incurred during this process. On
the other hand, if the write event is a user input or a local computation, the MH first
forwards a copy to the MSS to be logged and does not apply it locally until an ac-
knowledgement is received from the MSS. Thus, logging is also an activity that the
MH and MSS execute during normal operations. Every fresh checkpoint purges old
checkpoints and logs, possibly distributed over many MSS. More details of recovery
information management in provided in Section 4.3.

4 Movement-based checkpointing and logging

The recovery scheme presented here combines independent checkpointing and pes-
simistic message logging enabling asynchronous recovery of a MH upon failure. In
general application recovery mechanisms try to optimize recovery cost (failure-free
operational cost), recovery time and storage requirements for recovery related in-
formation. The general approach taken by current schemes is to create checkpoints
periodically (possibly based on an application parameter setting such as maximum
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time to recover or failure rate) and subsequently control the proliferation of recovery
information using techniques that merge logs and move the information closer to the
MH. One such scheme uses distance or number of handoffs as the parameter that
triggers information consolidation [10]. In this approach, when the MH crosses a dis-
tance threshold from the location of the latest checkpoint, the recovery information
is collected and transferred to the MH’s local MSS.

In contrast, the recovery protocol described here proactively controls the number
of checkpoints and logs by using a movement-based checkpointing strategy. This
means that the additional overhead of unnecessary checkpoints and log consolidation
during failure-free operation is avoided.

4.1 Checkpointing and message logging

Each mobile host independently takes checkpoints of the application state and be-
tween checkpoints all write events are logged at the current MSSs’ stable storage.
The interval between checkpoints is governed by the number of handoffs experienced
by the MH and is not fixed. Each MH maintains a handoff_counter which is incre-
mented by 1 every time a handoff occurs. When the value of the counter becomes
greater than a threshold M, a checkpoint is taken. The process is illustrated in Fig. 1.

The value of M is a function of the user’s mobility rate, the failure rate and log
arrival rate (as shown in Section 5.1). The host assigns a unique sequence number
to the checkpoint and sends it to the MSS which saves it to stable storage. The MH
maintains two variables locally related to checkpoints: cp_seq which stores the se-
quence number of the latest checkpoint and cp_loc which stores the ID of the MSS
that has recorded the latest checkpoint. Let this MSS be called MSS,,,. After taking
the checkpoint, the MH resets the handoff_counter to 0. Thus, depending on the vari-
ability in the MH’s mobility, the time interval between successive checkpoints differs.
In between checkpoints, all write events related to a MH is also logged to the local
MSS. Each log entry is time stamped so that they can be replayed in the correct order
during recovery. The MH locally maintains a list log_set containing the IDs of MSSs
that stores its logs. Let this set of MSSs be called MSS;g5.

At every checkpoint, cp_loc is updated with the current MSS, cp_seq is updated
with the sequence number of the latest checkpoint and log_set is cleared. At every
logging activity, the ID of the current MSS is added to log_set if it is not present al-
ready. The performance of this scheme depends on identifying the optimal movement
threshold M per user and application. This value ensures that the checkpoints and
logs remain within acceptable range of the MH’s current location thereby eliminating
the need for information consolidation. In addition, it also ensures acceptable recov-
ery time since M bounds the number of MSSs’ from which logs must be retrieved.
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4.2 Independent recovery

The checkpoints and the logs enable a MH to recover independently without requir-
ing coordination with other hosts. This paper makes no assumption that the MH must
recover in the same MSS in which it failed. In order to perform rollback recovery,
after the MH reconnects to a MSS after failure, it sends to the current MSS the se-
quence number of the latest checkpoint and the ID of the MSS storing it. Recall that
these values are stored locally at the MH in the variables cp_seq and cp_loc. The MSS
initiates the process of collecting the checkpoint and the logs. For the former, it sends
a request with the checkpoint sequence number to the MSS holding the checkpoint,
i.e. MSS.,. MSS,,, responds with the checkpoint.

In order to retrieve the logs the current MSS sends requests to all the MSSs in the
list log_set. Each MSS, upon receipt of the request responds with the log entries for
the MH if it has any. The current MSS compiles the logs into a list ordered by time
and sends it to the MH along with the checkpoint. In order to recover from the failure,
the MH rolls back to this checkpoint and replays the logs in order. Once recovery is
completed successfully, a checkpoint of the current state is taken and sent to the MSS
and the local variables are reset.

4.3 Storage management at the mobile support stations

Even though movement based checkpointing helps to control the number of check-
points depending on mobility and failure rates, the combination of checkpoints and
logs for every MH can amount to a significant amount of information to be persisted
at the MSSs. In [13], the authors explain that if storage at MSSs is depleted, they
will either have to temporarily halt normal operation and perform garbage collection
or find costly alternative storage for new checkpoints and logs. Since halting a MSS
makes its local MHs inaccessible, it must be prevented.

Storage can be recovered by deleting outdated recovery information. Recovery
information becomes outdated every time a new checkpoint is taken successfully
which occurs during normal operation after every M handoffs and when a recovery
operation executes successfully. Thus, when a MH takes a new checkpoint, the MSSs
delete all recovery information related to the MH.

5 Performance analysis

The performance of the proposed scheme is evaluated using analytical methods by
means of Stochastic Petri Net (SPN) modeling. A Petri net is a popular graphical
and mathematical modeling tool used to describe and study concurrent, asynchro-
nous, distributed, parallel, nondeterministic, and/or stochastic systems. We choose
SPN because of its ability to deal with general time distributions for events, its con-
cise representation of the underlying state machine to deal with a large number of
states, and its expressiveness to reason about a MH’s behavior as it migrates from
one state to another in response to events occurring in the system.
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Table 1 SPN model parameters
Parameter ~ Description
o MH mobility rate, i.e. the rate at which the MH crosses cell boundaries
n Log arrival rate, i.e. the rate at which logs are created
A f MH failure rate, i.e. the rate at which the MH fails
M Movement threshold, i.e. the number of handoffs after which the MH takes a checkpoint
r Ratio of bandwidth of wireless network to wired network
Tekp_w Time required to transmit a checkpoint through the wireless link
Tiog_w Time required to load a log entry through the wireless link
Teckp Time required to roll back to the last checkpoint
Teiog Time required to execute a log entry at the MH
F; Probability of recovery
T Recovery time
T Recovery time deadline
Ok Checkpoint rate, i.e. 1/6 is the time required to take a checkpoint
0; Recovery rate, i.e. 1/6; = T;-. i is the number of movements since the last checkpoint
Npss_logs ~ Number of MSSs storing logs
Dypss Average hop count between the MSS storing the checkpoint and the MSS in which the MH
recovers
5.1 Model

The SPN model of a mobile computing system employing the movement-based re-
covery scheme is shown in Fig. 2.

The parameters controlling the model and their descriptions are given in Table 1.

Current literature [12] states that assuming an exponential distribution for the sys-
tem parameters such as log arrival rate, failure rate and mobility rate, is a reasonable
approach. Others have used models such as gamma, hyperexponential, lognormal,
or hyper-Erlang distributions [4]. In this paper we take the former approach and use
exponential distribution for these parameters which makes the underlying Markov
model of the SPN tractable. As part of future work, we intend to analyze the system
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behavior for other distributions and compare the results. The main characteristics of
the SPN model are:

1. The model consists of 2 places and 4 transitions. Place “Move” represents the state
in which the number of movements of the MH since the last checkpoint is not more
than the threshold M and there has been no failure. Place “Fail” stands for the state
in which a MH failure has occurred. Initially the MH is in a consistent state with
a checkpoint in the current MSS and a zero value for the count of movement, as
represented by the place “Move” without tokens.

2. The MH moves from one cell to another with a mobility rate o. Whenever the
MH encounters a handoff, the number of tokens in the place “Move” is increased
by 1. This behavior is described by the transition on the left upper part of the
SPN model. The MH stays in the state represented by place “Move” except in the
event of a failure. When a failure occurs, this transition will not be enabled until
failure recovery has completed. The only inhibitor arc ensures that the number
of movements between two consecutive checkpoints is less than the threshold M.
When the number of tokens in the place “Move” becomes equal to M, the upper
right transition is fired. This transition requires time 1/6; which is used to create
a checkpoint of the current state and save it to the current base station. This tran-
sition also resets the handoff counter to O as represented by the M tokens on the
output arc of the place “Move”.

3. When a MH failure occurs, the system status migrates from the state “Move” to
the state “Fail”. All the tokens in the place “Move” move to the place “Fail”. The
recovery time 1/6; depends on the number of movements since the last checkpoint
which is denoted by i = #(Fail), the number of tokens in the place “Fail”.

The transition firing rates 6 and 6; require some elaboration:

e Parameter 6y : 6 represents the execution rate to perform a checkpoint operation.
During checkpointing, the MH takes a snapshot of its current state and sends it to
its current MSS through the wireless channel. The MSS then stores it in its sta-
ble storage. Since the time taken for wireless transmission, T¢xp y iS significantly
longer than the others, and the time spent on a checkpoint operation is approxi-
mated to this value. Accordingly Oy = 1/Tcxp_w-

e Parameter 6; : 6; represents the recovery rate of the MH and is the inverse of the
recovery time, where i is the number of handoffs experienced by the MH since the
last checkpoint and before failure. The recovery time includes (a) the time needed
to send recovery information requests to the MSSs storing the latest checkpoint
and all logs since the latest checkpoint, (b) the time required to transmit the latest
checkpoint from the MSS where it is stored (MSS,) to the MSS in which the
MH has recovered (MSS,..) through the wired network and through the wireless
channel to the MH, (c) the time required to transmit all the logs from the respective
MSSs where they are located (MSS;,s) to the MSS,,. through the wired network
and through the wireless channel to the MH and (d) the time required to rollback
to the last checkpoint and apply all the logs at the MH.

Before describing the equation for computing the average recovery time, some
variables are defined.
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® Npss_logs—This represents the number of MSSs storing logs. The exact value of
this variable is the size of the list log_set. This value at most is the number of
handoffs before failure, i.e. i, where every MSS through which the MH passed is
unique and logs are created in every one of them. For simplicity, we assume that
Nmss_lugx =1i.

® Dy, j—This is the average hop count between two MSSs separated by j hand-
offs. Thus for MSScp and MSSrec separated by i handoffs, D, ; represents the
hop count between MSScp and MSSrec. Based on the hexagonal network model,
we calculate Dy, ; as:

Dmm,jzl—i-(j—l)[éx—l—l-%xO—i—% X 1:|.

This equation shows that on the first move, the count increases by 1, but on each sub-
sequent move the MH moves backward with probability 1/6 (hop count decreased
by 1), sideways with probability 2/6 (hop count remained the same) and moves for-
ward with probability 3/6 (hop count increased by 1). The equation above can then
be reduced to Dy, j = (j +2)/3.

Thus, the total time to recover after i movements is the sum of the following
components:

e Time spent on recovery information requests as given by:

i
Trec_req = Z(Dmss,j Xr X Tlog_w)~
Jj=1

Here we assume that the size of a request packet is not more than the size of a log
entry packet. Hence for simplicity, we use the time to transmit a log entry Tjog w
as the time to transmit a request packet. MSSrec needs to send a request message
to each of the i MSSs including MSScp storing the checkpoint, which is i handoffs
apart from MSSrec.

e Time spent on transmitting the latest checkpoint to the MH as given by:

Tckp_tx = Dyyss5,i X T X Tckp_w + Tckp_w~

The first part of this equation represents the time required to transmit the last check-
point from MSS,,, to MSS,.., assuming the distance between the two is Dy ;.
e Time spent on transmitting the logs to the MH as given by:

i
Tiog_sx = Z(Dmxs,j X Npss X F X Tlog_w) +n X T w,
Jj=1

where n is the number of log entries accumulated since the last checkpoint and is
given by n = (i xi)/o and nys is the number of log entries per MSS, given by
Nmss = (*1)/[o (i +1)]. The denominator is i + 1 because MSS,, is the first MSS
and MSS,.. is the last MSS storing log entries. 23:1 (Dinss, j X Nnss X1 X T1og w),
the first term, accounts for the cost to transmit log entries from the i MSSs to
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MSS;.. and the second term represents the time required from MSS;,. to transmit
each log entry through the wireless channels.

e Time spent to rollback to the last checkpoint and apply the logs as given by: T;oc =
Teckp +n x Telog~

Hence, the total time to recover after i movements is given by:
Trl = Trec_req + maX(Tckp_txa Tlog_tx) + Trec (1)

with the transition firing rate 6; = 1/ Tri. The “max” operator is used to take the
maximum of checkpoint transfer time and log transfer time since these messages
can be transmitted to MSS;.. and subsequently to the MH concurrently.

The SPN model’s underlying Markov model has 2M + 1 states. If P; denotes the
probability of state j, the average recovery time per failure is given by:

2M+1 '
T,= Y P;xT. )
j=0

The recovery probability F, is defined as the probability that recovery time is less
than or equal to recovery time deadline 7 and is given by:

2M+1
F,=Prob{T, <T}= Y Py x (1—e ™), 3)
S=1

where 6 corresponds to 6; if the MH has made i handoffs in state S.
In addition, we define 7, as the total time spent on checkpointing and logging
before a failure. It represents the total cost of recovery and is given as:

T. = (o/(M x )Mf)) X Tekp_w + (M/)Lf) X Tiog_ws 4

where o/ (M ¢) denotes the total number of checkpoints before a failure, and (/A r)
represents the total number of log entries before a failure. Thus, 7, represents the total
failure-free operations cost and the second part of (4) depicts the total delay incurred
by logging during failure free operations.

Equations (2) and (4) enable us to define the total cost of recovery per failure
as the weighted sum of the average recovery time and the total time spent on the
checkpointing and logging per failure. It is given by:

Teost = w1 T +wr T, (5)

where w; + wy = 1, w; > 0, wy > 0 are the weights associated with recovery time
and failure-free operation cost. Different applications have differing failure recovery
performance requirements with respect to the time taken for recovery and check-
pointing. The weighting of the components of the total cost of recovery allows the
configuration of such performance requirements per application and user. We use
w1 = wy = 0.5 in the analysis below to account for the situation where T, is
equally proportional to T, and 7.
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Fig. 3 Recovery probability vs. recovery time deadline

5.2 Results and analysis

The SPN model was implemented and analyzed using the SPNP software. The fol-
lowing parameter values were kept constant across all the runs. Specifically, the size
of alog entry is 50 B, size of a checkpoint is 2 KB, bandwidth of the wired network is
2 Mbps, ratio of bandwidth of wireless to wired network (r) is 0.1, time to roll back
to the previous checkpoint (Teckp) is 0.1 sec, and time required to apply a log entry
(Te10g) 15 0.0001 s. Thus the time required to transmit a log entry through the wireless
channel (T}o4_ 1) is 0.002 s and the time required to transmit a checkpoint through the
wireless channel (T¢p_y) is 0.08 s. Model parameters such as recovery time dead-
line, mobility rate, log arrival rate, failure rate, and movement threshold were varied
across runs. These values were chosen for analysis purposes only and do not assume
a specific application or environment. The results presented here show system behav-
ior for a wide range of parametric values which depicts the broad applicability of the
scheme.

Figure 3 shows the probability of recovery against recovery time deadline for vary-
ing values for mobility rate. Recovery probability increases with increase in recovery
time deadline. For a constant value of recovery time deadline, the probability in-
creases with increase in mobility rate. This is because with higher mobility rate, the
checkpoint interval reduces and the number of logs accumulated between checkpoints
decreases. This enables faster recovery. From the curve for mobility rate 0.1, it can
be seen that 90% of failures can be recovered in 0.3 seconds, and at most 0.5 seconds
to achieve 100% recovery probability.

Figure 4 shows the effect of varying log arrival rates on the probability of recovery
given a recovery time deadline of 0.3 sec. When the log arrival rate is low, the number
of logs accumulated between the last checkpoint and failure is small and hence there
is a high probability of recovery within 0.3 sec. However, as the log arrival rate in-
creases, the percentage of failures that can be recovered within a fixed time decreases.
Therefore, when employing the movement-based checkpoint strategy, it is necessary
to estimate the rate of write events of the application in order to maximize efficiency
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Fig. 5 Recovery probability vs. checkpoint size

of failure recovery. Also, observe that at low log arrival rates, the time required to
transfer the checkpoint is greater than the time required to transfer logs. Thus, the
checkpoint transfer time does not vary with the log arrival rate. This explains the flat
segment of the curves. As the log arrival rate increases, the time required to transfer
logs becomes greater than the checkpoint transfer time and the log arrival rate begins
to have an effect on the recovery probability.

Figure 5 shows the effect of the size of a checkpoint on the probability of recovery,
given a recovery time deadline of 0.3 sec. As the checkpoint size increases, the time
required to transfer the checkpoint to MSS,... increases and the probability of recov-
ery decreases. Furthermore, when the checkpoint size is sufficiently large (greater
than 32 KB in Fig. 5), the recovery probability becomes very low such that the result-
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ing recovery probability is insensitive to the mobility rate because the time to transfer
a large checkpoint dominates the time to transfer logs in recovery time.

Figure 6 shows the recovery probability for varying failure rates given a recovery
time deadline of 0.3 sec. Failure rate affects the number of log entries accumulated
between the last checkpoint and the current MH failure. The higher the failure rate,
the fewer the log entries, and lesser the time required to recover. Therefore the recov-
ery probability increases as the failure rate increases.

Figure 7 shows the effect of varying the movement threshold (the number of hand-
offs between two consecutive checkpoints) on the probability of recovery. Figure 8
shows the effect of varying the movement threshold on recovery time for the same
parameters as above. The reason for the downward trend of the recovery probability
curve is that for constant mobility and log arrival rates, when the movement threshold
increases, the time interval between two checkpoints increases and more log entries
would be created. Hence, the time spent on recovery increases and the probability of
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Fig. 9 Determining optimal movement threshold that minimizes recovery cost per failure

recovery in a given time decreases. However, it cannot be concluded that setting the
movement threshold to 1 will produce the best results. Although doing so will de-
crease the recovery time greatly, the total number of checkpoints increases, resulting
in significant additional overhead during failure-free operations for the creation and
maintenance of checkpoints. Thus, there exists a tradeoff between recovery time and
the total time spent on the checkpoints and logging for a fixed cost.

Next, we analyze the tradeoff between the recovery time (7,) and the total time
spent on the checkpointing and logging per failure (7, ) to identify the optimal move-
ment threshold to minimize the total cost of recovery (7¢,s; as given by (5)). Figure 9
shows the relationship between the total recovery cost and the movement threshold
M for varying values of mobility rate. The curves indicate that there exists an opti-
mal movement threshold under a given operating condition. When A = 0.0001, and
o = 0.01 the optimal value of M is 25 and when o = 0.001 the optimal value of M
is 3 (as shown in Fig. 9).
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This optimal M value that minimizes T¢,s; is dictated by the operational condi-
tions characterized by the MH’s mobility rate and failure rate, as well as the mobile
application’s log rate. More specifically, when M is small, Tc dominates 7, because
with a small threshold, checkpointing must be done frequently while recovery can
be done quickly. As M increases, T, decreases while T} increases and the total cost
drops. Finally when M is sufficiently large, 7, dominates 7¢ and the overall cost
increases again. This tradeoff results in an optimal M value that minimizes the total
cost. We also note that there is a cross-over M value beyond which lower mobility
generates higher cost. For example, the cross-over point is M = 8§ in Fig. 9. The rea-
son is that when M is sufficiently high, 7, dominates T¢, and the increase in 7 is
especially pronounced when the mobility rate is low. The reason that 7 is high when
the mobility rate is low is that the checkpoint interval is longer (given the same M
value) when the mobility rate is lower, thus resulting in more log entries being ac-
cumulated over the checkpoint interval and causing the system to take more time to
load and execute log entries for failure recovery. The SPN model developed in the
paper can easily identify the optimal M value to minimize the total recovery cost per
failure, when given proper parameter values as input to the model.

6 Summary and applicability

In this paper we have presented an efficient failure recovery scheme for mobile com-
puting systems based on movement-based checkpointing and logging. Current ap-
proaches take checkpoints periodically without regard to the mobility rate of the
user and unnecessarily incur additional overhead in maintaining recovery data. Our
movement-based checkpointing and logging scheme takes a checkpoint only after the
mobile node has made M movements (mobility handoffs). The value of M is mainly
governed by the failure rate, log arrival rate, and the mobility rate of the application
and MH. A performance model has been developed based on stochastic Petri nets
to identify the optimal movement threshold M, when given the failure, mobility and
log arrival rates, to minimize the cost of recovery per failure, as well as to calculate
the failure recoverability, when given an application specified recovery time dead-
line. The results of performance analysis show the sensitivity of recoverability to the
various parameters.

To apply the results obtained in the paper, one can build a table at static time
covering possible parameter values of the mobility rate and failure rate of the MH
and log arrival rate of the mobile applications, and listing the optimal M value that
would minimize the recovery cost per failure. Then at runtime based on the measured
rates, the optimal M may be selected dynamically to minimize the recovery cost per
failure. The optimal M selected must also satisfy the specified recovery probability
when given an application deadline to recover from a failure.

As the next step, we plan to analyze and compare the proposed algorithm to
existing approaches, especially the gain achieved over the use of constant periodic
checkpointing. This paper assumed exponential distribution for the system parame-
ters. A natural extension of this work is to study the nature of these parameters and
their effect on system behavior. This work is based on mobile applications running
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in wireless cellular networks. With the proliferation of Mobile IPv6 in future all-IP
systems, we plan to extend the work to MIPv6 environments. Simple extensions to
the proposed mobility-based checkpointing and logging algorithm exist and can be
examined, such as buffering log entries at the MH and then periodically flushing ac-
cumulated log entries to the base station to further reduce the cost of logging during
failure-free periods. We also plan to look at the implementation issue for realizing the
movement-based checkpointing and logging scheme in mobile computing systems.
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