

Psychological Development and Reorganization as Coherence Dynamics

Erik Axelkrans*

2025

Abstract

Psychological development is commonly described in terms of stages, traits, or normative endpoints, yet such frameworks often lack generative explanations for nonlinearity, regression, and individual variability. This paper advances a structural and dynamical account of psychological development grounded in coherence-constrained state-space geometry. Rather than presupposing developmental stages or idealized forms, development is modelled as time-extended trajectories shaped by coherence maintenance, path dependence, and evolving integrative constraints.

Within this framework, developmental change emerges from the accumulation of coherence strain and the deformation of admissible configuration space over time. Phase-like patterns, crises, and long-term reorganization arise naturally as dynamical regimes rather than as externally imposed stages. Individuation is reframed as a class of structurally necessitated reorganization processes driven by increasing differentiation pressure and coherence demand, while trauma and healing are analysed as boundary phenomena within coherence geometry.

Agency is interpreted as constraint navigation rather than unconstrained choice: reflective awareness and prior integrative experience can alter developmental trajectories by expanding accessible regions of state space. Together with the preceding and subsequent papers in this series, the present work contributes to a unified structural framework for psychological development that preserves individual variability while providing principled explanatory coherence.

Keywords: psychological development, coherence dynamics, individuation, self-organization, developmental trajectories, agency, constraint navigation, consciousness and development, maturity, enlightenment

*Independent Researcher, Gothenburg, Sweden, erik@axelkrans.se

1 Introduction

Psychological theories of development traditionally emphasize either stage-based progressions, trait maturation, or context-specific adaptation. While these perspectives have provided valuable descriptive and empirical insights, they often presuppose structural elements such as developmental stages, regulatory hierarchies, or normative endpoints without deriving them from more fundamental constraints. As a result, psychological development is frequently described rather than explained, and discontinuities, regressions, and individual variability remain difficult to integrate within a unified theoretical framework (cf. Piaget, 1952; Erikson, 1980).

Building on the structural foundations established in the preceding paper of this series (Axelkrans, 2025a), the present work advances a dynamical account of psychological development grounded in minimal constraints on coherence, temporal persistence, and integration under limited resources. Rather than treating development as movement through predefined stages or toward idealized forms, we conceptualize it as the unfolding of trajectories within a structured psychological state space. Developmental change is thus understood as the cumulative effect of coherence maintenance under evolving constraints, leading to differentiation, stabilization, and, when necessary, structural reorganization. This structural foundation is developed in detail in the preceding paper of this series, where psychological organization is formally characterized in terms of coherence-constrained admissibility within an abstract state space. The present paper extends that static framework by examining its developmental and time-extended consequences.

A central motivation for this approach is the observation that psychological development rarely proceeds linearly. Individuals often revisit similar conflicts, reorganize identity-relevant structures multiple times, or experience periods of apparent regression followed by renewed integration. Such patterns challenge models that assume monotonic progression or discrete developmental stages. Within a coherence-geometric framework, however, these phenomena arise naturally from the geometry of the state space and the systems history of stabilization and constraint accumulation.

The contribution of this paper is to articulate how developmental trajectories emerge from the interaction between structural admissibility and temporal path dependence. We show that developmental phases, crises, and long-term reorganization can be understood as dynamical regimes within coherence geometry, rather than as externally imposed stages or failures of maturation. This perspective preserves individual variability while providing a principled account of recurring developmental patterns.

In addition, we include three clarifying extensions that are often left implicit in developmental discussion: first, brief illustrative examples of life trajectories as coherence-dynamical patterns; second, a structural account of trauma and healing as boundary and re-access phe-

nomena in coherence geometry; and third, a discussion of agency and freedom as constraint-navigation rather than unconstrained choice. These additions are not new assumptions, but clarifications of what follows once development is modeled as state-space dynamics under constraint.

The paper is organized as follows. Section 2 develops the transition from static structural admissibility to time-extended developmental trajectories. Section 3 examines how phase-like patterns of differentiation and integration can emerge without stage-based assumptions. Section 4 reframes individuation as a structural response to increasing coherence demands over time. Section 5 analyzes developmental disturbance, including trauma-related constraints, as threshold phenomena that can precipitate reorganization and healing. Section 6 discusses the implications of this dynamical perspective for psychological theory, agency, and future research.

2 From Structural Admissibility to Developmental Trajectories

The structural framework developed in the foundational paper (Axelkrans, 2025a) characterizes psychological organization in terms of admissible configurations within a coherence-constrained state space. While this account clarifies which configurations are viable at a given moment, it does not yet explain how psychological organization unfolds across time. To address development, structural admissibility must therefore be extended to include temporal accumulation, path dependence, and the deformation of coherence geometry under sustained constraints. Hence, whereas the previous paper establishes the structural conditions for psychological viability at a given moment, the present section addresses how such conditions evolve across time, giving rise to path-dependent developmental trajectories, irreversibility, and structural reorganization.

2.1 Time-Extended Coherence

Coherence is not evaluated solely at isolated moments, but across extended trajectories. A psychological configuration may remain locally viable for a period of time while gradually accumulating strain that reduces its long-term sustainability. Such strain arises when the costs of maintaining coherence through suppression, compartmentalization, or rigid stabilization increase as environmental or internal demands change.

Time-extended coherence introduces a distinction between short-term viability and long-term stability. Configurations that are initially adaptive may become increasingly costly, eventually approaching coherence boundaries that necessitate reorganization. This temporal perspective explains why developmental change often appears delayed or nonlinear: the system remains within an admissible region until accumulated strain renders the existing trajectory

untenable.

A useful way to state this without importing clinical or normative categories is to say: development is often the delayed consequence of successful short-term coherence management (cf. Prigogine, 1980). What looks like stagnation can be metastable viability; what looks like sudden change can be a threshold crossing after long accumulation.

2.2 Path Dependence and Irreversibility

Psychological development is inherently path dependent. Past configurations constrain future possibilities not only through memory and learning, but by reshaping the geometry of admissible configurations itself. Stabilizing structures formed earlier in development alter coherence relations, making some transitions easier and others increasingly inaccessible.

This path dependence introduces irreversibility (cf. Prigogine, 1980; Haken, 1983). Once coherence geometry has been reshaped by sustained stabilization or repeated compensation, returning to earlier configurations requires significant structural cost, if it is possible at all. Developmental change is therefore asymmetric: while new configurations may integrate earlier patterns, they do not simply replace them.

Irreversibility also accounts for individual divergence in developmental trajectories. Even under similar external conditions, differences in early stabilization lead to distinct coherence geometries, producing long-term variability without invoking intrinsic trait differences.

2.3 Deformation of Coherence Geometry

As development proceeds, coherence geometry itself is not static. Repeated exposure to particular constraints such as persistent environmental demands or internal conflicts gradually deforms the state space. Regions that were once viable may shrink or fragment, while new regions of relative coherence may emerge.

This deformation provides a structural explanation for developmental transitions that appear qualitative rather than incremental. Rather than crossing predefined stages, the system undergoes gradual geometric change until a threshold is reached, at which point new trajectories become accessible. Developmental phases thus correspond to regimes of coherence geometry, not to discrete ontological levels.

2.4 Trajectories, Plateaus, and Reorganization

Within a dynamically evolving coherence geometry, developmental trajectories may exhibit extended plateaus of relative stability. Such plateaus correspond to metastable attractor regions that effectively manage coherence under prevailing constraints. They are often experienced subjectively as periods of consolidation or identity stability.

However, as constraints continue to evolve, these attractors may lose viability. When coherence costs exceed tolerable limits, trajectories are forced toward boundary regions, increasing sensitivity to perturbation and facilitating reorganization. Reorganization does not reset development but establishes new attractor structures that incorporate the systems history.

This account reconciles continuity and transformation. Development is continuous in time, yet punctuated by periods of relative stability and abrupt reconfiguration. These patterns arise from the geometry of coherence and its deformation over time, rather than from externally imposed developmental schemas.

3 Development Without Stages

Classical theories of psychological development frequently rely on stage-based models in which individuals are assumed to progress through a fixed sequence of qualitatively distinct phases. While such models offer intuitive structure, they also introduce strong assumptions: that development is monotonic, that stages are universally ordered, and that deviation from the expected sequence reflects delay or dysfunction. Within a coherence-geometric framework, these assumptions are neither required nor generally supported.

3.1 Limitations of Stage-Based Accounts

Stage theories implicitly treat developmental outcomes as predefined targets toward which psychological organization moves. This framing struggles to accommodate regression, looping trajectories, prolonged plateaus, and substantial inter-individual variability. Moreover, stage boundaries are often inferred retrospectively (Piaget, 1952; Erikson, 1980) rather than derived from structural necessity, leading to ambiguity about their causal status.

From a structural perspective, the primary limitation of stage-based accounts is that they conflate descriptive regularities with generative principles. Recurring developmental patterns are treated as evidence for discrete stages, rather than as emergent consequences of underlying constraints acting on temporally extended systems. As a result, the explanatory burden is shifted from structural dynamics to classificatory schemes.

3.2 Phase-Like Regimes in Continuous Development

In contrast, the coherence-geometric framework treats development as continuous movement through a dynamically evolving state space. Continuity, however, does not imply uniformity. As coherence geometry deforms over time, trajectories may pass through regions with distinct stability properties, producing phase-like regimes characterized by relatively stable patterns of organization.

These regimes are not stages in a strict sense. They do not represent fixed levels or endpoints, nor are they traversed in a mandatory order. Instead, they correspond to attractor regions that are locally optimal given the prevailing constraints. Entry into or exit from such regions depends on the systems history and on the cumulative effects of constraint accumulation, rather than on age or normative sequence.

3.3 Recurrence and Spiral Trajectories

An important consequence of this framework is the possibility of recurrent developmental motifs. As coherence geometry evolves, trajectories may revisit structurally similar configurations under altered integrative conditions. Although the configurations resemble earlier ones in form, they differ in their relational embedding and coherence cost.

This pattern gives rise to spiral-like developmental trajectories (cf. Jung, 1953): the system returns to familiar organizational challenges, but at increased levels of differentiation or integration. Such recurrence is often misinterpreted as regression within stage-based models. Structurally, however, it reflects the revisit of coherence constraints under new global conditions rather than a reversal of development.

Spiral trajectories reconcile continuity with qualitative change. They preserve the insight that development can revisit earlier themes while accounting for the irreversibility imposed by path dependence and accumulated structural modification.

3.4 Variability and Non-Normative Paths

By abandoning predefined stages, the coherence-geometric approach naturally accommodates developmental diversity. Differences in early stabilization, environmental coupling, and constraint exposure lead to distinct coherence geometries, which in turn shape available trajectories. There is no single optimal developmental path, only configurations that are more or less viable under specific conditions.

This reframing shifts the evaluative focus away from conformity to developmental norms and toward structural viability. Developmental success is not defined by reaching a particular stage, but by maintaining coherence while allowing for ongoing differentiation and integration. Apparent deviations from normative sequences thus become intelligible as alternative solutions to coherence constraints rather than as failures of maturation.

4 Individuation as a Structural Process

Within the coherence-geometric framework, individuation is not understood as the realization of a predefined ideal or the attainment of a normative endpoint. Instead, it is treated as a structural process arising from increasing demands on coherence, differentiation, and

integration across time. Individuation names a class of trajectories in which psychological organization undergoes qualitative reconfiguration in response to accumulated constraints, while preserving continuity of identity.

4.1 Differentiation Pressure and Coherence Demand

As psychological systems develop, they typically encounter increasing complexity in both internal organization and external engagement. This complexity generates differentiation pressure: the need to accommodate multiple, partially incompatible modes of functioning across contexts and timescales. Differentiation alone, however, is insufficient. Without adequate integration, increasing differentiation amplifies coherence costs and destabilizes organization.

Individuation emerges when existing stabilizing structures can no longer maintain coherence under this combined pressure. Rather than being driven by aspiration or self-realization, individuation is initiated by structural necessity. The system must reorganize to preserve viability, either by increasing integrative capacity or by reconfiguring coherence relations among differentiated subsystems.

4.2 Emergence of Higher-Order Integration

Structural reorganization during individuation is characterized by the emergence of higher-order integrative processes. These processes do not replace earlier structures, but reorganize their relations, allowing previously incompatible elements to coexist within a broader coherence regime.

From a geometric perspective, this corresponds to the creation of new pathways and attractor regions in state space that reduce global coherence costs while maintaining local differentiation. Higher-order integration thus represents an expansion of admissible configurations rather than a simplification of organization.

4.3 Identity Continuity and Transformation

A central challenge in understanding individuation is reconciling identity continuity with qualitative transformation. Within coherence geometry, identity is not tied to a fixed configuration, but to the persistence of viable trajectories across reorganization. Individuation preserves identity not by maintaining specific contents, but by sustaining coherence across structural change.

This perspective explains why individuation is often experienced as both continuity and disruption. Structural reorganization alters coherence relations and accessible configurations, yet the systems history remains embedded in the geometry. Transformation is therefore constrained and shaped by prior organization rather than occurring *ex nihilo*.

4.4 Plural Trajectories and Maturity

Because individuation arises from structural necessity rather than normative ideals, it admits multiple forms and outcomes. Different coherence geometries support different individuation trajectories, each optimizing viability under particular constraints. There is no single endpoint or universal pattern against which individuation can be evaluated.

However, degrees of coherence nevertheless provide a meaningful structural reference. Higher coherence may be treated as an idealized reference point against which developmental trajectories can be comparatively evaluated, without implying that full coherence is either attainable or required.

Within the present framework, maturity can be defined in purely structural terms. Maturity refers to the capacity to maintain psychological coherence across increasing differentiation, temporal depth, and contextual variability, without excessive reliance on rigid boundary formation or defensive restriction of degrees of freedom. It does not denote a particular developmental stage, age, or normative outcome, but a mode of organization characterized by reduced coherence cost under complexity. Maturity, in this sense, is trajectory-dependent and admits multiple forms, rather than constituting a single endpoint of development.

4.5 Illustrative Life Trajectories (Examples)

To make the framework more graspable, it is helpful to sketch a small number of illustrative trajectories. These are not clinical categories and do not claim universality; they serve to show how familiar life patterns can be described structurally.

Trajectory A: Early stabilization and late constraint. An individual achieves coherence early by narrowing degrees of freedom: strong self-control, clear roles, limited affective variability, and stable identity commitments. This regime can remain highly viable for decades. Over time, however, increased complexity (new roles, relational demands, existential challenges) gradually raises coherence costs. Developmental change appears late not because the person lacked growth, but because the existing attractor remained viable until its strain accumulated beyond tolerance, precipitating a midlife reorganization.

Trajectory B: Cycles of consolidation and reorganization. Another individual stabilizes repeatedly in metastable regimes that work for a time but repeatedly approach boundaries as constraints shift. Life is experienced as alternating phases: plateau (consolidation), boundary approach (increasing tension), threshold event (crisis), and new organization (expanded admissibility). The structural hallmark is not instability per se but recurring boundary-driven reconfiguration.

Trajectory C: Early fragmentation and later integration. A third trajectory involves early constraint overload: coherence is preserved by compartmentalization and defensive decoupling. For long periods, the system remains viable by restricting access between regions of

state space. Healing and maturation later involve gradual re-access and re-linking: the emergence of higher-order integration that permits jointly accessible regions without coherence collapse. Development appears late-blooming, but structurally it reflects slow expansion of integrative capacity and reduced boundary sensitivity.

Trajectory D: Continuous self-directed integration. In this trajectory, an individual engages in sustained reflective awareness and actively attends to patterns of coherence strain across the life course. Rather than relying primarily on externally imposed crises or late threshold events, developmental change is initiated through ongoing self-observation, deliberate engagement with integrative challenges, and a willingness to gradually revise stabilizing structures as coherence demands evolve. Over time, this mode of development supports a progressive reduction of coherence cost and an expansion of admissible configurations. Reorganization occurs incrementally rather than episodically, as higher-order integration is cultivated through repeated exposure to manageable complexity. Structurally, this trajectory is characterized by relatively smooth deformation of coherence geometry, fewer abrupt boundary crossings, and increasing tolerance for differentiation without fragmentation. In non-technical terms, this pattern corresponds to what is often described as spiritual development. Within the present framework, however, spirituality is understood not as a belief system or transcendent attainment, but as a structural orientation toward sustained integration and coherence expansion across time.

These trajectories illustrate how the framework accounts for linearity, episodic change, and delayed integration without introducing stage assumptions.

5 Developmental Disturbance, Trauma, and Reorganization

Within a coherence-geometric account, developmental disturbance and crisis are not anomalous events interrupting an otherwise smooth trajectory. They are structurally expectable outcomes of time-extended coherence management under increasing differentiation and integration demands.

5.1 Disturbance and Trauma as Structural Overload

Disturbance arises when established configurations are forced beyond coherence tolerance. It is structurally defined and not inherently pathological.

Trauma can be described as a special case of disturbance in which perturbation overwhelms integrative capacity and induces rapid stabilization, fragmentation, or persistent boundary formation. Its defining feature is not event size but structural consequence: certain regions of state space become costly or inaccessible, while defensive attractors acquire disproportionate stability. This yields long-term deformation of coherence geometry and persistent path

dependence.

5.2 Instability and Threshold Dynamics

Instability occurs near coherence boundaries, where small perturbations can trigger disproportionate reorganization. Breakdown is typically partial and context-dependent.

In trauma-shaped geometries, boundary sensitivity may increase. What would elsewhere be tolerable fluctuation becomes threshold-triggering because the system is already operating near constrained viability.

5.3 Compensatory Dynamics

In response to instability, systems employ compensatory strategies that restrict degrees of freedom to restore short-term coherence. These strategies trade flexibility for stability and are often adaptive in the short term.

Compensation includes intensified boundary maintenance, narrowing of roles, suppression of affective variability, and rigid stabilization around identity commitments. Structurally, these are coherence-preserving moves that increase short-term viability but may raise long-term coherence cost.

5.4 Healing and Reorganization

When compensation is insufficient, global reorganization becomes necessary. New attractor structures emerge that accommodate previously incompatible demands.

Healing can be expressed as the gradual restoration and expansion of admissible coherence: regions previously separated by defensive boundaries become jointly accessible without coherence violation. Importantly, healing does not erase history; it reorganizes it. Prior stabilizations remain embedded in coherence geometry but lose dominance as higher-order integration increases.

6 Implications: Agency, Constraint, and Developmental Possibility

The coherence-geometric account carries implications for how agency and freedom are understood in development.

6.1 Structural Limits of Voluntary Change

At any moment, the systems accessible options are constrained by existing coherence geometry. Past stabilization and accumulated deformation shape what is dynamically reachable. This

explains why insight or intention alone frequently fails to produce durable change: the desired trajectory may not be locally accessible without intermediate reorganization.

6.2 Agency as Constraint Navigation

Within these limits, agency is real but reframed. Agency consists in navigating coherence constraints: selecting environments, relationships, practices, and commitments that reduce coherence cost and enable gradual expansion of admissible configurations. Choice operates within geometry, not outside it.

While psychological development is structurally constrained by existing coherence geometry and path dependence, this does not imply the absence of agency. Within a coherence-geometric framework, agency is understood not as unconstrained choice, but as the capacity to actively influence ones developmental trajectory through reflective engagement with constraints.

Awareness, conceptual understanding, and prior positive experiences of integration can alter the effective landscape of admissible configurations. Individuals who recognize patterns of coherence strain, boundary formation, or recurrent instability may selectively seek conditions relational, environmental, or practical that reduce coherence cost and facilitate gradual reorganization. In this sense, development can become partially self-directed, not by overriding structural limits, but by navigating them more effectively.

Free will, on this account, is neither absolute nor illusory (see Axelkrans, 2025c). It operates within the bounds of coherence geometry, yet can meaningfully shape long-term trajectories by influencing which regions of state space are explored, stabilized, or abandoned. Over time, sustained reflective engagement may expand integrative capacity, thereby enlarging the domain of accessible developmental possibilities and enabling higher-coherence trajectories to become viable.

Freedom, in this sense, is not absolute but gradual. As integrative capacity increases and coherence geometry expands, the domain of meaningful choice enlarges. Development can thus increase freedom over time, but only by structural work: tolerance for complexity, reduction of boundary sensitivity, and sustained integration under constraint.

6.3 External Support and Facilitated Integration

An additional implication of the coherence-geometric perspective concerns the role of external support in developmental reorganization. When an individuals coherence geometry is strongly constrained by boundary sensitivity, defensive stabilization, or accumulated path dependence, access to higher-coherence trajectories may be locally unavailable. In such situations, development may stall not due to lack of motivation or insight, but because the relevant regions of state space are dynamically inaccessible.

External guidance can, under such conditions, function as a structural scaffold rather than as a directive force. A therapist, mentor, or other integrative guide may temporarily provide a reference point of higher coherence, enabling the individual to explore configurations that would otherwise exceed tolerable coherence cost. Structurally, this interaction can be understood as a partial extension of the individual's effective state space, within which reorganization and integration become dynamically accessible.

Importantly, external support does not replace individual development or agency. Its role is facilitative rather than substitutive: by stabilizing exploration near coherence boundaries and reducing the immediate cost of integration, external guidance can support transitions that ultimately must be consolidated within the individual's own coherence geometry.

6.4 Individuation in the Societal Context

An important implication of the present framework concerns the social conditions under which individuation occurs. Most contemporary societies provide extensive structures for education, skill acquisition, and functional adaptation, yet offer remarkably little support for long-term psychological integration. There is typically no shared conceptual map of individuation, no articulated developmental orientation toward increasing coherence, and no institutional encouragement to engage in the structural work required for higher-order integration.

As a consequence, individuation frequently unfolds outside established social frameworks. Individuals who experience increasing coherence strain or integrative pressure often find themselves navigating development without collective guidance, shared language, or cultural validation. From a structural perspective, this absence reflects not a failure of individuals, but a lack of socially available attractor states that support coherence-oriented reorganization.

In this sense, individuation in modern contexts is often structurally solitary. Development toward higher coherence may require moving beyond prevailing social norms rather than being supported by them. The framework presented here therefore suggests that contemporary societies are not developmentally neutral, but developmentally impoverished with respect to psychological integration.

7 Concluding Remarks

This paper has extended the structural foundations established in the preceding work (Axelkranz, 2025a) by articulating a dynamical account of psychological development grounded in coherence geometry. Development, individuation, trauma, healing and crisis are reframed as emergent consequences of time-extended coherence management under constraint, rather than as movement through predefined stages or toward idealized forms. By shifting explanatory focus from classificatory description to structural necessity, the coherence-geometric framework

offers a unified and flexible account of developmental change.

While the present paper has focused on the structural dynamics of development and individuation, broader questions concerning agency, freedom, and the phenomenology of choice within coherence-constrained systems are examined in the final paper of this series (Axelkrans, 2025c), where the implications of constraint navigation are developed more explicitly.

The three-paper series forms part of a broader theoretical program concerned with coherence, development, and individuation as structurally constrained dynamical processes. Together the papers contributes to a unified framework that bridges psychological organization, developmental dynamics, and agency without recourse to stage-based or normative models. A forthcoming monograph will further develop these ideas in an integrated form, situating the coherence-geometric approach within a wider interdisciplinary context and exploring its implications across psychological, philosophical, and ontological domains.

References

Axelkrans, E. (2025a). *Psychological Dynamics as Coherence Geometry*. Preprint, PhilArchive. <https://philpapers.org/rec/AXEPDA>

Axelkrans, E. (2025b). *Psychological Development and Reorganization as Coherence Dynamics*. Preprint, PhilArchive. (Present paper) <https://philpapers.org/rec/AXEPDA-2>

Axelkrans, E. (2025c). *Implications of Coherence Geometry for Psychological Organization*. Philarchive preprint, <https://philarchive.org/rec/AXEIOC>
Manuscript submitted to *Journal of Consciousness Studies*.

Lewin, K. (1936). *Principles of Topological Psychology*. New York: McGraw-Hill.

Prigogine, I. (1980). *From Being to Becoming: Time and Complexity in the Physical Sciences*. San Francisco: W. H. Freeman.

Haken, H. (1983). *Synergetics: An Introduction*. Berlin: Springer.

Piaget, J. (1952). *The Origins of Intelligence in Children*. New York: International Universities Press.

Erikson, E. H. (1980). *Identity and the Life Cycle*. New York: W. W. Norton.

Jung, C. G. (1953). *The Relations between the Ego and the Unconscious*. In *Collected Works of C. G. Jung*, Vol. 7. Princeton, NJ: Princeton University Press.