Compiler Verification Meets Cross-
Language Linking via Data Abstraction

Peng Wang

MIT CSAIL
wangpeng@csail.mit.edu

Abstract

Many real programs are written in multiple different pro-
gramming languages, and supporting this pattern creates
challenges for formal compiler verification. We describe our
Coq verification of a compiler for a high-level language,
such that the compiler correctness theorem allows us to de-
rive partial-correctness Hoare-logic theorems for programs
built by linking the assembly code output by our compiler
and assembly code produced by other means. Our com-
piler supports such tricky features as storable cross-language
function pointers, without giving up the usual benefits of be-
ing able to verify different compiler phases (including, in
our case, two classic optimizations) independently. The key
technical innovation is a mixed operational and axiomatic
semantics for the source language, with a built-in notion
of abstract data types, such that compiled code interfaces
with other languages only through axiomatically specified
methods that mutate encapsulated private data, represented
in whatever formats are most natural for those languages.

1. Introduction

Proof assistants like Coq and Isabelle have become stan-
dard tools for machine-checked proof of interesting the-
orems about programs. For instance, Hoare-style program
logics [3] have been formalized and used to prove deep cor-
rectness theorems about nontrivial programs. Realistic com-
pilers [[17] have been verified to preserve the behavior of
programs, spanning the gap from source code to assembly.
One of the satisfying things about writing these proofs in
a common proof assistant is that we can connect them to
each other, giving us a way to, say, reason rigorously about
C programs and end up with rigorous guarantees about as-
sembly programs “for free.” However, one hole in this story
to date is: how do we connect verified compilers and ver-
ified source files to produce whole verified assembly pro-
grams, when one program includes source files written in
different languages? In this paper, we present our method
of plugging that hole, via a compiler verified in Coq, with a
novel operational semantics for orchestrating cross-language
function calls.

Compiler Verification Meets Cross-Language Linking via Data Abstraction

Santiago Cuellar

Princeton University
scuellar@princeton.edu

O O R S

[cBEN o)

11
12
13
14

15
16
17
18

Adam Chlipala

MIT CSAIL
adamc@csail.mj

ListSet.11:
typedef /* ...representation... */ListSet;
ListSet ListSet_new() { /* ... */}

void ListSet_delete(ListSet this) { /* ... */}
void ListSet_add(ListSet this, int key) { /* ... */}
int ListSet_size(ListSet this) { /* ... */}

Count.hl:

// Spec: Return number of unique values in arr.
int countUnique(int[] arr) {

FiniteSet set =new ListSet();

for (int i =0; i < arr.length; ++i)

set.add(arr[i]);

int ret = set.size();

delete set;

return ret;

}

Main.11:

void main() {
int a[3] = {10, 20, 10};
printf("Result = %d\n", countUnique(a));

}

Figure 1. A multilanguage program

As a motivating example, consider the code examples in
Figure |1} We show three source files, with filename exten-
sion .11 for a C-flavor low-level language and extension
.h1 for a higher-level language similar to C++ or Java. The
first source file defines an efficient data structure for repre-
senting finite sets of integers. Perhaps it takes advantage of
manual memory management or bit twiddling in ways un-
supported by most high-level languages. However, this low-
level code is packaged to be usable in higher-level code with
a simpler memory model. For example, the second source
file uses the finite-set data structure to compute how many
unique values appear in an integer array. Naturally, the code
for this simple algorithm is independent of representation
details in the low-level code we rely on. The final snippet
is low-level wrapper code that invokes the algorithm on a

2014/8/8

specific input. Notice that, running the full program, our call
stack ends up with low-level code on the bottom, high-level
code in the middle, and then more low-level code on top.

Now say we want to reason about Figure [T] as a whole
program compiled to assembly, proving that it meets some
behavioral specification. We want to apply the main theorem
of a verified compiler like CompCert [17]], saying something
like “any observable behavior of the compiled program was
also a legal observable behavior of the source program.”
Unfortunately, the CompCert correctness theorem applies
only to whole programs implemented entirely in C. It is
not even possible to derive facts about what happens when
we link C object files produced by different versions of
CompCert. Such a limitation is no great problem in the
world of high-assurance aerospace software, CompCert’s
first application domain, but it is incompatible with the way
that most software is built today. Verified compilation needs
to adapt to multilinguistic programs, with many modules
handled by many different compilers. Benton and others [15)
16] have studied this problem before for statically typed
high-level languages, but their solutions are not known to
be compatible with multiphase compilers, where each phase
should be provable separately in a natural way; and the
connection with source-program verification has not been
explored in detail. We bring all of these elements together
for the first time.

We approached the problem in the context of the Bedrock
framework [12,[13]], a library for the Coq proof assistant that
turns Coq into an IDE for verified programming. We imple-
ment, specify, prove, and compile (to assembly) programs
entirely within Coq. At the bottom of the system is a partial-
correctness Hoare logic for assembly language. When using
Bedrock, our goal is to prove a correctness theorem for a
complete program, by proving simpler theorems about its
constituent library modules. Previous work with Bedrock
implemented all modules in a C-like language [13] with a
rather complex low-level semantics. In this paper, we show
how to support coding some modules in a higher-level lan-
guage, with a much simpler semantics enabling easier veri-
fication, and with a verified compiler bridging the gap to the
rest of the Bedrock system.

Our main contribution in this paper is the first integra-
tion of verified compilation within a framework for prov-
ing functional correctness of multilanguage programs.
We will step through the technical devices that enable us to
verify, in Coq, the moral equivalent of the program from Fig-
ure (I} based on a broad compiler correctness theorem. Our
verified compiler is for a high-level language like the one in
the figure. We are able to establish the compilation correct-
ness of each piece of high- or low-level code modularly and
then compose them into a full-program correctness theorem.
Along the way, we designed a novel approach to phrasing
compiler correctness on top of a target-language program
logic.

Compiler Verification Meets Cross-Language Linking via Data Abstraction

The program logic (Bedrock XCAP) is one of partial cor-
rectness, without modeling input-output interaction with the
outside world, so our results are only oriented toward prov-
ing termination-insensitive properties that only constrain the
internal state of an assembly-language abstract machine; but
we are optimistic that the big-picture proof-structuring ideas
would adapt to richer low-level program logics. The clas-
sic partial-correctness setting is also sufficient both to re-
veal some serious technical challenges and to illustrate some
pleasant consequences of our approach, which integrates a
modular target-language program logic with a compiler cor-
rectness proof from the start.

While carrying out this research, we were repeatedly sur-
prised at how many technical challenges go away with a uni-
fied treatment of compiler verification and Hoare-logic proof
of individual programs.

In order to take advantage of data abstraction, reason-
ing about program modules in terms of the narrow interfaces
they export to manipulate private state, we decided to in-
tegrate data abstraction into the operational semantics of
our source language. That is, we avoid needing to reason
about the operational semantics of many different languages
by getting all the languages to agree on one axiomatic se-
mantics for method calls. A language’s operational seman-
tics only comes up in reasoning about its own module code,
while axiomatic reasoning provides the glue between lan-
guages.

Our new formulation of compiler correctness is not too
hard to explain at a high level. As a bit of a review, program
logics are used conventionally for, e.g., proving Hoare triples
like:

{n =0} r = fact(n) {r = nl}

That is, one identifies a particular mathematical specification
for a program and proves that the program meets the speci-
fication.

Applying the same idea in compiler verification, for each
source program with its corresponding compiled target pro-
gram, we apply a program logic to the target program, and
the mathematical specification we pick to prove is preser-
vation of the source program’s semantics. Such a speci-
fication is relatively straightforward to write in higher-order
program logics, even if it is out of scope in the more com-
mon first-order Hoare logics. In particular, consider a func-
tion compile from source-language commands s to target-
language commands ¢. To do compositional verification of
such a compiler, we informally prove the following proof
rule for any s.

compile(s) =t

{safe to run s} t {state could result from running s}

Using the separation-logic [24] interpretation of Hoare
triples (where the precondition must imply that the program
is crash-free), this rule means that (1) ¢ is safe to run when-
ever s is safe to run; (2) if ¢ terminates, the final state is

2014/8/8

one that could have resulted from running s. We say that
s and t are in a backwards preservation relation. We formal-
ize these conditions in the remainder of the paper, showing
how to relate the states of our source and target languages
and how to model cross-module function calls.

This rule can be seen as an informal version of the com-
piler’s main correctness theorem. Note that the rule sup-
ports the usual modularization of end-to-end program ver-
ification into source-program verification and compilation
verification. The compiler’s correctness theorem guarantees
that a safe program’s behavior will be preserved, regardless
of how safety was established. Such program-specific proofs
are part of source-program verification, an independent task.
Therefore, the compiler’s correctness theorem holds without
any source-program verification or annotation effort by the
programmer.

Our source language, named Cito, is a C-like language
with expressions, standard control-flow constructs, and func-
tion calls via function pointers. Most interestingly, a notion
of abstract data type is fundamental to the semantics. All
data types beside integers are accessed through methods,
which are specified in terms of their effects on mathemat-
ical models of private state. The Cito operational semantics
is parametric in a set of abstract data types, and these data
types may be implemented in any languages connected to
Bedrock. Different types may even be implemented in dif-
ferent languages, without any impact on the process of veri-
fying a specific Cito program.

This paper is structured as follows. Section 2] introduces
Cito, our source language, with its operational semantics.
Section [3] recaps the Bedrock framework. Section [] gives
an overview of our compiler, including its architecture and
proof strategy. Sections [3] [6] and [7] describe in detail the
compilation and proof techniques for statements, function
calls, and program modules, respectively. Section [§] applies
our main compiler theorem in two types of case studies:
proof of program-specific specifications and verification of
compiler optimization phases and their composition. The
last two sections discuss related work and conclude.

Complete Coq source code of our compiler, proofs, and
examples is available at: http://people.csail.mit.
edu/wangpeng/oopsla2014.tgz

2. Cito: The Source Language

The source language of our verified compiler is called Cito.
Much of the novelty of our verification approach is moti-
vated by the desire to reason about the results of linking
compiled Cito programs with programs produced by other
compilers for other languages. One way to support such rea-
soning would be via some kind of explicit modeling of op-
erational semantics for all the languages that appear in some
full program. That way, we would be able to verify a com-
piler without committing to any particular program logic or
other proof strategy for verifying individual programs.

Compiler Verification Meets Cross-Language Linking via Data Abstraction

Optional || List Of (-)*
Product Type x Sum Type -+
Machine Word W String S

Figure 2. Type notations

Constant w € W
Label l € Smodule X Sfun
Variable « € S
BinaryOp o = +|—|x|=]#|<|<
Expression e = xz|wleoe
Statement s = skip|s;s|if e {s} else {s}

| while e {s} | z := call e (e*)
| z:=e|x:=label |
Function f € S* XSy xs
m

arg
Module € Sname X (aname X f)*

Figure 3. Cito syntax

Of course, it is far from clear how to phrase compiler cor-
rectness generically in the operational semantics of all other
languages that our compiled code might interact with. To
sidestep this problem, we build axiomatic-semantics fea-
tures into Cito’s operational semantics. The intuition is
that we use axiomatic features to reason about calls to other
languages, while we have our choice of operational or ax-
iomatic reasoning within spans of code implemented entirely
in Cito. In particular, our compiler correctness theorem ap-
plies usefully to Cito programs that have not been specified
axiomatically, let alone verified.

Cito is a simple, untyped idealization of C, with cru-
cial additional support for abstract data types, which are
central to the style of axiomatic specification that we sup-
port. Cito includes the usual statement syntax constructs for
assignment, sequencing, conditional tests, loops, and func-
tion calls. Function calls are made via function pointers,
which can be stored and passed around freely across func-
tion boundaries.

Figure 3] gives the syntax of Cito. To simplify the seman-
tics, we allow expressions e to include only safe and total
operations like arithmetic, while function calls can be made
only via dedicated forms of statements s. Function calls are
made via function pointers, calculated from expressions. The
label [statement is for retrieving the pointer corresponding
to a given named function. A function label consists of a
module name and a function name. A function consists of a
list of formal parameter names, a return variable name, and
a body. A module has a name and a list of named functions.

We give the (big-step) operational semantics of Cito in
Figure[5] drawing on notations summarized in Figures 2 and
[Z_f} The last 3 rules, related to function calls, deserve special

2014/8/8

http://people.csail.mit.edu/wangpeng/oopsla2014.tgz
http://people.csail.mit.edu/wangpeng/oopsla2014.tgz

Machine State (X) ExH
Variable Assignment () EF = S—>W
Heap (n) H = W —[A]
ADT Domain A = [parameter of theory]
Context (¥) (Label — |W])x
(W — [F])
Function Spec F = OP(F,) + AX(F,)
Operational Func. Spec F, = f
Axiomatic Func. Spec F, = P x(Q
Precondition P = I* — Prop
Postcondition @ = (I x O)* x I — Prop
Input/Return Value I = ADT(A) + SCA(W)
Output Value O = |A]

Figure 4. Notations in operational semantics

A
(@ zi=e) blole = Ll 1w
(Zs) 12 (Es2) 1 2
= skip) 45 N S b O°
(lelg, #0A (B57) I 5) v ([e]lg, =0 (Z,5r) § &) I
(,if e {sr} else {sp}) | &'
(%, if e {s; while e {s}} else {s/kip}) Y WHILE
(3, whilee {s}) | &
U.1(l) =w L
U (0,), 1= label 1) § (oo — wl,p) o
U.2([er],) = AX(P, Q)
Wi =1 =107 PUT) QY0)
match(p, [([eﬂj,]*) : u' = upd(y, [([e]]:J*,O)*)
matchr(y', 7y, 7a 1 =updr(y,rw, e
Vi (o), a = calleg () 1 (ole = ralp) o
U.2([ef],) = OP(zk, v, s)
AT O T A A R

U= (0, p1), 2 = call eg (%)) § (o2 — 0" (2r)], 1)

Figure 5. Operational semantics of Cito

Compiler Verification Meets Cross-Language Linking via Data Abstraction

explanation, which we work up to providing. The first 5
rules, however, are completely standard.

A Cito machine state, ranged over by %, is a pair of a
variable assignment and a heap. A variable assignment o
is a total map from local variable names (strings) to fixed-
width machine integer values. A heap p is a partial map
from addresses (integers) to objects of abstract data types
(ADTs). A domain A of ADT values is a parameter to
our final theorem. Standard examples include sequences,
finite sets, finite maps, and so on. In practice, A will often
be a sum type, combining several standalone ADTs into
one. Critically, values in the domain A are mathematical
models of ADT values, not pointer-based implementations.
For instance, we represent a finite set with a mathematical
set, rather than with a balanced tree or hash table. Later we
will return to the question of how ADTs are implemented.

The judgment ¥ | (X,s) | X (pronounced as “runs
to”) indicates that there exists an execution of statement s
from machine state Y to machine state X', under context U.
Notation [e] refers to the obvious denotational semantics
for expressions in terms of assignments to their free vari-
ables. Notation m[a — b] stands for updating map m at key
a (possibly a new key) with value b.

The context ¥ of the operational semantics is only mean-
ingful for the rules about label resolution and function calls,
so “U | is implied before every other use of the judg-
ment. A context consists of a partial map from labels to func-
tion addresses (integers), plus a function specification map,
which is a partial map from a function address to either an
axiomatic function specification or an operational function
specification.

Axiomatic Specification and ADTs. Figure [d] defines the
domain of function specifications F'. Such a specification
is either an operational spec F, or an axiomatic spec Fj.
An operational spec constrains the behavior of a compiled
function to match the behavior of a literal source function.
In contrast, axiomatic specs use data abstraction with pre-
conditions and postconditions to give a formal contract that
a function must satisfy. With the axiomatic style, we avoid
needing to commit to details of the programming language
used to implement a function, focusing only on input-output
behavior.

An axiomatic function specification consists of a pre-
condition predicate P on the actual parameters (called in-
put values) and a postcondition predicate () over argument
input-output pairs and the return value. That is, postcondi-
tions are primarily predicates over the ways that arguments
evolve over the course of function calls, thanks to imperative
side effects. A precondition-postcondition pair represents a
Hoare-style function specification. The reason to have P in
addition to @ is that P is used in the “safe” predicate (see
Section 5) to define safe states from which all execution
paths (possibly nonterminating) are crash-free.

2014/8/8

An input value, passed as an argument to a precondition,
can be either an ADT object (ADT constructor) or an in-
teger (SCA constructor, for “scalar”). When given an ADT
object as input, a function can choose to either (1) in-place
modify it or (2) deallocate it. Leaving the state of an argu-
ment unchanged is a special case of “in-place modification”
where the new mathematical model is the same as the old.
This space of possibilities is modeled with the type | A| of
outputs, whose values are |, to indicate that a value is deal-
located; or any element of A, the domain of ADT models,
giving the new state of an argument upon function return.

Figure[6]illustrates the regime with an example. We spec-
ify finite sets of machine words, one of the ADTs used in the
code example of Figure [T} Here a natural functional model
of state (i.e., A parameter value) is arbitrary subsets of W,
the set of machine integers. We give the preconditions and
postconditions of the four finite-set methods used in Figure
A precondition is a function over a list of input arguments,
while a postcondition is a function over a list of output argu-
ments (each element capturing “before” and “after” states)
and a return value.

The specification of the new method says: the argument
list should be empty, and the return value points to a freshly
allocated finite set that encodes the mathematical empty set
. The specification for delete indicates that its argument
finite set is deallocated, by constraining the output argument
list to include some set s in the “before” state and the null
value | in the “after” state. Similarly, the spec of add indi-
cates that the scalar argument w is added to the input set s,
with an output list that shows the transition of the first argu-
ment from representing s to representing s U {w}. It is also
easy to support methods that must provably leave the ab-
stract state of their arguments alone, as in the case of size,
whose spec constrains output lists to “transform” a finite set
from s to s.

The notation requires some digesting, but basically it
just formalizes standard intuitions about data abstraction in
imperative languages. To integrate this style of specification
with the Cito operational semantics, we need a few auxiliary
definitions. First we have upd’ and upd, in Figure which
show how to use an output list to modify a heap. Here I
represents the input value, and if it is an ADT object, w
represents its address. O is the output value. If [is not an
ADT object, O is ignored, and we do not change the heap.

Notice that an output list only lets us describe how an
object passed as a function argument is modified or deal-
located. To express allocation, we use return values, as de-
scribed by auxiliary functions matchr and updr in Figure
A return value is also either an ADT object or an integer.
An integer return value gives the scalar result directly. An
ADT return value stands for a new object, and the seman-
tics will nondeterministically pick an unused heap address
to assign to the new object. This address, or the scalar re-
turn value, will be assigned to the variable on the left-hand

Compiler Verification Meets Cross-Language Linking via Data Abstraction

uw(w) =a ifI = ADT(a)
if I = SCA(w")
/\ mateh’ (s, w* (i), I*(i))
0<i<|w*|
A (Yogicj<lwi]> is Q;- I*(i) = ADT(as)

A T*(j) = ADT(a;) = w* (i) # w*(5))
pulw— 0] if I =ADT(a) A O # L
uw—w if [=ADT(a) AO =1
i if I = SCA(w')
upd(u, w*, I*,0%) = fold(upd’, u, w*, I*, 0*)

w ¢ dom(p) if I = ADT(a)

{ if I = SCA(w")

match’(u, w, I) = {

w=w

match(u, w*, I*) =

upd(, w, I,0) =

matchr(p, w,I) = ,
w=w
pulw — a] if I = ADT(a)

d I =
updr(u, w, I) {M if I = SCA(w")

Figure 7. Auxiliary functions in operational semantics

side of :=. This slightly convoluted treatment provides sub-
stantial flexibility in the sorts of memory ownership transfer
that can be modeled, including operations on multiple ob-
jects like list concatenation (taking two lists, “deallocating”
the second by appending it to the first) and list split (taking
a list, “allocating” a new list by stealing a portion from the
input).

Auxiliary functions match’ and match take care of pro-
jecting ADT objects out of the heap given their addresses. A
function at runtime only receives integers as actual param-
eters. Its specification describes how it will treat them. If
the specification says this input value is an ADT object, the
function will treat the runtime actual parameter as the ad-
dress of that object. Otherwise it will just treat it as a scalar
integer value. match’ and match describe this behavior by
stating the relation between the runtime values w* and the
semantic values I*.

One important element of this specification approach may
not be apparent from the formalism: we follow the small
footprint style of separation logic [24], where function pre-
conditions and postconditions need only describe the parts of
the heap that the function manipulates. The auxiliary func-
tion definitions are chosen to support small-footprint reason-
ing soundly, and our compiler correctness proof uses sepa-
ration logic to prove that soundness formally.

Operational Specification An operational specification is
just the callee function itself, i.e. its formal parameter names,
its result variable name, and its function body. The seman-
tics says that the caller will give the whole heap to the
callee, nondeterministically pick a variable environment for
the callee, initialize the formal parameters with the actual
parameters, run the function body, and take the heap and the
value of the return variable as the result.

2014/8/8

A =FSET(P) + - -

(M. T =

{M. 3s. T = [ADT(FSET(s)
{M.3s. T = [ADT(FSET(s)

[
)
)
{M. 3s,w. I = [ADT(FSET(s)), SCA(w)

1} new {A
]} delete {A
I}
I}

size {A

E
g &=
L
\EI)
g
Q

add {A
(

P = P(W) (* sets of machine integers *)

ADT(FSET(s)), L)] A R = SCA()}
ADT(FSET(s)), FSET(s))] A R = SCA(|s|)}
= [(ADT(FSET(s)), FSET (s U {w})),

SCA(w), L)] A R = SCA(-)}

Figure 6. An example ADT specification (finite sets)

The merit of axiomatic specifications is that they hide im-
plementation details of algorithms and data structures (with
the help of ADTs) behind pure mathematical relations. They
even hide which language an implementation uses. In prin-
ciple all we need are axiomatic specifications. However, just
like loop invariants, axiomatic specifications must be sup-
plied by the programmer for specific programs. The ben-
efit of having operational specifications is that each func-
tion then automatically gets a specification for free, and
given a program, the semantics can define its behavior with-
out the programmer giving any annotations. It also frees
up the programmer to later use any verification tools (pro-
gram logics, abstract interpretation, etc.) she likes to work
on top of this semantics. Some higher-order properties of
programs, especially those involving embedded code point-
ers, are not expressible by our axiomatic specifications, but
all program properties are expressible by operational spec-
ifications (since what they say is just “it behaves as it be-
haves”). The programmer can later choose a more power-
ful program logic to deal with those higher-order proper-
ties. CompCert [17] goes the other way by having only op-
erational semantics, but then it loses the nice interface ax-
iomatic specifications provide to enable cross-module and
cross-language linking.

3. The Bedrock Framework

Bedrock is a library for the Coq proof assistant, support-
ing implementation, compilation, specification, and verifi-
cation of programs within the normal Coq environment.
The library provides support for effective mostly automated
proofs [12, [19] of correctness of low-level programs, using
specifications inspired by higher-order separation logic [24]].
The Bedrock structured programming system [13]] supports
efficient coding and verification of assembly programs, us-
ing higher-level macros that expand into assembly code,
while supporting verification more at a C-like abstraction
level.

In the rest of this section, we outline three crucial ele-
ments of Bedrock: the cross-platform assembly language at
the base, the program logic that is applied to phrase correct-
ness results for modules of assembly code, and the structured
programming system that is layered on top of the assembly
language for more convenient implementation of verified li-

Compiler Verification Meets Cross-Language Linking via Data Abstraction

Constants ¢ ::= [width-32 bitvectors]
Code labels ¢ == ..
Registers 7 == Sp|Rp|Rv
Addresses a = rlc|r+ec
Lvalues L == r|[als] [a]s2
Rvalues R == Llc|t
Binops o = 4| —| X
Tests ¢ == =|#|<|<
Instructions ¢ == L« R|L<—RoR
Jumps j = goto R|if (Rt R) then {else ¢
Blocks B = {:{\y.¢}i*;j
Modules M := B*

Figure 8. Syntax of the Bedrock IL

braries. These contributions are all from past work, and they
will form the foundation for our compiler verification ap-
proach.

3.1 The Bedrock IL Language

In the end, any Bedrock program is written in a cross-
platform assembly language that is easy to compile to any of
the common assembly languages, whose syntax is shown in
Figure[8] We refer readers to past work [13]] for details of this
unremarkable language, the Bedrock IL. The language de-
sign follows standard assembly-language conventions, with,
e.g., a small set of registers and a finite memory indexed by
fixed-width machine words. One central concept is that of
code module, a set of basic blocks, where each block has
a label, a specification (precondition), and a sequence of
straightline instructions followed by one jump instruction.
Only the details of specifications are nonstandard, as they
are based on the program logic sketched in the next subsec-
tion.

Ignoring specifications, Bedrock IL is given just the sort
of operational semantics one expects. We will use metavari-
able v to stand for machine states, which include register and
memory values. The operational semantics, given a Bedrock
module and a mapping from labels to words representing the
real placement of code blocks in memory, expresses when
one machine state is reachable from another, without violat-

2014/8/8

ing safety by, e.g., jumping to a code address with no asso-
ciated block.

Our final result in this paper is foundational in that we
prove theorems about Bedrock IL programs, where the the-
orem statements only mention the operational semantics of
the Bedrock IL, not any of the other technical devices we
build up later. As a result, we need not worry about bugs in
those technical devices corrupting our final conclusions.

3.2 The XCAP Program Logic

Bedrock’s verification support is inspired by XCAP [22], a
program logic for assembly programs that manipulate first-
class code pointers. In particular, Bedrock directly adopts
XCAP’s assertion logic (in which code specifications are
written) and uses a proof approach inspired by XCAP’s
program logic (in which programs are proved to satisfy their
specifications).

It is challenging to design a program reasoning approach
to support modular verification in the presence of first-class
code pointers. One would like to prove a correctness theorem
for a code module whose functions may be passed pointers
to code in other modules, where the author of the first mod-
ule should not need to specialize the proof to details of those
other modules. Code pointers may even appear within arbi-
trarily complex data structures in memory.

Several semantic techniques have been developed to sup-
port this kind of higher-order specification. One is step-
indexed logical relations [4]. XCAP takes a different tack:
deep embedding of an assertion language PropX that is ex-
pressive enough to be useful but restrictive enough to sup-
port kinds of recursive definitions that would be ill-founded
in normal logic. Most details of the assertion language will
not be important in this paper. The usual connectives of
higher-order logic are available with mostly standard mean-
ings. Less usual features are an operator [-], letting us /ift any
normal Coq proposition into PropX; and a Hoare double op-
erator {\y. ¢}w, which allows us to assert that the code at
address w has a specification implied by \y. qS

In the rest of the present paper, we will not need to appeal
to details of the PropX semantics, relying on common-sense
understanding of the connectives and considering the lifting
brackets [. . .| implicit where necessary, since the messier de-
tails in our proofs are checked by Coq. For our purposes, the
essential PropX feature is Hoare doubles {\y. ¢}w, which
we will use in specifications for compiled programs, to im-
pose requirements on pointers to code that may not have
come out of our compiler. In other words, rather than a syn-
tactic contract for compiled code via refinement of execu-
tions as in CompCert [[17], we use a semantic contract via
Hoare doubles, giving programmers and compiler writers
more implementation freedom. The main ideas of our ap-
proach should generalize to other styles of higher-order pro-

! Actually, a more primitive connective is included in place of the Hoare
double and used to derive it.

Compiler Verification Meets Cross-Language Linking via Data Abstraction

gram logic that define expressive specification languages by
other means, like with step indexing.

XCAP also provides a program logic, specifying infer-
ence rules that can be used to conclude that a program
component satisfies a specification. We write ¥ — M and
U | B to indicate correctness of a program module M or
a single basic block B, respectively, under the assumptions
about other basic blocks encoded in W, a partial map from
block addresses to assumed preconditions.

Bedrock simplifies the definition of this component into a
single “inference rule” that refers directly to the operational
semantics of basic blocks. We write (v, ¢) — (7', £) to indi-
cate that running basic block code c transforms the machine
state from 7 to v’ and jumps to label £. A basic block is writ-
ten as {p} ¢, giving precondition p and instructions c.

Vy, ' 2 W py(v) = 3, L (,0) = (7,0 A V(O w ()

U+ {p}c

In other words, a block is correct if, whenever we enter it
in a state satisfying its precondition, we step safely to the
end of the block, jumping to a label whose own precondition
(pulled from our assumptions) is then satisfied. We write
py for interpretation of a predicate according to a set of
assumptions; see the XCAP paper [22] for formal details.
Such an assumption-specific interpretation is necessary to
assign a meaning to the Hoare double connective. Here we
quantify over all assumption contexts that include at least the
entries assumed by the code.

We say that a module is correct when each of its blocks is
correct.

VBe M.V B

Y -M

When U exactly matches the specifications included in
M, we have a whole-program correctness proof, and a
straightforward induction establishes that, when control be-
gins in a block whose precondition is satisfied, execution
continues safely forever, and every block’s precondition is
satisfied every time control enters that block.

To support modular verification, we can derive a linking
rule, where we overload the notation dom for calculating the
code labels defined by a module or included in a finite map.

Uy M Uy My dom(My) ndom(Ms) = &
\WAS dom(\Ill) N dom(\Ilg) \Ifl(é) = \Ifg(f)
\111 U \112 = M1 o M2

Informally, when we have proved two modules correct under
some assumptions, we have proved the concatenation of the
modules correct, under the union of their assumptions. There
are further requirements that both modules do not try to de-
fine the same label, and that there is no disagreement be-
tween the assumptions, but these side conditions are purely
syntactic, so that all the real verification work happens in

2014/8/8

verifying individual modules according to ¥ values formal-
izing their assumptions about other modules.

At this point we have seen the key ingredients behind our
new approach to compositional compiler verification. While
past work [5 [16] has tackled the problem via approxima-
tion using step indices, we will achieve similar results using
syntax via the XCAP approach. By requiring proofs of cor-
rectness for individual compilation runs to be phrased in the
Bedrock program logic rather than with arbitrary Coq argu-
ments, we gain the ability to use the standard linking theo-
rem to reason about the combination of code output by our
compiler with arbitrary other verified Bedrock modules.

3.3 The Bedrock Structured Programming System

In theory, XCAP provides all the tools needed to do modu-
lar verification. In practice, direct reasoning about unstruc-
tured assembly programs is excessively time consuming.
Bedrock provides a macro system [13]] that effectively cre-
ates an extensible C-like language for programming and ver-
ification within Coq. The key construct is certified low-level
macros, which introduce new programming notations along
with their associated compilation rules and proof rules, plus
proofs that the rules taken together are sound with respect to
the Bedrock IL operational semantics.

In this paper, we will not need to refer to the details of
Bedrock macros. Instead, we will proceed as though our
compiler were targeting a C-like programming language
with invariant annotations in the usual places (e.g., before
loops). All of the programming constructs we use are de-
fined independently as macros, and, beyond the original set
of macros [[13], we implemented a few new ones that were
convenient for our compiler. Overall, our compiler rules will
look suspiciously like translating one C-like language into
another, but the interesting part will be the specifications
that we associate with compiled code, supporting later link-
ing with code compiled from other languages, without any
knowledge of our compilation strategy.

The central theorem of the Bedrock structured program-
ming system is that any verified macro may be used to pro-
duce a verified Bedrock IL module, with function specifica-
tions based on the Hoare triples proved for structured pro-
grams. By verified here, we mean that each module has an
appropriate syntactic proof using the inference rules from
the last subsection. Thus, these compiled modules may be
linked together in the usual way to produce larger verified
programs.

One of the abstractions that can be built on top is the
normal Hoare triple of separation logic [24], where we write
{P}c{Q} for command ¢ and stareful predicates P and @,
declaring that c is safe to run in any memory containing a
submemory satisfying P, such that ¢ will modify only that
submemory and leave it in a state satisfying (). Now we can
state the rule for our verified Cito compiler, which is itself a

Compiler Verification Meets Cross-Language Linking via Data Abstraction

Bedrock macro, as:

compile(s) = ¢
VEA{(XZ,s) | A state(X)} ¢ {32 (2, s) | ¥ A state(X)}

This is the main correctness theorem we prove for our
compiler (though here we omit a few details to be filled in
by Section [7).

Here X’s are Cito states, and stateful predicate state(X)
establishes when the Bedrock IL state suitably implements
3. Relation (X, s) | asserts that executing s in ¥ will not
crash, and (X, s) || ¥/ asserts that one possible result of run-
ning s in X is X', In other words, the macro’s proof rule says
that, if the current Bedrock IL state implements a Cito state
that leads to safe execution of s, then a postcondition for
running c is that the Bedrock IL state implements some Cito
state that could result from running s. This is a backwards
preservation property in the sense we adopt throughout this
paper, which is a big-step simplification of the backwards
simulation relations of CompCert.

In a hypothetical Bedrock-like system based on a total-
correctness program logic, our basic technique should adapt
naturally to proving preservation of program termination
properties. We would just interpret the | relation as enforc-
ing safe termination, rather than just crash freedom, along
all possible execution paths.

4. Compilation Overview

The core component of the compiler is the statement com-
piler, which is a total function from a Cito statement s to a
Bedrock structured code chunk. Following Bedrock termi-
nology, we call this function a macro and associate a proof
rule with it. A specific form of Hoare-style precondition and
postcondition will be useful as an intermediate invariant dur-
ing compilation. We formalize an invariant schema invy(s),
where s is a Cito statement, and V is the list (position-
sensitive) of declared local variables of the enclosing func-
tion (generally omitted later when not relevant).

invy(s) = Ae. YU, . {funcsOk(T) A ¥ + (X,s) |

A statep(X)} ¢ {38 U - (X, 5) | X' A statey(X')}

Invariant inv(s) is defined as a specification for a Bedrock
code chunk c. We read it as: the code chunk c is safe to
call for any function specs ¥ and Cito state 3 that lead
to safe execution of s, when the Bedrock IL state contains
implementations of the functions from ¥ (formalized with
funcsOk, explained in Section[6) and accurately represents X
(formalized via state). If c then terminates, it does so in some
Bedrock IL state corresponding to a Cito state 3’ that could
really result from running s in 3. We will use {P}_{Q} as a
short-hand for Ac.{P}c{Q}. inv(s) will be the specification
for the code chunk generated for statement s.

The predicate state is defined in separation logic. We
write (X) for iteration of the separating conjunction operator

2014/8/8

(s1,%) | VE/.(E,sl) U o= (52,2') l
(s1582,%8) |

Figure 9. A selected rule of the safety judgment

for carving memory into disjoint pieces described by differ-
ent assertions. Where i is a heap of abstract data type values,
we have:

heap(1) = @ ;.0)e, repInv(p; a)

The predicate replnv is the representation invariant for ADT
objects, which describes, in the separation-logic style, how
the low-level machine state should faithfully represent an
ADT object. For example, if the object is a mathematical
finite set, a possible replnv may require the low-level mem-
ory heap portion to be organized as a balanced search tree.
Like the ADT domain A, replnv is also a parameter of our
formal development, which can be customized for different
representation invariants (e.g. changing from a splay tree to
a red-black tree).

Now, with V = {x,..
we define:

., Zn} as a list of local variables,

statey (o, 1) = heap(u) A A\, zi = o(“z;”)

Here we play a bit fast and loose with the separation-logic
convention of allowing program variables to appear free in
assertions. The details of variable manipulation are made
fully formal in our Coq code, where local variables are just
one part of the Bedrock macros for function definition. The
intuitive content of the state definition is that the heap is
laid out properly in memory and all local variables have the
values assigned to them by the Cito state.

Figure [5] defined the |} relation used in the postcondition
part of inv. A similarly defined relation ¥ + (X,s) |
indicates that statement s is safe to run in Cito state X,
a selected representative rule of which is shown in Figure
[l While the base operational semantics |} only captures a
single terminating execution, | forces consideration of all
possible executions, even those that do not terminate. None
of them are allowed to violate the safety rules implied by
Jl. The relation is defined coinductively (denoted by the
doubled horizontal line) to allow a state to be considered
safe even if it may lead to nonterminating executions. This
formulation has much in common with coinductive big-step
operational semantics [18]].

In the course of verifying substatements of a function
body, we need to choose loop invariants and other character-
izations of intermediate states. To do so, it is helpful to inter-
pret the inv definition in a slightly nonstandard way. When
given as a loop invariant, its “precondition” part describes
the current machine state, while the “postcondition” part de-
scribes the machine state when the current function returns.
Such a schema is straightforward to encode in XCAP, using
the higher-order features of the PropX assertion language.

Compiler Verification Meets Cross-Language Linking via Data Abstraction

compile(“a; b”, k) =
compile(a, “b; k”); compile(b, k)

compile(“if e {s1} else {s2}", k) =
compileExpr(e, 0);
if Rv # 0 {compile(s1, k)} else {compile(s2, k)}

compile(“while e {s}”, k) =
compileExpr(e, 0);
[looplnv(e, s, k)]
while Rv # 0 {
compile(s, “while e {s}; k7);
compileExpr(e, 0) }

Figure 10. Compilation of control-flow structures

With this interpretation of inv, our proof obligation for the
correctness of compiling statement s is: for any continuation
statement k, if we know inv(k) is a valid specification for the
compilation of k, can we establish that inv(s; k) is a valid
specification for the compilation of s; £? Abusing the Hoare-
triple notation, the proof obligation is:

compile(s, k) = ¢

{inv(s; k)} ¢ {inv(k)}

In other words, the job of a statement s is to take us from
a state where we must run s; k before returning, o a state
where we only need to run k before returning (the reason to
have a k in compile(s, k) is explained in Section [5). This
continuation-based reasoning is important to enable us to
come up with invariants translatable to the level of assembly,
which is naturally considered to be in continuation-passing
style.

5. Compilation of Basic Statements

To finish the verification, we must not just define the com-
piler and its Hoare rule, but we must prove that the latter is
sound with respect to the former. We implement the com-
piler using more primitive macros from the Bedrock library,
for constructs like if and while. Interpreting these macros di-
rectly allows us to derive a very specific Hoare rule for the
compiler. To translate to the more abstract interface inv(s),
we apply a Bedrock macro counterpart to the Hoare-logic
rule of consequence. The implication between the two spec-
ifications (proved by induction on statement syntax) is re-
sponsible for the bulk of our verification effort.

As an example, we show in Figure [I0] compilation of the
classic control-flow forms for sequencing, conditional test,
and looping. To distinguish between the syntax of Cito state-
ments and Bedrock macros, we enclose the former in dou-
ble quotes when otherwise ambiguous. Our compile function
takes an explicit continuation argument, which has no algo-
rithmic significance but is used to state invariants.

These rules have something of the feeling of many deno-
tational semantics, where one translates between languages

2014/8/8

by simply “removing the quotation marks.” We take advan-
tage of the preexisting Bedrock macros for the very control-
flow constructs we are compiling. Where the Bedrock struc-
tured programming system provides an extensible program-
ming language with support for proving specific functional
correctness theorems, here we derive a compiler for a fixed
programming language where we prove fidelity of compila-
tion without requiring the programmer to state any program-
specific correctness theorems.

The case for if in Figure is perhaps the simplest,
most directly following the strategy of “remove the quota-
tion marks.” Since the Bedrock IL does not support com-
pound test expressions in its conditional jump instruction,
the primitive Bedrock if macro does not either, so we use a
standard expression compiler compileExpr to generate code
that leaves the result of the conditional test e in IL register
Rv, where the second argument i to compileExpr in general
requires leaving untouched the first ¢ numbered temporary
variables. Afterward, we test if Rv stores zero, running ei-
ther the “then” or “else” case as appropriate. The recursive
calls to compile pass along the continuation k unchanged.

The shortest case is for sequencing, but it also introduces
a wrinkle not found for if. We again implement sequencing
using the normal Bedrock sequencing macro, but we must
be a bit more careful in our recursive calls. The second
statement b is associated with the original continuation &, but
the first statement a is compiled according to an expanded
continuation “b; k”, expressing that not only & but also b
must be run afterward.

It may seem strange that compilation needs to be param-
eterized on continuations at all. Why can we not just refer
to continuations in the theorems we prove about the com-
piler? A conventional compiler would not generate differ-
ent code based on knowledge of which other code is to fol-
low, but our compiler is outputting not conventional code but
Bedrock modules, which combine code and specifications.
The macros used in the sequencing and if cases hide genera-
tion of proper specifications, but the remaining while case is
instructive for its inclusion of an explicit invariant that must
mention k.

The algorithmic part of the generated while code begins
by storing the value of test expression e in Rv. The loop itself
tests nonzeroness of Rv. The body runs the statement s and
then recomputes the value of the test expression.

The additional specification-oriented parts of this case are
more interesting. First, body s is compiled according to the
expanded continuation “while e {s}; k™, since the loop must
finish running before we get to k. Second, we need to give
a loop invariant, in terms of looplnv, a slight variant of inv.
looplnv(e, s, k) is almost identical to inv(“while e {s}; k).
The one exception is that we require that the current value of
register Rv equals the current value of the loop test e, so that
the test of the generated while captures the right property.

Compiler Verification Meets Cross-Language Linking via Data Abstraction

compile(“z := call ey (e*)”, k) =
compileExpr(e(0),0); #0 <« Ry;
compileExpr(e(1),1); #1 < Ryv;

compileExpr(ef,n);
icall Rv(#0, #1, - - -) [afterCall(k)];
x <— Rv

Figure 11. Compilation of function calls

funcsOk(¥) = (Vw, sq. ¥.2(w) = AX(sq) = {axSpec(
A (Yw, 0. U.2(w) = OP(s,) = {opSpec(
axSpec(P, Q) = Ae. Yy, w™, T*. {state(w™, u) A P(I*) A
|w*| = |I*| A match(u, w™, T*)} ¢
{30*, 1/, 1, 1w, Ta. state(-, ") A
lw*| = |0*| A QUI*, 0%, ro) A
p' = upd(p, w*, I*) A matchr(y', rv,rq) A

Sa)} w)

"

W= updr(;/,rw,ra) ARv=ry,}
opSpec = Ac. VX. {state x(X) A U - (X,5) |} c
(U, 2k z,,8) {32 state(-,2'.2) A T I (2,8) | &’
ARv =Y 1(z,)}

Figure 12. Definition of funcsOk

Loop invariants and similar inputs to Bedrock macros are
used internally to generate the preconditions annotated on
Bedrock IL basic blocks. This uniform scheme of assigning
preconditions to blocks is what supports the simple syntactic
proof method for modular verification, so the extra parame-
ter k and the generation of loop invariants are at the heart of
our approach to building compositional compiler correctness
on top of a program logic.

6. Compilation of Function Calls

Compilation of calls to functions with either axiomatic or
operational specifications share the same syntax and algo-
rithmic code. The compilation code for function calls is
shown in Figure [I1] As in the prior examples, we appeal
mostly to a preexisting Bedrock macro icall, for implement-
ing an indirect function call via a code pointer. Before that,
we use compileExpr to compile the function pointer ex-
pression ey and the argument expressions e*, stashing the
argument values in numbered temporary variables #0 to
#(|le*| — 1). Similarly to the while macro, icall requires an
after-call invariant, which is used by Bedrock to pick a pre-
condition for the basic block where control returns after the
call. The invariant afterCall that we use here is again almost
the same as inv, except that it requires that a bit of post-call
code be run to adjust the stack pointer.

2014/8/8

U, s0)} w)

The definition of the funcsOk predicate, which we have
postponed until now, is the crucial ingredient to support ver-
ification of the call implementation. Recall that inv is de-
fined in terms of funcsOk, using it to enforce that a context
U accurately describes the actual functions available at the
Bedrock level. Figure [12] gives the definition of funcsOk as
a conjunction of two parts, corresponding to axiomatic spec-
ifications and operational specifications. The Hoare-double
notation “{ P} w” is used to express that the code at address
w satisfies a specification P. The definition of funcsOk reads
as: if the context indicates that the function at address w has
an axiomatic specification s,, the real code at w will sat-
isfy a specification (expressed in PropX) axSpec(s,); if the
context indicates that the function at w has an operational
specification s,, the real code at w will satisfy a specifica-
tion opSpec(¥, s,).

Predicate axSpec is basically a verbatim translation of
the premises required by the operational-semantics rule
CALLAX. Here we write state(w™, _) to express that at the
bottom of the current call-frame are the actual parameters
w*. The end state is written as state(-, i) to express that the
local variables are ignored, since we only make a function
call for its effect on the heap and the return value, not its
own locals that are about to be deallocated.

Predicate opSpec is much like the Hoare triple within inv.
There is some minor complication in the postcondition to
project out and ignore the local-variable part of the final Cito
state 32'. The subscript in state (o, ;1) is to emphasize that
the low-level variable environment (call-frame) will only
guarantee that variables z agree with o, with no guarantee
for variables beyond that domain.

It is worth pausing here to reflect on the central role of
funcsOk in supporting transfer of control back and forth be-
tween code output by our compiler and code from other lan-
guages. By connecting to XCAP’s mechanism for asserting
specifications for first-class code pointers, we impose a dis-
cipline that is compatible with general XCAP module cor-
rectness derivations. Since inv quantifies universally over the
U that is passed to funcsOk, we verify our compiled Cito
modules once and for all with respect to any environment
of properly specified functions in which those modules may
eventually be run.

7. Bundling

The end goal of all this formal development is certification
of whole programs composed of some modules produced by
our compiler and some modules constructed by other means.
We package the statement compiler into a function compiler
and finally into a module compiler, which, given a Cito mod-
ule and an import table (a finite map from labels to axiomatic
specifications), compiles each function and bundles the com-
piled functions into a Bedrock module. Each compiled func-
tion receives a Bedrock precondition:

¢¢ = 3V. funcsOk(¥) A opSpec(¥, f) (1)

Compiler Verification Meets Cross-Language Linking via Data Abstraction

The fact that our compiled function satisfies this specifi-
cation can be considered as the final correctness theorem
of our compiler.

One last puzzle remains when we actually want to call
a function with this specification. The precondition begins
with quantification over some context ¥, with a requirement
that funcsOk(®). For a module, it is easy to choose the
W: just use the one that includes one entry for each of its
functions and one entry for each of the imports, that is:

U3, = {1 OP(f) | (I, f) e m}
u {l— AX(s) | (I,s) i}

What is more challenging is how to prove funcsOk(W¢).
Consulting Figure and using XCAP’s rule of conse-
quence, we arrive at subgoals of this form:

opSpec(V},,. f) = ¢ 2)

Unfortunately, consulting , there is a funcsOk in ¢y,
so we wind up with a circularity, needing to prove funcsOk
in the course of proving funcsOk!

Our solution takes advantage of the syntactic nature of
XCAP reasoning in another way. We give each compiled
function f a program-specific stub f’ that just jumps to
its namesake directly. Stub functions are assigned simpler
XCAP specifications with a ¥ value inlined:

Yy = opSpec(¥y,,, f)

With the specificational circularity broken, subgoal
becomes
opSpec(¥,,, f) = g
which is trivially true. We then have funcsOk(U?)) as a
lemma, which is the one piece of information missing to
conclude ¢ from 1), to justify the jump from the stub to
its namesake.

8. Composing with Compiler Correctness

Our compiler correctness theorem was chosen to satisfy one
crucial dictum: make it possible to reason just about the
operational semantics of source programs, such that con-
clusions port soundly to compiled programs, while al-
lowing us to link against programs written in other lan-
guages. That is, consider any Cito program property of the
form VX, %Y. (2,s) | ¥ = P(X%,Y), for some P relat-
ing initial and final states. We have proved that compilation
preserves any such property. P might be a Hoare-style pro-
gram specification, proved semi-manually using a program
logic. We then get for free that the compiled program satis-
fies the same property. Furthermore, we can implement op-
timization passes and prove that they preserve all such spec-
ifications. These proofs need only refer to the Cito opera-
tional semantics, not any of the details of our core compiler
or of Bedrock. In this section, we demonstrate proofs of both
kinds, as case studies for how effectively our compiler theo-
rem encapsulates implementation details.

2014/8/8

ExampleADT.v:

Inductive ADTModel :=
| Arr: list W — ADTModel
| FSet: MSet.t W — ADTModel

Definition ListSet_addSpec :=
PRE[I] 3 s n, I =[ADT (FSet s), SCAn]
POST[0, R] 3 s n any, 0 = [(ADT (FSet s), Some (FSet (
addn s))), (SCAn, None)] A R=SCA any.

CountUnique.v:

Definition count_spec :=
PRE[I] 3 arr len, I = [ADT (Arr arr), SCA len] A len=
length arr
POST[O, R] 3 arr, 0[0] = (ADT (Arr arr), Some (Arr arr))
A R = SCA (count_unique arr).
Definition imports :=[
("ArraySeq"!"read", ArraySeq_readSpec),
("ListSet"!"add", ListSet_addSpec), ...]
Definition count :=
cmodule "count" {{ [count_spec]
cfunction "count"("arr", "len") return "ret" (*7x)
"set" « Call "ListSet"!"new"();; "i" « 0;; (*¥8%)
[INIT (V, H) NOW (V’, H’) 3 arr fset,
find (V "arr") H = Some (Arr arr) A
H ==H % (V "set" — FSet fset) A
fset == to_set (firstn (V' "i") arr)]
While ("i" < "len") { (*9%)
"e" « Call "ArraySeq"!"read" ("arr", "i");;
Call "ListSet"!"add"("set", "e");; "i" «— "i" +1
b
"ret" « Call "ListSet"!"size"("set");; (*11%)
Call "ListSet"!"delete"("set") (*12%)
end
3
Definition count_compil := compile count imports.
Theorem count_ok : moduleOk count_compil.
compile_ok. (* apply main compiler theorem,
with automated proof of side conditions *)
Qed.

Figure 13. Implementation and verification of Count-
Unique example: the high-level Cito code part

Program Proof Example. We give an example of source-
program verification using the “count unique values” exam-
ple shown in Figure [T} to illustrate how to use our compiler
to verify a program involving interaction between high-level
and low-level pieces of code.

The actual Coq code for implementing and verifying the
CountUnique program is excerpted in Figures [T3] and [14]
We leveraged Coq’s extensible parser to define some nota-
tions for Cito’s syntax so programmers can write the pro-
gram and verify it entirely within Coq. The code is split

in two parts, which can be verified separately. Figure
shows the high-level part written in Cito, while Figure [14]

Compiler Verification Meets Cross-Language Linking via Data Abstraction

Definitionmain :=
bimport [["count"!"count" @ [op_spec count_body], ...]]
bmodule "main" {{
bfunction "main"("arr", "R") [topS] (*x15%)
(* initialize "arr" to [10, 20, 10] *)
"R" « Call "count"!"count"("arr", 3);; (*x17x%)
Call "sys"!"printInt"("R");; (*17%)

end

138
Theorem main_ok : moduleOk main.

(* manual proof, partly using program logic to

derive axiomatic spec from operational *)

Qed.
Definition all :=1ink [count_compil, main, list_set, ...].
Theorem all_ok : moduleQOk all.

link_ok [count_ok, main_ok, list_set_ok, ...].
Qed.

Figure 14. Implementation and verification of Count-
Unique example: low-level Bedrock (assembly) code part

shows the low-level part written in the old Bedrock notation.
Bedrock has its own notations that make its programs — as-
sembly programs in essence —look like C programs, but keep
in mind the language and abstraction gap between the two
parts. High-level code is proved according to an operational
semantics exposing a heap of ADT values, while low-level
code is proved according to an operational semantics expos-
ing memory as an array of bytes. To highlight the correspon-
dence with Figure [l we put corresponding line numbers in
Figure|l|as comments here.

In the high-level part, the function count relies on ax-
iomatic specifications of ADT operations to implement its
algorithm, and file ExampleADT.v defines the formal inter-
face. Our compound ADT for this example is just the sum
type of a series of Cito types acting as mathematical mod-
els. Here we use Coq’s lists as the model for arrays and
Coq’s MSet finite-set library for the model of finite sets.
ListSet.add’s specification describes its obvious behavior
of adding the second argument to the first, and not allocating
any new objects (by forcing the return value to be scalar).
Elided here are specifications in the same file for all of the
other ADT methods, which must be implemented in some
language connected to Bedrock.

File CountUnique. v gives the main Cito function count
and its specification count_unique, which is defined in
Coq as (funls = FSet.cardinal (FSet.of_list 1s)).
The compiler takes as inputs the program and its import ta-
ble, generating the target code and providing the correctness
theorem. The compilation process works fine without addi-
tional axiomatic specification information, like count _spec
and the loop invariant in the example; we include those an-
notations only to help us verify this specific program, and
they are deleted before calling the compiler proper.

2014/8/8

The only thing left to do is for the programmer to prove
that the program meets its specification, with respect to the
Cito operational semantics. Here she can use any of her fa-
vorite tools or methodologies for program proof. We imple-
mented a simple proof-of-concept program logic, where the
programmer annotates the program with an axiomatic speci-
fication for each function and an invariant for each loop. The
program logic will generate a list of verification conditions
for the programmer to discharge, all of which are pure logi-
cal implications that do not mention program syntax. Often
semantic complications arise in defining a program logic that
supports mutually recursive functions [27], but we have al-
ready tackled all of those challenges in designing the mixed
operational and axiomatic semantics of Cito from Section 2}
One key operation we use is a weakening of a Cito program
context ¥ to replace an operational spec with an axiomatic
spec implied by the original. This operation is useful to ver-
ify a recursive function, giving an operational proof of the
body where we appeal to an axiomatic spec for any recur-
sive call.

Figure [14] shows more standard Bedrock code defining
a wrapper to call count on a particular input array and
then linking together all program modules into a closed pro-
gram with a partial-correctness theorem. Elided here is con-
ventional Bedrock code [12}[19] to implement the different
ADTs of our program. The module 1ist_set, for instance,
may apply arbitrary assembly code, so long as it is proved
to satisfy the separation-logic contract given for axiomatic
specs in the definition of funcsOk in Figure For this ex-
ample, we verified a simple unsorted-list implementation of
finite sets, but any other implementation can be dropped in
without any changes to other proofs.

The proof of theorem main_ok, establishing correctness
of the main program function, is where we apply the pro-
gram logic to deduce that the Cito implementation of count
from Figure [13] implements the specification count_spec
from the same figure. All of the proofs from Figure [T3] are
automated, and we only need to dive into manual proofs in
Figure [14]to prove deeper, program-specific properties than
preservation of Cito program behavior by the compiler, tak-
ing that preservation as given.

We also want to emphasize again that what we have done
here is prove a partial correctness theorem for a full Bedrock
IL program (all in the figures). The theorem is based on
the specifications annotated on programs, and includes the
following fact: if the call to printInt in Figure [I4]is ever
reached, the argument passed to it is 2 (the number of unique
elements in our particular array). This theorem statement
refers only to the operational semantics of Bedrock IL, so we
do not need to worry that bugs in our compiler verification
methodology could impugn it.

Optimization Examples. A key property of a compiler cor-
rectness proof style is vertical compositionality, where we
want to verify different passes independently and compose

Compiler Verification Meets Cross-Language Linking via Data Abstraction

their theorems to produce one about the whole compiler.
Our approach in this paper supports vertical compositional-
ity very well, as we demonstrated by verifying two standard
source-to-source optimizers, constant folding and dead-code
elimination. The example from earlier in this section and
our other examples are all compiled via a pipeline that in-
cludes these optimizations, and we verify whole programs
using black-box composition of the theorems for the differ-
ent passes.

We specify the correctness of a Cito-to-Cito optimizer
with a relation between its input and output statements. We
define the backwards preservation relation between an input
function with body s and return variable 7, and an output
function body s’, as follows:

VUL S W (5,8 |
= 30"V (3,5) | (6", X'2) Ad"(r) =% 1(r) (3)

It says that if s’ terminates, the final state is one that could
have resulted from running s, modulo the values of local
variables (except). We have found this property rather easy
to prove directly (by rule induction) for our example opti-
mizations, constant folding via a simple single-pass forward
dataflow analysis with conservative treatment of loops, and
dead-code elimination via a single-pass backward dataflow
analysis. We see no obstacles in the way of similarly direct
proofs for other classic optimizations, including with itera-
tive dataflow analysis.

Furthermore, it is easy to prove a transitivity theorem
showing that composing two optimizations that are sound
in our sense leads to a new optimizer that is also sound. Our
Coq proof of transitivity is about 10 lines long and requires
no new induction or ingenuity in general.

9. Related Work

The best-known mechanically verified compiler is Comp-
Cert [[L7], where many of the core techniques of the field
were introduced. CompCert’s main theorem is not compo-
sitional, as it says nothing about the behavior of compiled
modules when linked with code not produced by the same
version of CompCert. Beringer et al. [8 25] have extended
CompCert with support for verified separate compilation,
tackling several technical issues specific to the C language,
like handling of pointers to local variables. While their com-
piler theorem is designed to support verification of multilan-
guage, compiled programs, they leave concrete proofs of that
kind to future work. In a concurrent project, Ramananandro
et al. [23] have designed a refinement-based framework for
integrating certified compilation and modular program veri-
fication.

Benton and collaborators initiated the study of composi-
tional compiler correctness in a series of papers [SH7]] about
compilers from functional languages to assembly languages
and abstract machines. These proofs rely on step-indexed
logical relations and biorthogonality, where we instead use a

2014/8/8

program logic. Hur and Dreyer [[16] presented a Kripke step-
indexed logical relation intended for use in compositional
verification of a compiler from ML to assembly. This line
of work uses the static type of each source term to produce
a specialized statement of compilation correctness, which
allows, for instance, verified preservation of parametricity
properties of polymorphic source code. This relation applies
to a more intricate source language (ML) than ours, but it
has not been used in mechanized proofs and is not known
to support a transitivity theorem that would enable modular
verification of compiler phases. We also want to emphasize
that Benton’s definition of compositional compiler correct-
ness does not mean quite the same thing as ours, since it
depends critically on static types, while we treat an untyped
language and focus on simulations between source and tar-
get program behaviors, in a sense hybridizing the approaches
of CompCert and Benton et al.

Ahmed and Blume have studied the problem of fully ab-
stract compilation for functional languages [1} 2l], which im-
plies that equivalent source programs are mapped to equiv-
alent target programs, no matter which contexts malicious
users might place those target programs into. The proof tech-
niques based on different varieties of logical relations have
much in common with those mentioned above for composi-
tional compiler correctness.

Chlipala has verified compilers for non-Turing complete
functional languages [9, [10], using normal logical rela-
tions and thus gaining some compositionality, though of
course the source languages are too simple to expose the
main challenges of compositional correctness. Past non-
compositional mechanized proofs of verified compilers for
functional languages include those by Flatau [15]], Minamide
and Okuma [20], Tian [26l], Dargaye and Leroy [14], and
Chlipala [11]. Myreen and Gordon presented a verified Lisp
interpreter [21].

10. Conclusion

We have presented a new approach to integrating multiple
languages and compilers within a framework for Hoare-style
program proof. A compiler correctness proof should be in-
dependent of details of other compilers it may be used in
concert with, but providing this intuitive property is not triv-
ial. To allow us to verify particular source programs whose
correctness depends on the behavior of functions imple-
mented in other languages, we give our source language a
mixed operational and axiomatic semantics, modeling cross-
language function calls only through the axiomatic features.
To allow different languages to use different encodings of
mutable objects in memory, we build data abstraction into
our semantics and compiler proof. The source-language se-
mantics sees foreign functions mutating mathematical mod-
els of abstract data types, while our compiler theorem for-
malizes the requirements on code in other languages to im-

Compiler Verification Meets Cross-Language Linking via Data Abstraction

plement those types by giving representation invariants in
separation logic.

We plan to build verified compilers for higher-level lan-
guages on top of Cito, taking advantage of this paper’s com-
piler correctness theorem to reason about Cito only in terms
of its operational semantics.

Acknowledgments

We thank Christian J. Bell, Lennart Beringer, and Benjamin
Delaware for their feedback on earlier versions of this pa-
per. This work has been supported in part by NSF grant
CCF-1253229, DARPA under agreement number FA8750-
12-2-0293, and the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research Program,
under Award Number DE-SC0008923. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Govern-
ment.

References

[1] A. Ahmed and M. Blume. Typed closure conversion preserves
observational equivalence. In Proc. ICFP, pages 157-168.
ACM, 2008.

[2] A. Ahmed and M. Blume. An equivalence-preserving CPS
translation via multi-language semantics. In Proc. ICFP,
pages 431-444. ACM, 2011.

[3] A. W. Appel. Verified software toolchain. In Proc. ESOP,
volume 6602 of LNCS, pages 1-17. Springer-Verlag, 2011.

[4] A. W. Appel and D. McAllester. An indexed model of recur-
sive types for foundational proof-carrying code. TOPLAS, 23
(5):657-683, Sept. 2001.

[5] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and
compiler correctness. In Proc. ICFP, pages 97-108. ACM,
2009.

[6] N. Benton and C.-K. Hur. Realizability and compositional
compiler correctness for a polymorphic language. Technical
Report MSR-TR-2010-62, Microsoft Research, 2010.

[7]1 N. Benton and N. Tabareau. Compiling functional types to
relational specifications for low level imperative code. In
Proc. TLDI. ACM, 2009.

[8] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Veri-
fied compilation for shared-memory C. In Proc. ESOP, 2014.

[9] A. Chlipala. A certified type-preserving compiler from
lambda calculus to assembly language. In Proc. PLDI, pages
54-65, 2007.

[10] A. Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. In Proc. ICFP, pages 143-156, 2008.

[11] A. Chlipala. A verified compiler for an impure functional
language. In Proc. POPL, pages 93-106, 2010.

2014/8/8

[12] A. Chlipala. Mostly-automated verification of low-level pro-
grams in computational separation logic. In Proc. PLDI, pages
234-245. ACM, 2011.

[13] A. Chlipala. The Bedrock structured programming system:
Combining generative metaprogramming and Hoare logic in
an extensible program verifier. In Proc. ICFP, pages 391-402.
ACM, 2013.

[14] Z. Dargaye and X. Leroy. Mechanized verification of CPS
transformations. In Proc. LPAR, pages 211-225, 2007.

[15] A. D. Flatau. A Verified Implementation of an Applicative
Language with Dynamic Storage Allocation. PhD thesis,
University of Texas at Austin, Nov. 1992.

[16] C.-K. Hur and D. Dreyer. A Kripke logical relation between
ML and assembly. In Proc. POPL, pages 133-146. ACM,
2011.

[17] X. Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In Proc.
POPL, pages 42-54. ACM, 2006.

[18] X. Leroy and H. Grall. Coinductive big-step operational
semantics. Inf. Comput., 207(2):284-304, Feb. 2009.

[19] G. Malecha, A. Chlipala, and T. Braibant. Compositional
computational reflection. In Proc. ITP, pages 374-389, 2014.

[20] Y. Minamide and K. Okuma. Verifying CPS transformations
in Isabelle/HOL. In Proc. MERLIN, pages 1-8, 2003.

[21] M. O. Myreen and M. J. Gordon. Verified LISP implementa-
tions on ARM, x86 and PowerPC. In Proc. TPHOLs, pages
359-374. Springer-Verlag, 2009.

[22] Z. Ni and Z. Shao.
embedded code pointers.
ACM, 2006.

[23] T. Ramananandro, Z. Shao, S. Weng, and J. Koenig. A compo-
sitional semantics for verified separate compilation and link-
ing. Technical Report YALEU/DCS/TR-1494, Dept. of Com-
puter Science, Yale University, New Haven, CT, January 2014.

Certified assembly programming with
In Proc. POPL, pages 320-333.

[24] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proc. LICS, pages 55-74. IEEE Computer
Society, 2002.

[25] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compo-
sitional CompCert. Technical report, July 2014.

[26] Y. H. Tian. Mechanically verifying correctness of CPS com-
pilation. In Proc. CATS, pages 41-51, 2006.

[27] D. Von Oheimb. Hoare logic for mutual recursion and local
variables. In Foundations of Software Technology and Theo-
retical Computer Science, pages 168—180. Springer, 1999.

A. Notations from Coq Code Examples

Example code in Figures [13] and [T4] uses some notations
that we do not have space to introduce in the main paper.
We hope they are reasonably straightforward to deduce from
context, but we also introduce them more explicitly in this
appendix.

In Figure [13] axiomatic specifications are defined by no-
tation “PRE[I] _ POST[O,R] _”, where PRE is the precondi-
tion part and POST is the postcondition part. I is the input

Compiler Verification Meets Cross-Language Linking via Data Abstraction

values. 0 is the input-output pairs. R is the return value. Con-
straints already expressed in the precondition can be omitted
in the postcondition, as count_spec does, since the opera-
tional semantics requires both to be met.

Cito modules are defined like so:

cmodule NAME {{
[SPEC1]
cfunction NAME1 (ARG1, ARG2, ...) return RET

end with
[SPEC2]
cfunction NAME2 ...

H

cmodule and cfunction stand for “Cito module” and “Cito
function,” respectively. Each function is annotated with an
axiomatic specification at the head. Note, however, that our
compiler is perfectly able to handle Cito code that is not an-
notated with specifications; we only include the annotations
here since we plan to reason about the example with a pro-
gram logic.

In the body of a cfunction, we use binary operators ;;
for statement sequencing and <« for assignment. Program
variable names appear in double quotes, to appease Coq’s
lexer.

Loops are annotated with loop invariants in the form
“INIT(V,H) _ NOW(V’,H’) _”, where the INIT part describe
the state at the beginning of function execution, and the NOW
part describes the state at the start of each loop iteration.
Each part binds a name V for the local variable environment
and H for the Cito heap. A local variable environment is used
as a function, which we call on a variable name to retrieve
its value.

In the loop invariant, notation w — a denotes a singleton
map from address w to ADT object a. Notation H == H1 x
H2 « ... indicates that map H is the union of maps H1,H2,...
and maps H1,H2,... are pairwise disjoint. == is used to dis-
tinguish map/set equivalence (permutation-insensitive) from
normal equality (=).

Notation A!B is used for choosing function B from module
A.

Some notations here are simplified from those that ap-
pear in the source code, to help keep the figures more self-
contained.

B. Step-by-Step Usage Guide

The CountUnique.v file in the source code tarball (of which
Figure [13]is just an excerpt) shows a complete workflow of
using the compiler to compile a program. The workflow is
summarized below:

e Step 1: Write the Cito program. Example: count_body,
main_body, and m in CountUnique.v.

e Step 2: Prove a syntactic well-formedness property of the
program. Example: good in CountUnique.v.

2014/8/8

e Step 3: Declare imported specifications of external func-
tions that the program calls. Example: imports in Count-
Unique.v. Those imports typically include specifications
of ADT methods from the standard library. (The methods
themselves are implemented and verified in a conven-
tional Bedrock module, in platform/cito/examples/Exam-
plelmpl.v.)

e Step 4: Invoke the compiler using link_with_adts.
Example: the line under comment “Invoke the compiler”
in CountUnique.v.

In Step 1, we can write the program using Cito’s syn-
tax or, as CountUnique.v does, using another syntax for
Cito that supports annotation of programs with assertions,
for verification purposes later. (Repeating ourselves a bit
from the main paper, we remind the reader that the compiler
correctness theorem applies to unannotated programs! We
erase annotations before calling the main compiler.) Step
2 corresponds to the static checking phase (syntax check-
ing, type checking, static analysis, etc.) of conventional
languages. Since it is a decidable problem, we will pro-
vide a decider (acting as an automatic checker) in Gallina
(Coq’s typed functional programming language) in the fu-
ture. For now, we call a heuristic proof automation procedure
good_module, implemented in the dynamically typed tactic
language Ltac.

At this point, we already have the fact that the generated
assembly program simulates the source program, without
doing any verification work. However, since we know noth-
ing about the source program, we cannot get any interesting
property of the target program yet. The next portion of the
workflow is for verifying the source program:

e Step 5: Use the compiled module in some Bedrock code.
Example: top in CountUnique.v. A Bedrock module
definition needs declarations of a specification for ev-
ery external function called in the module. Here we can
use the default specifications automatically generated
by the compiler for every source Cito function, such as
main_spec_Bedrock in CountUnique.v. In the Bedrock
code one typically expresses the expected behavior of the
source program via some Bedrock assertions, such as the
line under the call to main.

Step 6: Verify the Bedrock code. Example: top_ok in
CountUnique.v. In the process of verifying the Bedrock
code, the biggest job is to show that it is OK to call the
compiled functions of the source program. This amounts
to proving safe/runsto lemma pairs, such as main_safe
and main_runsto in CountUnique.v. The former shows
that the Cito code avoids the equivalents of “undefined
behavior” in C, while the latter shows that it actually
computes the correct answer.

Our compiler story ends here, from which point it is pos-
sible to use any tools to prove the safe/runsto lemma pairs,

Compiler Verification Meets Cross-Language Linking via Data Abstraction

which are standard source-program verification. For Count-
Unique.v, we designed a simple program logic (in platfor-
m/cito/ProgramLogic2.v and
platform/cito/SemanticFacts4.v) that supports annotation of
source program with preconditions, postconditions, loop in-
variants, and assertions, generates verification conditions
(VC) from those annotations, and guarantees the program
correct when one proves all the VCs. This facility is still
primitive and hard to use. We are working on making this
last (and most substantial) step easier for the user.

If one wants to run the program and see the actual result
on a 64-bit x86 machine, there are some extra steps:

e Step 7: Provide driver files. Example: CountUniqueDriver.y
and CountUniqueAMD64.v in directory platform/cito/ex-
amples. The former defines a small entry-point function
for the program, which needs to set up the stack and heap
before calling the code from CountUnique.v.

e Step 8: Build the executable, following instructions in
file INSTALL.

Note that CountUniqueDriver.v shows an example of a
final, assembly-level theorem about a whole program. The
final theorem safe shows that the program runs safely with-
out out-of-bounds accesses to program or data memory,
when started in the entry-point function.

C. Building Executable Programs

The example programs in the source code (http://people.
csail.mit.edu/wangpeng/oopsla2014.tgz), including
the CountUnique example, can be compiled to assembly
and run, on AMD64 Linux platforms (and possibly oth-
ers that we have not tested yet). Detailed build instructions
and a summary of source-code structure can be found in
<SOURCE>/platform/cito/README.

2014/8/8

http://people.csail.mit.edu/wangpeng/oopsla2014.tgz
http://people.csail.mit.edu/wangpeng/oopsla2014.tgz

	Introduction
	Cito: The Source Language
	The Bedrock Framework
	The Bedrock IL Language
	The XCAP Program Logic
	The Bedrock Structured Programming System

	Compilation Overview
	Compilation of Basic Statements
	Compilation of Function Calls
	Bundling
	Composing with Compiler Correctness
	Related Work
	Conclusion
	Notations from Coq Code Examples
	Step-by-Step Usage Guide
	Building Executable Programs

