Approximation Algorithms for Embedding Problems

Piotr Indyk MIT

Low-Distortion Embeddings

- Consider metrics (X,D_X) and (Y,D_Y)
- (X,D_X) c-embeds into (Y,D_Y) if there is a mapping f:X→Y such that, for all p,q ∈ X :

$$D_X(p,q) \le D_Y(f(p),f(q)) \le c D_X(p,q)$$

Examples of Embedding Results

- [Bourgain'85]: Any n-point metric can be embedded into d-dimensional Euclidean space with distortion O(log n)
 - -d can be made $O(log^2 n)$
- [Johnson-Lindenstrauss'84]: Any n-point subset of a d-dimensional Euclidean space can be embedded into O(log n/ε²) dimensional Euclidean space with distortion 1+ ε

Embeddings I

- Absolute bounds: for a metric M and a class of metrics C, show that for every M'∈C, M' c-embeds into M
- Problem: absolute bounds very weak for embedding into, say, R²
 - Example: uniform metric: D(p,q)=1 for $p\neq q$
 - Cannot be embedded into R² with distortion better than ≈n^{1/2}

```
(n^{1/2} \times n^{1/2}) grid is near-optimal)
```

Embeddings II

- Relative bounds: give an algorithm that, given M'∈C as an input:
 - if M' c-embeds into M,
 - then it finds an (a*c)-embedding of M' into M
 for some approximation factor a>1.
- MDS-style approach
- But, with guaranteed bounds

Results

Paper	From	Into	Distortion	Comments
[DGRR]+	unweighted graphs	line	O(c ²)	
[BIRS]=	unweighted graphs	line	>ac, a>1	Hardness
[BDGRRRS'05]	unweighted graphs	line	С	c constant
	unweighted trees	line	O(c ^{3/2} log c)	
	sphere	plane	3c	
[BIS'04]	unweighted graphs	trees	O(c)	
[BCIS'05]	general metrics	line	$\Delta^{3/4} c^{O(1)}$	Δ = spread
	weighted trees	line	C ^{O(1)}	
	weighted trees	line	Ω (c n ^{1/12})	Hardness
[BCIS'06]	ultrametric	plane	O(c ³)	

Sphere → Plane

- Given X ⊆ S², |X|=n, approximate the min distortion of f: X → R²
- The distortion could be $\Omega(n^{1/2})$
 - Take X to be an 1/n^{1/2} net of S²
 (each point in S² has a point in X within dist. 1/n^{1/2}

Algorithm

f(p)

f(q)

- Find largest empty cap B(p,r)
- Rotate the sphere to put p at the bottom
- Map sphere → plane:
 - "Cut the cap"
 - "Unwrap the sphere"
 - For each point q, the distance
 |f(p)-f(q)| equal to the geodesic
 distance from p to q
- Distortion: O(1/r)

Analysis – Lower bound

- The set X is an r-net of S²
- Consider optimal f: X → R², assume nonexpansion
- Extend f to (non-expanding) g: S² → R²
- Borsuk-Ulam: there exist antipodal p,q for which g(p)=g(q)
- There exists p',q'∈ X with |p'-p|≤r , |q-q'| ≤r

Lower bound ctd

Distortion is at least

$$||p'-q'|| / ||g(p')-g(q')|| \ge (2-2r)/2r = \Omega(1/r)$$

Unweighted graphs into a line

• Intuition:

- Assume we want to embed an "almost line metric" induced by (V,E)
- Metric should be "long and thin"
- Distances from one endpoint should be a good approximation of the embedding

Algorithm

- Assume optimal embedding f:V → R
- Guess:
 - v_0 = leftmost node in f(V)
 - v_L = rightmost node in f(V)
- Compute the shortest path P=v₀, v₁, ... v_L from v₀ to v_L
- $V_i = \{v \in V: D(v,v_i) = D(v,P) \}$

Algorithm ctd.

Compute g:

```
g(V_1) c+1 g(V_2) c+1 ...
```

- Can prove each $|V_i| = O(c^2)$
- Each g(V_i) has diameter and distortion
 O(|V_i|) ...

MST Embedding

- ... because one always get distortion of O(n) [Mat'90]:
 - Compute an MST T of the metric M=(X,D)
 - Split T into T₁,T₂ by removing longest edge e
 - Construct g:

$$g(T_1)$$
, length(e), $g(T_2)$

- Distortion:
 - $cost(T_1)$, $cost(T_2) \le n length(e)$
 - length(g(T)) = O(cost(T))
 - For p∈T₁,q∈T₂, distortion of D(p,q) is
 ≤length(g(T))/length(e)=O(n)

Conclusions

- Approximation algorithms for min distortion embedding
- Guarantees somewhat limited, but provable
- For more info, see

http://publications.csail.mit.edu/abstracts/abstracts05/low/low.html