

PERSPECTIVE • OPEN ACCESS

## Climate-induced redistribution of people is not inevitable

To cite this article: Ingrid Boas *et al* 2025 *Environ. Res. Lett.* **20** 101001

View the [article online](#) for updates and enhancements.

You may also like

- [Beyond redistribution: a framework for reparative just transitions](#)  
Evan Bowness, Mateus Tremembé, Lauriane Tremembé *et al.*
- [Global evidence that cold rocky landforms support icy springs in warming mountains](#)  
Stefano Brighenti, Constance I Millar, Scott Hotaling *et al.*
- [Water scarcity challenges water security: a case for Spain's freshwater ecosystems](#)  
S Sabater, J Barquín, J Blasco *et al.*



**UNITED THROUGH SCIENCE & TECHNOLOGY**

**ECS** The Electrochemical Society  
Advancing solid state & electrochemical science & technology

**248th ECS Meeting**  
Chicago, IL  
October 12-16, 2025  
*Hilton Chicago*

**Science + Technology + YOU!**

**REGISTER NOW**

**Register by September 22 to save \$\$**

This content was downloaded from IP address 81.154.213.28 on 10/09/2025 at 15:34

# ENVIRONMENTAL RESEARCH LETTERS



## OPEN ACCESS

RECEIVED  
3 March 2025

REVISED  
2 July 2025

ACCEPTED FOR PUBLICATION  
21 August 2025

PUBLISHED  
2 September 2025

Original content from  
this work may be used  
under the terms of the  
[Creative Commons  
Attribution 4.0 licence](#).

Any further distribution  
of this work must  
maintain attribution to  
the author(s) and the title  
of the work, journal  
citation and DOI.



## PERSPECTIVE

### Climate-induced redistribution of people is not inevitable

Ingrid Boas<sup>1</sup> , Harald Sterly<sup>2,\*</sup> , Carol Farbotko<sup>3</sup> , Mike Hulme<sup>4</sup> , Hélène Benveniste<sup>5</sup> , Kerilyn D Schewel<sup>6</sup> , Giovanni Bettini<sup>7</sup> , Marion Borderon<sup>2</sup> , Roman Hoffmann<sup>8</sup> , Kees van der Geest<sup>9</sup> , David Durand-Delacre<sup>9</sup> , Jan Selby<sup>10</sup> , David J Wrathall<sup>11</sup> , Andrew Baldwin<sup>12</sup> , Ailín Benítez Cortés<sup>2</sup> , Kaderi N Bukari<sup>13</sup> , Simon Bunchuay-Peth<sup>2</sup> , Simona Capisani<sup>14</sup> , Samuel Nii Ardey Codjoe<sup>15</sup> , Ruben Dahm<sup>16</sup> , Camelia Dewan<sup>17</sup> , Huub Dijstelbloem<sup>18</sup> , Sonja Fransen<sup>19</sup> , François Gemenne<sup>20</sup> , Michele Dalla Fontana<sup>1</sup> , Dorothea Hilhorst<sup>19</sup> , Monica V Iyer<sup>21</sup> , Maggi W H Leung<sup>22</sup> , Bishawjit Mallick<sup>23</sup> , Kasia Paprocki<sup>24</sup> , Meg Parsons<sup>25</sup> , Patrick Sakdapolrak<sup>2</sup> , Alex de Sherbinin<sup>26</sup> , Farhana Sultana<sup>27</sup> , Tearinaki P P Tanielu<sup>28</sup> , Merewalesi Yee<sup>29</sup> and Caroline Zickgraf<sup>20</sup>

<sup>1</sup> Environmental Policy Group, Wageningen University & Research, Wageningen, The Netherlands

<sup>2</sup> Department of Geography and Regional Research, University of Vienna, Vienna, Austria

<sup>3</sup> Griffith University, Nathan Campus, Brisbane, Australia

<sup>4</sup> Department of Geography, University of Cambridge, Cambridge, United Kingdom

<sup>5</sup> Department of Environmental Social Sciences, Stanford University, Stanford, CA, United States of America

<sup>6</sup> Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America

<sup>7</sup> Lancaster University, Lancaster Environment Centre, Lancaster, United Kingdom

<sup>8</sup> International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

<sup>9</sup> Institute for Environment and Human Security, United Nations University, Bonn, Germany

<sup>10</sup> School of Politics and International Studies, University of Leeds, Leeds, United Kingdom

<sup>11</sup> Oregon State University, Corvallis, OR, United States of America

<sup>12</sup> Department of Geography, Durham University, Durham, United Kingdom

<sup>13</sup> Department of Peace Studies, University of Cape Coast, Cape Coast, Ghana

<sup>14</sup> Department of Philosophy, Durham University, Durham, United Kingdom

<sup>15</sup> University of Ghana, Regional Institute for Population Studies, Accra, Ghana

<sup>16</sup> Deltas, Delft, The Netherlands

<sup>17</sup> Department of Cultural Anthropology and Ethnology, Uppsala University, Uppsala, Sweden

<sup>18</sup> Faculty of Humanities, University of Amsterdam, Amsterdam, The Netherlands

<sup>19</sup> Erasmus University Rotterdam, International Institute of Social Studies, The Hague Humanitarian Studies Centre, The Hague, The Netherlands

<sup>20</sup> University of Liège, The Hugo Observatory, Liège, Belgium

<sup>21</sup> Georgia State University, College of Law, Atlanta, GA, United States of America

<sup>22</sup> Department of Human Geography, Planning and International Development Studies, University of Amsterdam, Amsterdam, The Netherlands

<sup>23</sup> Department of Human Geography and Spatial Planning, Utrecht University, Utrecht, The Netherlands

<sup>24</sup> Department of Geography and Environment, The London School of Economics and Political Science, London, United Kingdom

<sup>25</sup> School of Environment, The University of Auckland, Auckland, New Zealand

<sup>26</sup> Columbia University, Center for International Earth Science Information Network (CIESIN), Palisades, NY, United States of America

<sup>27</sup> Department of Geography and the Environment, Syracuse University, Syracuse, NY, United States of America

<sup>28</sup> School of Geography, Earth and Environmental Sciences, University of Melbourne, Melbourne, Australia

<sup>29</sup> Individual Consultant on Climate Change and Mobility, Suva, Fiji

\* Author to whom any correspondence should be addressed.

E-mail: [harald.sterly@univie.ac.at](mailto:harald.sterly@univie.ac.at)

**Keywords:** climate mobility, habitability, *in-situ* adaptation, self-determination, climate justice

The increasingly tangible impacts of climate change are fueling concerns over the future of humanity having to live in a narrowing 'human climate niche' [1]. On this basis, a recent intervention anticipates an 'inevitable global redistribution of people' from the Global South towards habitable spaces of the Global North [2]. Such a view is indicative of a wider trend in policy and academia that is increasingly interested in the study and implications of uninhabitability of certain parts of our planet [3–5].

There is no doubt that global warming has major implications for humanity and ecosystems [6]. At the same time, we argue in this perspective that scientists, social scientists, and other analysts should avoid defining or declaring places 'uninhabitable' without consultation with the communities living there [7]. Habitability cannot be determined through top-down models and projections only [3]. In addition to environmental and climatic factors, habitability is actively shaped by local socio-economic

contexts, human agency, policy choices, and financial support for local adaptation; knowledge of these factors is always crucial [3, 4]. While there can be real declines in habitability—not just owing to climatic factors but also resulting from governance failures, conflicts, or lack of financial support—any premature or insufficiently contextualized declaration of uninhabitability from afar risks discouraging necessary investments in adaptation by governments and donors [8], thereby undermining the right of people to stay and adapt in place [8–11]. For example, government officials in the Marshall Islands have indicated that aid and climate finance institutions already discount the need for, and right to, bold *in situ* adaptation out of fear that their investments will be in vain if parts of the islands are later deemed uninhabitable [8]. In Costa Rica, the government has declared entire villages uninhabitable due to increasing environmental and climate risks, which prevents these communities from accessing public funding for local adaptation. Families have been requested to relocate. However, the majority have remained, exposing them to a combination of escalating climate risks and institutional abandonment [12]. In Fairbourne (United Kingdom), villagers have actively protested against a top-down declaration of future uninhabitability of their place by the government, demanding the right for their village to remain and for them to be included in any decision-making on this matter [13]. These examples demonstrate that *in-situ* adaptation must remain central to science-policy attention, and that communities must always be actively involved in decision-making on habitability.

We provide five recommendations to guide further research about habitability, seeking to overcome potentially harmful generalizations that might guide future policymaking. Each of these recommendations is rooted in commitments to the right to self-determination and to preserving human dignity as the foundation for climate justice. Their focus is on enabling locally-relevant assessments of habitability and subsequent decisions about possible *in-situ* adaptation or relocation that are based on the preferences, needs, and capabilities of local populations. We offer these recommendations as a diverse group of social and environmental science scholars, working in related fields of climate adaptation, mobilities, humanitarianism, international development, covering different geographical regions in the world.

## 1. Do not impose hard limits to habitability

For many climate-exposed and socially marginalized communities, top-down prescriptions of an ideal human climate niche, as well as consequent efforts to determine the changing habitability of their homes, are reminiscent of colonial times, when external science or policy actors determined their futures,

denying them the right to self-determination [5, 7, 10, 14–16]. Throughout history, people have developed and employed various adaptive strategies to enable them to settle in deserts, rainforests, icy climates, and other regions that are outside what is assumed to be an ‘optimal’ climatic zone. If any hard limit to habitability in any place is to be defined, this should be developed only in active exchange between different sciences and local knowledge [3], with final decisions about adaptation and relocation to be led by those currently living in potentially threatened spaces [10].

## 2. Treat projections as possible futures, not the inevitable future

The idea of an ‘inevitable global redistribution of the human population’ [2] is, just as with warnings of ‘future mass climate migration’ [17, 18], based on the false assumption that climate change will forcibly drive hundreds of millions of people across borders or even continents [19]. This assumption in part stems from the fallacy of treating projections or future scenarios as inevitable truths. Good modeling practice always pays careful attention to uncertainties, but the representation and use of model results can easily lose sight of the fact that the future is always hard, if not impossible, to predict and control [20]. Existing projections of future population movements related to climate change vary substantially, although the most alarming ones usually receive the most attention. Some studies suggest a substantial increase in migration flows under climate change; among them are analyses that project migration numbers based solely on exposure to changing climatic factors [1]. By contrast, other studies, which take into account non-climatic as well as climatic drivers of migration, such as unequal access to available resources to move, find that massive international flows of migrants are unlikely [21, 22]. Impactful political and social factors that are well-established in more general migration research—like social network effects, place attachment, the role of borders or conflicts—remain under-represented in climate-related migration forecasting models [23]. This means that models relying solely on climate or environmental factors are liable to over-predict the scale of future migration. Mistaking projections for unavoidable realities can reinforce narratives that large-scale climate-induced populations movements are inevitable, leading to faulty understandings of the processes of habitability and climate mobility, and hence to inappropriate policies.

## 3. Do not assume the Global North is harm-free and homogenous

Claims about mass climate migration, and narratives that imply large-scale redistribution of populations in light of increasing uninhabitability, are often paired with the suggestion that climate change will primarily

worsen conditions in the Global South, while improving large parts of the North [2, 17, 18]. This is misleading: while some areas of the North may experience some short-term benefits from climate change, the broader picture is far more complex. The Global North is also facing significant risks, including more extreme weather events, sea level rise, ecosystem disruption, and permafrost melting [4]. In addition, populations in both the Global North and South are heterogeneous, and there is a high level of inequality in how people both within and between regions are affected by climate impacts. A simplistic two-block world geography obscures the complexity of climate impacts, as well as the multi-scalar inequalities in vulnerability and resilience, which scientists need to consider when making claims about habitability.

#### 4. Enable people's right to stay

Framing population movements as an object of global management [2] is likely to overlook the fact that many climate-impacted communities do not want to move [9]. In fact, there is strong evidence that even in climatically stressed areas, local residents generally want to remain in place [24]. Communities around the globe, ranging from the Pacific to the Sahel, emphasize that much stronger mitigation action and adaptation interventions are needed to secure a future where they already are, and that pre-emptively assuming inevitable relocation is unjust [9, 10]. The notion that climate-induced population redistribution is 'inevitable' risks diverting attention and resources away from much needed investments in *in-situ* adaptation for those who are most vulnerable yet opt for the right to stay [8, 10]. In that context, climate change discussions and decision-making should be centered around self-determination, which includes rights to stay and to move [9, 16, 25].

#### 5. Invest in *in-situ* adaptation and social equity

The IPCC [4] highlights that many present-day restrictions on climate adaptation result from lack of finance, and institutional and policy constraints, which are surmountable if there is political will that translates to inclusive and responsible action. Adaptation *in-situ* is shaped by the capability and aspiration to adapt, which depends on economic and social justice as much as climate justice [9]. Climate change compounds existing social, political, and economic shortfalls: for example, where infrastructure investments, poverty alleviation, or inclusive governance are lagging, *in-situ* adaptation becomes much harder to achieve, and climate hazards likely result in more severe impacts on livelihoods and well-being. Outer atoll communities in the Federated States of Micronesia, for example, face saltwater intrusion,

erosion, and freshwater scarcity. In combination with limited livelihood options, weak institutional support, and low access to basic services, this has led to such severe declines in livelihoods that migration to the main island has increased [26]. In Kutubdia, an island in South-East Bangladesh, sea-level rise and coastal erosion intersect with poverty and inadequate government support, undermining local livelihoods for low-income coastal households. These households are left with limited options—to stay in risky situations or move to equally flood-prone informal settlements in nearby cities [27]. In such cases, the capacity to adapt is severely constrained, underscoring the urgent need to invest in locally anchored adaptation solutions that address underlying vulnerabilities and enable people to build resilience where they are [28]—or where they end up [29]. Enabling justice, therefore, requires recognizing socio-economic inequities, political marginalization, and (neo)colonialism, and addressing the unequal political economic structures shaping people's aspirations and especially their capabilities to adapt [16, 30, 31]. This is necessary to prevent the real possibility that climate change may otherwise worsen the forms of dispossession, and subsequent forced mobility or immobility, that already affect many of those who are politically, socially and economically disadvantaged [32].

#### 6. Climate science to foster the dignity of people

Instead of approaching the future by relying on top-down, global predictions of a narrowly defined human climate niche, assessments of habitability—and, related, of human mobility—must be centered in the lived experiences and priorities of affected populations. While it is challenging to bring local, bottom-up epistemologies together with top-down approaches [4], there are successful examples, including the formulation of determinants for global level planetary health, led by indigenous groups [33], and the integration of local ecological knowledge into Earth System Models [34]. We emphasize that exploring future scenarios of habitability under climate change—including tail-end risks—is a necessary part of anticipatory science. However, such modeling should always be accompanied by explicit and careful reflection on underlying assumptions, as well as on the potential consequences of how findings are interpreted, communicated, and taken up by media and policymakers. Without this, even well-intended scientific work may inadvertently reinforce reductive narratives or support maladaptive responses, undermining climate justice.

#### Data availability statement

No new data were created or analysed in this study.

## ORCID iDs

Ingrid Boas  0000-0001-7842-5883  
Harald Sterly  0000-0001-8819-1638  
Carol Farbotko  0000-0001-8257-2085  
Mike Hulme  0000-0002-1273-7662  
Hélène Benveniste  0000-0003-1627-0219  
Kerilyn D Schewel  0000-0001-6908-137X  
Giovanni Bettini  0000-0002-1191-1913  
Marion Borderon  0000-0002-1449-3665  
Roman Hoffmann  0000-0003-3512-1737  
Kees van der Geest  0000-0002-5013-1004  
David Durand-Delacre  0000-0001-8847-6174  
Jan Selby  0000-0002-7574-9660  
David J Wrathall  0000-0003-1085-6534  
Andrew Baldwin  0000-0001-9960-7344  
Ailín Benítez Cortés  0009-0007-3522-779X  
Kaderi N Bukari  0000-0003-2266-8215  
Simon Bunchuay-Peth  0000-0003-2553-1505  
Simona Capisani  0000-0001-6545-962X  
Samuel Nii Ardey Codjoe  0000-0002-6567-0262  
Ruben Dahm  0000-0002-8667-3358  
Camelia Dewan  0000-0003-3377-2413  
Huub Dijstelbloem  0000-0002-4232-9803  
Sonja Fransen  0000-0002-7709-4418  
François Gemenne  0000-0003-4900-9017  
Michele Dalla Fontana  0000-0002-0700-1554  
Dorothea Hilhorst  0000-0003-2280-6833  
Monica V Iyer  0009-0006-9532-1772  
Maggi W H Leung  0000-0001-8507-5375  
Bishawjit Mallick  0000-0002-9492-1059  
Kasia Paprocki  0000-0001-5202-351X  
Meg Parsons  0000-0001-8721-659X  
Patrick Sakdapolrak  0000-0001-7137-1552  
Alex de Sherbinin  0000-0002-8875-4864  
Farhana Sultana  0000-0003-3050-5053  
Tearinaki P P Tanielu  0009-0008-8627-0090  
Merewalesi Yee  0000-0002-2500-9226  
Caroline Zickgraf  0000-0002-0398-1700

## References

[1] Xu C, Kohler T A, Lenton T M, Svenning J-C and Scheffer M 2020 *PNAS* **117** 11350–5  
[2] Scheffer M, Adger W N, Carpenter S R, Folke C, Lenton T, Vince G, Westley F and Xu C 2024 *One Earth* **7** 1151–4  
[3] Horton R M, de Sherbinin A, Wrathall D and Oppenheimer M 2021 *Science* **372** 1279–83

[4] Sterly H *et al* 2025 *Glob. Environ. Change* **90** 102953  
[5] Fleetwood L 2023 *WIREs Clim. Change* **14** e840  
[6] IPCC 2022 *Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* eds H-O Pörtner *et al* (Cambridge University Press)  
[7] Selby J, Hulme M and Cramer W 2024 *One Earth* **7** 1155–7  
[8] Bordiner A S, Ferguson C E and Ortolano L 2020 *Glob. Environ. Change* **61** 102054  
[9] Iyer M V and Schewel K 2024 *Geo. Immigr. Lj.* **38** 207 (available at: <https://hdl.handle.net/10161/31227>)  
[10] Farbotko C, Boas I, Dahm R, Kitara T, Lusama T and Tanielu T 2023 *Nat. Clim. Change* **13** 750–1  
[11] Paprocki K 2019 *Antipode* **51** 295–315  
[12] IOM 2024 *Estudio de Diagnóstico de la Movilidad por Cambio Climático en la Comunidad de Caldera, Esparza, Puntarenas* (International Organization for Migration, Costa Rica)  
[13] Arnall A and Hilson C 2023 *Polit. Geogr.* **102** 102839  
[14] Pavez M O 2024 *J. Hist. Geogr.* **83** 96–109  
[15] Yumagulova L, Parsons M, Yellow Old Woman-Munro D, Dicken E, Lambert S, Vergustina N, Scott J C, Michell P and Black W 2023 *Clim. Dev.* **1–18**  
[16] Baldwin A 2022 *The Other of Climate Change: Racial Futurism, Migration, Humanism* (Rowman & Littlefield)  
[17] Kline R 2020 *Nat. Clim. Change* **10** 493–4  
[18] Soukharev B 2025 *Global Warming and Mass Migration. Climate Change and Its Impact on Migration to the North* (Springer Nature)  
[19] Boas I *et al* 2019 *Nat. Clim. Change* **9** 901–3  
[20] Obolensky N 2024 *Glob. Perspect.* **5** 117323  
[21] Benveniste H, Oppenheimer M and Fleurbaey M 2022 *Nat. Clim. Change* **12** 634–41  
[22] Burzyński M, Deuster C, Docquier F and De Melo J 2022 *J. Eur. Econ. Assoc.* **20** 1145–97  
[23] Schewel K, Dickerson S, Madson B and Nagle Alverio G 2024 *Front. Clim.* **5** 1189125  
[24] Amakrane K *et al* 2022 African shifts: the africa climate mobility report, addressing climate-forced migration & displacement *Africa Climate Mobility Initiative and Global Centre for Climate Mobility*  
[25] Aleinkoff T A 2024 *Soc. Res.* **91** 421–44  
[26] Krishnapillai M 2018 Enhancing adaptive capacity and climate change resilience of coastal communities in yap *Climate Change Impacts and Adaptation Strategies for Coastal Communities* ed W Leal Filho (Springer) pp 87–118  
[27] Boas I 2020 *J. Ethn. Migr. Stud.* **46** 1330–47  
[28] Thalheimer L *et al* 2025 *Nat. Commun.* **16** 2581  
[29] Stilz A 2024 *Am. Political Sci. Rev.* **119** 1–15  
[30] Sultana F 2024 *Confronting Climate Coloniality: Decolonizing Pathways for Climate Justice* (Routledge)  
[31] Dewan C 2021 *Misreading the Bengal Delta: Climate Change, Development, and Livelihoods in Coastal Bangladesh* (University of Washington Press)  
[32] Rice J, Long J and Levenda A 2022 *Environ. Plan. E* **5** 625–45  
[33] Redvers N *et al* 2022 *Lancet Planet. Health* **6** e156–63  
[34] Emard K A *et al* 2024 *Ecol. Soc.* **29** 43