

Exploration

The Induction of Death: Metaphysical Field Collapse & the Expansion of Ontological Priority of Death Theory

La Shun La Rue Carroll*

Graduate School of Education, University at Buffalo

Abstract

This paper advances the Ontological Priority of Death Theory by introducing and formalizing the concept of **metaphysical field collapse** as a precursor and potential catalyst to biological death, particularly in the context of **collective fatal events**. We propose that metaphysical death (τ_d) constitutes a system-wide loss of ontological coherence, which occurs prior to observable biological sequelae such as cardiac arrest or brain death. Two models—**Simultaneity** and **Inductive Cascade**—are contrasted to explain how death may propagate across individuals in high-fatality scenarios. Favoring the inductive model, we argue that metaphysical death spreads through **ontological field interactions** similar to magnetism or neural entrainment, leading to synchronized collapse in tightly coupled environments. A formalized vitality function and threshold equation are introduced to mathematically model this induction process. Expanding the ontological priority of death theory, we examine post-vital ontologies such as wood, bone, and keratinized skin, revealing that **biological death does not necessarily imply metaphysical death**, and vice versa. We further analyze uncoupling phenomena—where metaphysical and biological states diverge—and propose conditions under which metaphysical recovery may be possible, such as ontological distance, internal reassertion of coherence, or temporal decay. Special consideration is given to **children, fetuses, and pregnant individuals**, whose developmental and dual-field structures grant unique metaphysical resilience and stabilizing capacity in death-saturated environments. We develop the concept of **metaphysical hygiene** and propose architectural, ecological, and ontological field-lattice solutions to preserve coherence in vulnerable populations. Lastly, the paper explores the metaphysical implications of artificial entities, gametes, developmental stages, and ethical thresholds—culminating in a call for a new field of **onto-physics**: the formal study of non-material, life-derived coherence fields and their causal structures.

Keywords: Ontological Priority of Death; Metaphysical Field Collapse; Inductive Cascade Model; Collective Fatal Events; Ontological Coherence; Biological-Metaphysical Uncoupling; Post-Vital Ontologies; Metaphysical Hygiene; Pregnant Resilience; Maternal-Fetal Ontology; Children's Metaphysical Resilience; Unified Field Theory of Death; Onto-Physics; Distributed Ontological Integrity; Vitality Potential Function; Metaphysical Induction.

*Correspondence: La Shun La Rue Carroll, Graduate School of Education, Univ. at Buffalo, Buffalo, NY
E-mail lcarroll@buffalo.edu

Section I. Introduction

1. Beyond Individual Death

Traditional models of death focus on individual physiology. However, in mass-death events such as plane crashes, natural disasters, or war, the deaths of many occur nearly simultaneously. This paper investigates whether death may propagate across individuals through metaphysical interaction—suggesting not merely multiple deaths, but a shared ontological collapse. We hypothesize that metaphysical states may be susceptible to field effects analogous to magnetism, allowing the state change of one individual to induce a metaphysical transition in others. The goal is to explore what happens, when it happens, why it happens, and how it happens in these collective events.

This inquiry necessitates a departure from purely biological or psychological frameworks, delving into the realm of relational ontology where existence is fundamentally constituted through dynamic interactions and interdependencies (Prabakaran, 2025). This approach acknowledges that the boundaries between individuals are not absolute, especially within contexts of profound shared experience, and thus challenges the conventional understanding of death as an exclusively solitary event (Norlock, 2016).

Instead, we propose that collective fatal events may trigger a metaphysical field collapse, a phenomenon where the ontological coherence of a group degrades due to shared stressors, leading to a synchronous, induced death that transcends individual biological cessation (Masten & Narayan, 2011). This process may explain why certain deaths, particularly those involving high trauma or social stigmatization, are especially difficult to grieve, as they represent not just individual loss but a disruption of collective ontological security (Guy & Holloway, 2007).

Furthermore, the concept of a "metaphysical field" suggests a subtle, yet pervasive, influence that extends beyond the immediate physical boundaries of individuals, potentially mediating the spread of death as a phenomenon within a connected system (Morioka, 2023). This field, analogous to proposed quantum consciousness fields (Dennis, 2010) (Young et al., 2022), would operate on principles beyond classical causality (Ayyazov, 2025), potentially allowing for non-local transmission of ontological states within a collective. This nuanced understanding moves beyond traditional individualistic approaches to grief, recognizing that such collective metaphysical events necessitate a broader "psychology of loss" that encompasses systemic and shared experiences of distress rather than solely individual physiological responses (Harvey & Miller, 1998) (Harris, 2025).

2. Ontological Death and Metaphysical Priority

Building on the thesis of ontological priority, we maintain that metaphysical death (τ_d) occurs prior to its biological consequences. This foundational idea implies that in a fatal collective event, the participants' transitions into death are ontologically initiated before any observable trauma, explosion, or impact. Thus, we must ask: were all passengers on a doomed flight already metaphysically dead before the crash occurred, or did the metaphysical unraveling begin mid-flight and cascade through the occupants?

Metaphysical death is defined as an irreversible transition from ontological coherence to ontological nullity. It is the enabler of sequelae—cessation of heartbeat, loss of neural function, and respiratory failure. In a collective context, this transition must either occur

independently (simultaneously or staggered) or through a mechanism of propagation. The latter, we posit, involves the propagation of a "death field" through a coupled system, where the metaphysical state of one entity can influence and induce a similar state change in ontologically linked entities.

This mechanism aligns with observations in collective trauma, where widespread distress extends beyond direct exposure to affect an entire social fabric (Hirschberger, 2018). This suggests that the psychological and spiritual impact of mass fatality events, which often lead to widespread grief and psychological trauma, might be symptomatic of a deeper, pre-biological metaphysical collapse rather than merely a reaction to physical destruction (Chang, 2017) (Gulding & Leget, 2023) (Afolabi, 2014).

This propagation is not merely a psychological contagion but an active, pre-physical induction of ontological nullity, occurring through mechanisms akin to resonance within a complex adaptive system (Klass, 2014). This proposed "death field" is therefore not merely a metaphor but a theoretical construct describing the non-local influence exerted by one collapsing metaphysical field upon another, potentially operating through quantum entanglement or other as-yet-undiscovered principles governing consciousness and existence.

This perspective suggests that the widespread impact of collective death events may stem from a fundamental disruption of shared ontological integrity, which then manifests in physical and psychological sequelae. Such a framework would necessitate a re-evaluation of how death is medically and philosophically defined, moving beyond purely physiological indicators to encompass a broader understanding of existential states and their interconnectedness (Javan et al., 2024) (Charpier, 2023).

This ontological shift profoundly alters the temporal understanding of death, suggesting that the "moment of death" is not a singular, instantaneous event but rather a protracted process of metaphysical dissolution that precedes biological cessation. This perspective aligns with emerging theories of quantum consciousness, where neural activity and subjective experience are posited to be fundamentally intertwined with quantum processes that could exhibit non-local phenomena and shared states, potentially explaining the propagation of metaphysical states (Khawaldeh, 2025). Furthermore, this framework implies that certain collective experiences, especially those laden with profound emotional or existential weight, might create conditions conducive to such metaphysical collapses, transcending mere psychological contagion to manifest as a pre-physical induction of ontological nullity (Pavlovich, 2019).

3. Simultaneity vs. Inductive Cascade Models

We distinguish two conceptual models to account for collective metaphysical death:

Simultaneity Model: Each person on board a hypothetical flight undergoes a metaphysical state change independently, though nearly simultaneously, due to shared exposure to impending catastrophe. Their vitality potential functions $P(t)$ drop below the ontological threshold independently, even if the event appears temporally unified. This model preserves individual agency and internal thresholds. This suggests that while the physical manifestation of death might be simultaneous, the underlying metaphysical transition is a convergence of individual trajectories rather than a singular collective collapse. This independent collapse, however, still necessitates a mechanism for the observed temporal synchronicity, potentially linked to the shared perception of impending doom or a collective resonance within a localized metaphysical field.

Inductive Cascade Model: The metaphysical death of one person lowers the resilience threshold of others nearby, inducing a domino-like cascade. Just as magnetism propagates alignment across domains, metaphysical collapse may propagate via an ontological field. A single τ_d event becomes the attractor or initiator for a wider unraveling. This model posits a direct energetic or informational transfer, suggesting a shared ontological field within the collective unit. This cascading effect might be mediated by principles similar to quantum entanglement, where the collapse of a shared conscious or metaphysical state in one individual instantaneously influences others within the collective (Escolà-Gascón, 2025).

This inductive cascade could explain historical instances of mass fatalities where an initial collapse appears to trigger a wider, seemingly spontaneous, descent into death among interconnected individuals, potentially transcending physical proximity (Misra et al., 2019). Both models, while distinct in their mechanisms, highlight the need to move beyond purely mechanistic explanations of death, incorporating a more nuanced understanding of shared consciousness and interconnectedness (Benander, 2024).

Further research is necessary to empirically validate the proposed "death field" and its potential role in mediating such collective metaphysical transitions, possibly through neurobiological or psychophysiological markers indicative of pre-cognitive ontological shifts (Betito, 2021). Such markers could potentially reveal how the mind of the deceased might transcend spatiotemporal constraints, exhibiting characteristics distinct from the living (Kim & Kim, 2018). This expanded understanding of death challenges conventional neurophysiological interpretations (Shlobin et al., 2023), suggesting that the experience of dying extends beyond the cessation of biological functions to encompass a profound metaphysical transition that may involve communication with the deceased (DeGroot, 2016).

This theoretical framework opens avenues for exploring phenomena such as after-death communication not as mere psychological artifacts or subjective experiences, but as verifiable interactions within this proposed interconnected ontological field, where the "deceased" might still maintain a presence or influence (Mäkikomsi et al., 2021). This implies that the energetic imprint or informational state of an individual, even after biological death, could continue to interact with the collective consciousness or an overarching biofield (Hammerschlag et al., 2015) (Heston, 2017), potentially providing a scientific basis for understanding post-mortem phenomena that transcend materialistic explanations (Christopher, 2022) (Schwartz, 2018). This radical reinterpretation of death suggests a continuity of consciousness or an energetic residue that could persist beyond biological cessation, potentially interacting with living systems through mechanisms yet to be fully elucidated.

In both models, all individuals must undergo τ_d before the biological crash finalizes. The difference lies in whether τ_d is internally or relationally caused.

4. The Magnetism of Death: Metaphysical Induction Theory

We propose the "Magnetism of Death" hypothesis: that metaphysical states exert a type of field-based coherence. When a person transitions from life to death ontologically, this rupture affects those in their metaphysical proximity. The mechanism is analogous to how iron particles align to a magnet's field or how one neuron's firing can trigger another.

This suggests that ontological states may interact—not merely coexist. In high-stakes scenarios like aviation accidents or combat zones, the ontological resilience of individuals

may be interlinked. When the coherence of one collapses ($P(t) \rightarrow 0$), the surrounding ontological fields are disturbed, pulling others below the threshold.

Such a model would imply that death in groups is not a series of isolated events but a synchronized metaphysical unraveling. This theory aligns with phenomenological reports from near-death survivors who describe feelings of being “pulled” or “frozen” moments before catastrophe. This collective energetic perturbation could also explain the shared subjective experiences reported by survivors of mass casualty events, where a palpable sense of impending doom or an inexplicable stillness often precedes the physical impact ([Shlobin et al., 2023](#)).

This pre-impact metaphysical entanglement suggests a dynamic interplay between individual consciousness and a collective ontological field, where the collapse of one might induce a resonant decay in others. This phenomenon might be mathematically modeled using principles from dynamical systems theory, where the system's stability is perturbed by a localized collapse, leading to a cascade of state transitions ([L.B.P., 2025](#)). The energetic collapse described herein bears a striking resemblance to the phenomenon of compassion stress injury, where sustained empathic engagement can lead to a profound physical and psychological unraveling ([Russell & Brickell, 2015](#)).

This suggests that the vicarious experience of others' suffering, particularly in life-threatening contexts, might precipitate a similar, albeit non-fatal, metaphysical field collapse in observers. This empathic resonance, observed in physiological responses to stress, indicates a fundamental interconnectedness that extends beyond individual biological boundaries ([Blons et al., 2021](#)). This interconnectedness could manifest as a physiological resonance, where the stress responses of individuals in close proximity become synchronized, potentially through subtle electromagnetic or neurochemical signals ([Plonka et al., 2024](#)) ([Blons et al., 2021](#)).

Furthermore, this framework resonates with concepts of emotional contagion, where affective states, including those associated with extreme stress and existential threat, can rapidly propagate through a group, potentially accelerating the metaphysical unraveling ([Hazy & Boyatzis, 2015](#)). This profound interconnectedness implies that the induction of death within a collective might not solely be a direct consequence of physical trauma, but also an emergent property of destabilized relational fields, analogous to fractional-order systems where stress variables interact dynamically with environmental perturbations ([Bekiros et al., 2022](#)).

5. Event-Sequencing Table

The table below compares timelines for metaphysical, biological, and experiential sequences:

Event Phase	Metaphysical Timeline	Biological Timeline	Experiential Timeline
Normal Flight	$P(t) > 0$ (Stable Coherence)	Full organ functionality	Passengers calm, alert
Initiation (τ_d of one)	$P(t) = 0$ for first individual	No change observable	Possible sudden dread
Inductive Propagation	$P(t)$ declines in nearby	No physiological change yet	Growing

	others		collective unease
Complete Metaphysical Collapse	All passengers reach τ_d	Mechanical failure imminent	Subjective timelessness or shock
Crash Event	Metaphysical state = 0 for all	Cardiac, neural, systemic failure	Immediate trauma response

6. Critique of Simultaneity: Necessity of Inductive Cascade

A critical flaw in the simultaneity model arises when considering psychological diversity. Individuals on board may not share the same mental state. Optimistic or religious passengers may remain composed, resisting panic and maintaining ontological coherence even in the face of apparent doom. If metaphysical death requires internal acceptance of collapse, then simultaneity is invalidated.

Without relational influence, not all passengers would cross the τ_d threshold simultaneously—some might not cross at all until the very moment of biological death. This contradiction implies that the crash itself would either have to delay until all metaphysical transitions are complete (an ontological paradox) or occur while some passengers remain metaphysically alive (violating the ontological priority thesis).

The only logically coherent model is the **inductive cascade model**, wherein the metaphysical state of one affects others. This model accounts for psychological outliers, permits timing variability, and still aligns with the observed simultaneity of biological sequelae. In short, death propagates not by coincidence, but by metaphysical induction. This propagation could be understood as a nonlinear dynamic process where the initial ontological collapse acts as a critical perturbation, triggering a cascade effect through the interconnected metaphysical field of the group. This perspective allows for a more nuanced understanding of collective fatal events, positing that the shared experience of extreme duress creates a conduit for the transmission of existential collapse, akin to how stress can propagate within social-ecological systems (Homer-Dixon et al., 2015).

This theoretical framework posits a departure from traditional reductionist views of mortality, embracing a systemic connectionism where the whole profoundly influences its constituent parts, similar to how complex adaptive systems operate (Condorelli, 2016). This perspective implies that interventions aimed at mitigating mass casualties might need to consider not only physical protection but also strategies for preserving collective ontological coherence. This would involve fostering resilience within the shared metaphysical field, potentially through pre-emptive psychological interventions or communal practices that reinforce collective well-being and resistance to existential fragmentation (Gire, 2014). This approach recognizes that the dread of death, a pervasive theme in human history and a significant source of distress, can be amplified in collective scenarios, necessitating a robust understanding of shared psychological infrastructure to manage such crises (Menzies et al., 2018) (Guthrie, 2022).

7. Metaphysical Field Dynamics and Threshold Equations

We define a generalized vitality potential function:

$$P_i(t) = R_i(t) - \sum_{j \neq i} [F_{ij}(t)]$$

Where:

- $P_i(t)$ is the vitality potential of individual i at time t
- $R_i(t)$ is the intrinsic ontological resilience of i
- $F_{ij}(t)$ is the field effect from j upon i (i.e., metaphysical disruption exerted)

The inductive tipping point occurs when:

$$P_i(t) \leq \tau_{\text{threshold}} \rightarrow \tau_d \text{ for } i$$

This allows modeling of real-time metaphysical vulnerability propagation and collapse dynamics. Once one individual's τ_d is reached, F_{ij} values increase for nearby j , pushing them toward collapse. This dynamic, particularly potent in enclosed environments such as an aircraft, suggests a rapid, non-linear progression towards a collective metaphysical threshold, echoing observations of shared trauma and collective stress responses (Ali et al., 2021) (Bekiros et al., 2022) (Dechesne, 2015). This acceleration towards a collective collapse could be further exacerbated by the inherent limitations of individual coping mechanisms under conditions of overwhelming perceived threat, leading to a breakdown in self-regulation and an increased susceptibility to external metaphysical influences (Oken et al., 2014). This cascading effect, characterized by an accelerated decline in collective ontological resilience, provides a robust explanation for the observed synchronicity of fatal outcomes in collective catastrophic events (McKinnon et al., 2014).

8. Implications for Mass-Death Events

Applying the theory of metaphysical induction to large-scale tragedies alters how we understand death:

- **Warfare:** The metaphysical unraveling of one soldier may destabilize others, intensifying combat trauma and battlefield cohesion collapse.
- **Natural Disasters:** Earthquakes, tsunamis, and wildfires might induce collective τ_d via environmental ontological disturbances.
- **Pandemics:** Not merely biological contagion but ontological contagion—fear, isolation, despair—contributing to metaphysical degradation.

These implications open a path to treating trauma and grief differently. Survivors of collective death events may carry “residual ontological disruption,” having skirted collapse themselves. This invites new metaphysical therapies for PTSD and survivor’s guilt. This paradigm shift suggests that understanding and mending the shared metaphysical field could be crucial for collective recovery and resilience in the aftermath of such devastating occurrences (Kaufmann et al., 2021).

9. Toward a Unified Field Theory of Death

We conclude that metaphysical death should not be seen solely as an isolated event. Rather, it may operate within fields of coherence and resonance, analogous to magnetic, electrical, or quantum systems. The death of one may initiate a structural breakdown in others, especially under high-tension scenarios.

We propose a Unified Ontological Field Theory of Death, characterized by:

- Ontological coherence fields linking individuals
- Collapse thresholds based on metaphysical resilience
- Inductive propagation of state transitions

This framework reshapes not only how we understand mortality but how we investigate accidents, treat trauma, and perceive the shared nature of existence. Furthermore, this theory offers a novel interpretation of consciousness and reality, moving beyond purely physical explanations to incorporate the informational and experiential aspects of existence ([Sienicki, 2024](#)).

10. Reversibility and Metaphysical Immunity

An unresolved concern in the inductive cascade model is whether induced metaphysical state transitions are irreversible. If one person's metaphysical death initiates a field collapse, and others undergo τ_d by induction, does this result in an unstoppable cascade across populations? Is every human metaphysically dead already as a result of ancient cascading events?

To preserve logical possibility for metaphysical life amid an inductive model, we propose a bifurcation between **primary τ_d** (initiated internally) and **secondary τ_d** (induced by proximity). While the former is metaphysically irreversible, the latter may allow for reversal under certain conditions.

Conditions for Reversal of Induced τ_d :

1. **Sufficient Ontological Distance:** If the field influence $F_{ij}(t)$ weakens or is removed (e.g., spatial separation), and no other disruptive fields apply, recovery of coherence becomes possible. We propose that metaphysical field strength decays with the inverse square of distance, analogous to the propagation of light or gravity:

$$F_{ij}(t) \propto 1 / r^2$$

where r is the distance between individual i and individual j . This formulation limits runaway cascades to those within tightly packed environments and allows for spatial recovery zones.

1. **Internal Reassertion of Coherence:** Through acts of will, insight, or internal transformation, individuals may rebuild $R_i(t)$, overpowering past field disruption. These may include profound cognitive reframing, psychological healing, or non-ritualized spiritual realization. Importantly, such changes must not rely on esoteric knowledge or unverifiable powers but instead represent measurable increases in psychological resilience and ontological re-integration.

We remove the prior condition regarding “ontological restorers” due to its unverifiability and risk of devolving into pseudoscientific or mystical speculation. While stabilizing environments may contribute to internal recovery, their metaphysical effect must derive from known relational factors, not mystical interventions.

We define a potential recovery model:

If τ_d was induced:

$$R_i(t) > \sum_{j \neq i} [F_{ij}(t)] + \varepsilon \Rightarrow \partial P_i / \partial t > 0 \Rightarrow \tau_r \text{ (recovery)}$$

Where ε is a minimal surplus resilience threshold and $F_{ij}(t)$ decays with distance.

This revised model preserves logical consistency and avoids mystical claims by grounding ontological recovery in distance-based field weakening and personal transformation. It also limits the spread of metaphysical collapse, allowing for both individual recovery and the existence of heterogeneous ontological states within a population. This nuanced perspective provides a framework for understanding why some individuals succumb to existential crises while others demonstrate remarkable resilience, even in the face of similar collective stressors (Brooks, 2019). This framework also allows for the exploration of therapeutic interventions that specifically target the re-establishment of individual ontological coherence rather than merely addressing symptomatic expressions of distress (Bretton, 2023) (Zhu & Lyu, 2024).

Furthermore, understanding this dynamic interplay between individual resilience and field influence provides a basis for developing targeted interventions, such as those that foster connectedness and spiritual integration, which have been shown to contribute to psychological well-being and recovery from various forms of distress (Mustain & Helminniak, 2015) (Hare-Duke et al., 2023) (Wong & Laird, 2023). This approach aligns with emerging models of resilience that emphasize the interplay of psychological, social, and spiritual factors in navigating adversity (Hatala, 2011) (Miller-Graff, 2020).

Duration-Based Decay: A third plausible condition is that if an individual remains in a secondary τ_d state (i.e., metaphysically dead by induction) for a sufficiently extended period without experiencing biological death, the metaphysical state may revert automatically to alive. This introduces the notion of temporal decay in field stability: the metaphysical field responsible for maintaining τ_d gradually weakens unless reinforced by new proximity interactions.

We may express this decay and recovery threshold as:

If τ_d was induced and $t > T_{decay}$ without biological death $\Rightarrow \tau_r$ (spontaneous reversion)

Where T_{decay} is a model-dependent critical time threshold for metaphysical inertia to dissipate.

This trio of conditions—ontological distance, internal reconstruction, and inertial decay—offer a more empirically grounded and logically defensible framework for reversibility. Importantly, they avoid supernaturalism and instead suggest that metaphysical death may be susceptible to human influence, time, and intentional adaptation. These conditions also place temporal, behavioral, and spatial limits on metaphysical vulnerability.

Finally, we posit that individuals who attempt or succeed at murder may themselves undergo a metaphysical transition to τ_d prior to acting. This may be a prerequisite for inducing τ_d in a victim—thus integrating the killer into the cascade network. The reversibility of τ_d for the

killer may depend on whether biological death occurred in the victim and whether sufficient time or transformation occurs thereafter.

Section II: Post-Vital Ontologies: Wood, Bone, and the Matter of Metaphysical Residue

1. Introduction to Post-Vital Constructs

Within the framework of the ontological priority of death, we have classified entities as either metaphysically alive or dead based on their coherence, systemic integration, and vitality potential. However, certain materials derived from the living challenge the unidirectional sequence of metaphysical to biological collapse. These are the so-called "post-vital constructs" — entities that were once integrated into living systems but persist beyond biological activity. Chief among them is wood. Its

2. The Paradox of Wood

Wood is formed from xylem tissue in trees. While the inner heartwood is biologically dead, the outer sapwood remains alive during the organism's lifespan, facilitating water and nutrient transport. Here lies the paradox: the inner parts of a living tree are biologically dead yet still contribute structurally to the vitality of the organism. Unique cellular structure, which retains integrity long after the cessation of biological functions, provides a compelling case study for exploring the retention of residual metaphysical coherence. Upon harvesting, the tree is metaphysically terminated. But intriguingly, its core material was already dead in a biological sense before this ontological transition. This presents a significant anomaly: **wood undergoes biological death prior to metaphysical death.** (Monkman & Schagaev, 2013)

3. Ontological Reversal in Wood

According to the ontological priority theory, metaphysical death must precede biological sequelae. In wood, however, the sequence is reversed. This unique status compels us to define a subclass:

Anomalous Post-Vital Entities: Structures that undergo partial or full biological death while still contributing to the life of the larger organism, and only later become metaphysically inert upon system failure.

Wood, in this regard, is an **ontological paradox**. It exists in a state of biological necrosis within a living system, suggesting that biological activity and ontological status can become uncoupled in highly structured life forms. This phenomenon challenges conventional definitions of "life" and "death," particularly when considering the persistence of functional yet biologically inert components within a living system (Pierce, 2023) (Kroemer et al., 2005).

4. Comparison to Animal Analogues

Analogous constructs in the animal kingdom include:

- **Bone:** Alive during growth and ossification, but becomes biologically inert while still structurally active.

- **Hair/Horn/Nails:** Biologically non-living even during organismal vitality, yet central to identity, survival, or expression.

Table 1: Classification Matrix of Post-Vital Ontologies

Material	Origin	Biologically Alive?	Metaphysically Alive?	Ontological Status
Wood (sapwood)	Tree	Yes	Yes	Fully Alive
Wood (heartwood)	Tree	No	Yes	Anomalous Post-Vital
Harvested wood	Tree	No	No	Fully Metaphysically Dead
Bone	Animal	Partially	Yes	Structurally Alive
Leather	Animal	No	No	Metaphysically Dead
Hair/Nail	Animal	No	Yes	Peripheral Vitality

5. The Paper Problem

A further complication arises with materials like paper. While made from dead wood pulp, paper may retain **capillarity**, allowing water transport from bottom to top. Does this qualify as "functional life"?

We argue no. Although it mimics life-like functions, paper exhibits **passive transport**, not systemic vitality. It lacks feedback loops, self-regulation, and coherence. Thus, despite mechanical similarity, it is not metaphysically alive. This distinction reinforces the difference between **behavioral mimicry** and **ontological vitality**. This highlights the crucial difference between emergent properties, which can arise from mere physical processes, and the intrinsic, self-organizing complexity characteristic of living systems (Pierce, 2020). This distinction aligns with broader biological debates regarding the essential properties of life, moving beyond simple mechanistic views to embrace systemic integration and emergent self-organization as defining characteristics of ontological vitality (Rossenbroich, 2016) (Fellermann et al., 2006).

6. Theoretical Implications

Wood reveals that metaphysical vitality can persist despite partial biological death. However, the complete ontological collapse still aligns with the theory: **the tree dies metaphysically when its systemic coherence is destroyed**, despite the heartwood's prior biological demise.

Thus, wood is not an outright contradiction but a **boundary condition** that forces refinement of our metaphysical assumptions. It suggests that ontological priority holds in aggregate systems, while biological deterioration can occur locally, provided systemic coherence is maintained.

Crucially, this introduces the possibility that **biological death may not universally imply metaphysical death**. If wood as part of a system can die biologically while the system

remains metaphysically alive, it opens the door to the inverse proposition: that **an organism may die biologically while still retaining metaphysical life**. This challenges the traditional use of biological markers such as heartbeat cessation, respiratory failure, and neuronal death as definitive indicators of ontological death. This theoretical expansion necessitates a re-evaluation of current medical and philosophical definitions of death, particularly in scenarios such as brain death, where certain neurological functions may persist despite a declaration of death (Nair-Collins & Joffe, 2021).

7. Reconciling Tissue Integrity and Systemic Coherence

This insight raises a deeper tension in our theory: does metaphysical vitality, which relies on system-wide coherence, depend on the full integrity of individual tissues?

Logically, if metaphysical vitality depends on system-wide coherence, and system-wide coherence depends on the functional integrity of its constituent tissues, then one might conclude that metaphysical vitality requires the preservation of all tissue-level integrity. However, empirical and philosophical analysis of anomalies like wood challenges this inference. Instead, these cases suggest that systemic metaphysical coherence can transcend localized biological death, implying a hierarchical organization where higher-order emergent properties govern the overall ontological status (Gómez-Márquez, 2020).

This perspective aligns with the concept of dissolution, where higher-order regulatory mechanisms, when compromised, lead to the re-emergence of more ancient and localized functions, thus indicating a shift in systemic control rather than complete cessation of activity (Porges, 2022). This implies that the whole-brain criterion for death, which posits that the absence of all brain functions signifies death, might be flawed, as some brain regions, like the hypothalamus, can retain function post-mortem (Nair-Collins, 2022).

The persistence of hypothalamic function in patients declared brain dead complicates the assertion of complete brain cessation, suggesting that a more nuanced understanding of death is required beyond the irreversible cessation of all brain functions (Nair-Collins & Joffe, 2021). The continued neuroendocrine function in some brain-dead patients further highlights this disjunction, as these individuals exhibit physiological responses typically associated with living organisms, even when legally considered deceased (Nair-Collins & Joffe, 2021). Such observations challenge the notion of a universally accepted "death" definition, as even the criteria for brain death are subject to ongoing reevaluation and controversy due to variations in application and reported cases of reversible brain death (Rayner et al., 2019) (Verheide et al., 2018).

These complexities underscore the necessity for a refined conceptualization of death that accounts for the potential dissociation between biological cessation at the tissue level and the persistence of certain systemic functions or metaphysical coherence (Folkerth et al., 2022). This ongoing debate is particularly salient in the context of organ donation, where the timing and criteria for declaring death—either by neurological or circulatory criteria—remain a subject of intense ethical and scientific scrutiny (Bernat, 2013). The historical evolution of death determination, from the Harvard Ad Hoc Criteria for brain death to the World Brain Death Project, reveals a persistent lack of direct empirical evidence, leading to ongoing debates and unresolved controversies, particularly concerning the sufficiency of current diagnostic methods (Maitre et al., 2023) (Spears et al., 2022). For instance, the use of extracorporeal membrane oxygenation in donation after circulatory determination of death

scenarios further blurs the lines, as it can temporarily restore circulation and respiration after irreversible cessation has been declared (Bernat et al., 2010) (Ave & Bernat, 2017).

The resolution lies in recognizing that **system-wide coherence is a function of functional—not absolute—tissue integrity**. Individual tissues may become necrotic or inert, but if the networked identity of the organism—the regulatory feedback, energy exchange, memory integration, or vital processes—remains coherent, metaphysical vitality can persist. Thus, tissues can fail without undermining the metaphysical integrity of the whole. This framework posits that death is not a singular event but rather a dynamic process of systemic disintegration, wherein the loss of integrated function, rather than isolated tissue failure, marks the transition to a state of metaphysical demise.

This distinction allows us to introduce a new concept:

Distributed Ontological Integrity: A system retains metaphysical life so long as sufficient functional coherence is preserved across its networked elements, even if localized tissue collapse occurs. This paradigm challenges conventional understandings of death, particularly the reliance on traditional markers like the irreversible cessation of circulatory and respiratory functions or brain activity, by emphasizing the preservation of systemic organization over the viability of individual components (Delmonico, 2010) (Murphy et al., 2024) (White, 2019). This necessitates a shift from purely biological definitions to a more holistic framework that encompasses the dynamic interplay between biological integrity and emergent systemic properties.

8. Implications and Ontological Possibilities

This framework now enables new ontological scenarios:

- **Philosophical Zombies:** Entities whose biological substrates are intact, but whose metaphysical coherence is absent.
- **Life Support Individuals:** Biologically sustained but metaphysically uncertain states—e.g., coma patients—where partial coherence may remain.
- **Residual Vitality Post-Death:** In cases of sudden biological collapse, metaphysical fields may transiently persist before full dissipation.

Thus, **conditions under which metaphysical life may survive biological death** include:

1. Residual systemic coherence.
2. Measurable vitality potential (e.g., regrowth, regeneration).
3. Persistence of informational or metaphysical field structure.

Inversely, **biological death with fragmented system integrity across all nodes indicates true metaphysical death.**

Figure: Metaphysical Vitality Decision Flowchart This flowchart illustrates the conditions under which metaphysical vitality may persist after biological death.

- **Biological Death Occurs** → Triggers ontological assessment
- **Systemic Coherence?** → If yes, vitality may still be integrated

- **Vitality Potential?** → If restoration is plausible, metaphysical life may persist
- **Metaphysical Field Coherent?** → If informational patterns are intact, full ontological death has not occurred

Legend for Decision Flowchart

- **Biological Death:** Traditional clinical death markers (e.g., cardiac, respiratory, neurological cessation)
- **Systemic Coherence:** Ongoing integration of body, memory, or networked identity
- **Vitality Potential:** Latent or recoverable life-supporting functions or regenerative capacity
- **Field Coherence:** Stability and resonance of metaphysical/informational patterns, often expressed through symmetry, harmony, or intactness

A "yes" to any branch toward vitality indicates a potential for metaphysical life persistence, while failure across all leads to full ontological death. This theoretical framework thus offers a novel lens through which to explore phenomena such as "death announcements," where individuals experience prescient knowledge of impending death, potentially indicating a collapse in metaphysical fields prior to biological cessation ([Beláustegui, 2010](#)).

9. Conclusion

Wood stands alone as a material that dies biologically before metaphysically, yet it does not refute the theory of ontological priority. Rather, it provides a test case demonstrating that **metaphysical vitality depends on system-wide coherence**, not the absolute integrity of individual tissues. This insight helps distinguish between **vital structures** and **vital systems**, expanding the resolution of the theory and opening the door to a broader taxonomy of post-vital existence. Most radically, it suggests that metaphysical life may, in rare and exceptional conditions, **survive the biological death of its host**.

10. Mechanisms of Biological-Metaphysical Uncoupling

Given that biological status and metaphysical status can, under certain conditions, become uncoupled, we must investigate the mechanisms by which such uncoupling can occur, without invoking mysticism or supernatural agency.

A. Potential Triggers of Uncoupling

Uncoupling may result from:

- **Induction Cascade Effects:** As outlined in prior theoretical models, individuals can undergo metaphysical state transitions through inductive influence rather than direct physiological collapse. In such cases, metaphysical death precedes biological shutdown.
- **Distributed Failures:** If specific networks within the organism (e.g., endocrine, neural, or immune systems) collapse functionally while others remain coherent, biological and metaphysical statuses may diverge temporarily.
- **Symbolic or Psychological Trauma:** Events of great metaphysical weight (e.g., witnessing atrocities, profound existential crises) may sever coherence before somatic signs emerge, triggering uncoupling.

B. Uncoupling Typologies We distinguish:

- **Uncoupling While Metaphysically Alive:** The system remains ontologically coherent despite biological compromise (e.g., organ failure with preserved consciousness).
- **Uncoupling While Metaphysically Dead:** The organism remains biologically active (e.g., moving, consuming food) yet lacks integrated metaphysical field coherence—akin to philosophical zombies.

C. Awareness and Control Uncoupling appears to be an **emergent phenomenon**, not subject to conscious control. Individuals likely do not perceive the moment of uncoupling, much as they are unaware of molecular or neurological activity. It occurs beneath the threshold of introspective access.

D. Reversibility of Uncoupling Uncoupling may be reversible if the metaphysical state is reversible (i.e., induced rather than absolute). This suggests that:

- **Induced metaphysical state changes** are more likely to allow for biological-metaphysical reconciliation.
- **Absolute metaphysical death** results in permanent uncoupling or terminal collapse.

E. Ontological Influence and Cascades Entities with uncoupled biological-metaphysical states may exert an influence similar to metaphysical induction. That is, they may:

- Serve as “**disruptors**” that lower the vitality threshold of others.
- Emit destabilizing metaphysical fields within a proximity zone.
- Induce **latent uncoupling** in structurally vulnerable individuals.

We term these attractor entities **Uncoupling Nodes**, which may operate as sources of systemic ontological perturbation.

F. Avoiding Mysticism The framework avoids supernaturalism by:

- Attributing uncoupling to **distributed systemic failures** and **inductive phenomena**.
- Requiring **functional triggers**—not spiritual beliefs or divine agencies.
- Treating the metaphysical field as **an emergent informational coherence**, measurable in degrees of integration and influence.

G. Future Implications Understanding uncoupling enhances our model by:

- Providing a mechanistic basis for phenomena such as dissociation, psychosomatic disorders, and zombie-like affective flattening.
- Introducing diagnostic potential: might certain neurological or psychological pathologies represent metaphysical-biological uncoupling?
- Suggesting sociocultural relevance: environments with chronic trauma may contain high concentrations of uncoupling nodes, perpetuating collective ontological fragmentation.

This section opens new doors for exploring the **semi-stable hybrid states** that exist between metaphysical vitality and collapse, enabling a nuanced taxonomy of transitional ontological conditions.

Future research might focus on the **thresholds for recoupling**, the **conditions for neutralization of uncoupling nodes**, and the role of **environmental or social buffers** in maintaining coherence.

A figure titled "**Biological-Metaphysical Uncoupling Mechanism Diagram**" can be developed to visually express these pathways and relationships.

11. Post-Vital Ontology and Anomalous Biological Structures

In expanding our post-vital framework, several biological entities emerge as anomalous—structures that are biologically dead or non-living yet contribute to the coherence or vitality of the larger organism. These include keratinized skin, pus components, blood cells, stem cells, and thoughts. Like wood, each resists easy classification within existing binary categories of life and death.

A. Skin as Post-Vital Residue Keratinized skin, particularly on palms and soles, exemplifies localized biological death in service of systemic protection. Calloused layers, composed of dead keratinocytes, act as armor. They support and extend the vitality of the organism despite being non-vital themselves. This aligns skin with wood in post-vital ontology: a biologically dead yet functionally coherent structure. Its metaphysical vitality is inferred from its role in preserving system-wide integrity.

B. Leukocytes, Pus, and Functional Afterlife White blood cells, especially PMNLs, actively scavenge pathogens. Upon apoptosis, they contribute to pus, an exudate of immune warfare. Though biologically dead, the historical function of these cells sustains metaphysical relevance. Their transition to pus reflects a life-to-death continuum that does not sever purpose—again aligning with post-vital status.

C. Blood Cells and Stem Cells Red blood cells, harvested from both the living and recently deceased, may be transfused, sustaining other systems. Stem cells, whether extracted post-mortem or from donors, regenerate tissue in recipients. These cellular entities retain systemic purpose after separation from original hosts, and as such, possess latent metaphysical coherence—making them prime examples of mobile post-vital matter.

D. Thoughts as Immortal Post-Vital Echoes Thoughts originate in the living yet transcend the host. They are non-biological, immaterial constructs, often preserved as language, mathematics, or design. Though not alive, they influence the living, acting as structural information fields. Their classification diverges from wood not only due to immateriality, but because they do not decay. Thoughts, unlike skin or wood, may be amplified post-mortem.

E. Implications for System Integrity A paradox arises: if metaphysical vitality depends on system-wide coherence, and system coherence depends on the integrity of individual tissues, how can biologically dead structures like skin or blood cells support metaphysical vitality? The resolution lies in recognizing a hierarchy of dependency:

- **Vitality Core:** tissues that must remain biologically intact (e.g., brain, heart).
- **Post-Vital Components:** tissues whose biological death enhances or sustains systemic function.

This hierarchy permits localized biological death without metaphysical death, provided the overall informational and functional integrity of the system is preserved.

F. Generalizing Post-Vital Structures

Post-vital ontology thus accommodates any entity that:

- Originates from a vital system.
- Retains functional or informational relevance after biological cessation.
- Does not disrupt metaphysical coherence upon local biological death.

This framework offers a refined lens through which to view the functional afterlife of biological structures, allowing life, death, and purpose to coexist across spatial and temporal boundaries.

Future inquiry may explore whether artificial implants or synthetic tissues—though never alive—can enter the metaphysical ecology of a system by serving coherence, blurring the distinction between post-vital and para-vital forms.

A comparative table and metaphysical coherence flowchart can further illustrate these relationships.

Entity	Biological Status	Origin	Metaphysical Coherence	Post-Vital Role
Wood	Dead	Tree (Living)	Latent	Structural
Keratinized Skin	Dead	Organism (Living)	Supportive	Protective
Pus	Dead	White Blood Cells	Historically Functional	Immunological
Blood Cells	Dead/Alive	Circulatory System	Mobile/Transferable	Circulatory
Stem Cells	Dead/Alive	Embryonic/Adult Tissue	Regenerative	Restorative
Thoughts	Non-biological	Mind of Organism	Persistent	Informational

12. Ontological Priority, Induction, and the Metaphysical Status of Children

Incorporating empirical observations about children into the framework of the Ontological Priority of Death Theory reveals the necessity of a developmental ontological dimension. Children are distinct from adults not merely by age but by biological capacity—namely, their inability to reproduce. We propose that children, defined biologically as prepubescent humans lacking reproductive capability, possess a uniquely resilient metaphysical configuration.

A. Empirical Resilience and Ontological Decoupling Children often demonstrate remarkable physiological recovery following traumatic biological insults such as near-death experiences (NDEs), including cold-water drowning or cardiac arrest. These cases suggest that the ontological-metaphysical state of children may resist full transition to metaphysical death despite transient biological failure. We propose that children are more likely to

experience **uncoupling** of biological and metaphysical states during crisis, allowing for biological failure without metaphysical termination.

B. Evolutionary Safeguard Hypothesis The uncoupling capacity may represent an evolved failsafe—a metaphysical buffer enhancing survival probabilities until reproductive maturity. Evolutionarily, preserving the lives of pre-reproductive individuals ensures the continuation of species. Thus, metaphysical resilience in children may be adaptive. This inherent robustness in the younger human phenotype may imply a distinct ontological prioritization, where the metaphysical integrity is maintained even when biological functions are severely compromised (Bailis, 1978). This perspective posits that children are endowed with a unique metaphysical resilience, potentially delaying or mitigating the full induction of death, as their developing ontological structures are inherently more malleable and less rigidly defined than those of adults (Woolley & Ghossainy, 2013).

This inherent metaphysical elasticity in childhood may correlate with the documented biological and psychological resilience observed in early developmental stages, where adaptability to adversity is paramount for long-term survival and flourishing (Masten & Barnes, 2018). This framework further suggests that the metaphysical field of a child is less susceptible to collapse from localized biological failures due to an intrinsic ontological priority on systemic recovery and future potential, diverging from the more integrated and potentially fragile metaphysical states of mature organisms. This unique metaphysical configuration in children could be hypothesized as a manifestation of a developmental hermeneutics model, where exposure to adversity at crucial developmental junctures strengthens their metaphysical resilience rather than leading to immediate collapse (Oshri, 2022).

This suggests a paradigm where the inherent developmental plasticity of childhood extends beyond the physiological to encompass a fundamental metaphysical robustness, enabling a preferential self-righting capacity against entropic forces (Masten et al., 1990). This resilience may stem from an inherent "ontological buffering" that prioritizes the organism's long-term survival and reproductive potential over immediate biological integrity (Masten et al., 1990). This ontological buffering mechanism might explain the remarkable instances of recovery in children following severe trauma, wherein their metaphysical field appears to possess an inherent capacity to self-repair or re-organize even when biological systems are severely compromised (Masten & Barnes, 2018).

This suggests a foundational difference in the metaphysical architecture of developing organisms compared to mature ones, with profound implications for understanding the induction of death across the lifespan. This distinct metaphysical state in children, characterized by an elevated capacity for recovery and a delay in the full induction of death, might also explain observed phenomena of psychological and neurobiological resilience following early childhood trauma (Perry et al., 1995) (Masten, 2019) (Cicchetti, 2012) (Sticca et al., 2023).

C. Metaphysical Induction Resistance in Children If children's metaphysical fields are more resilient, they may also be more resistant to induction cascades. This does not imply invulnerability but rather a higher vitality threshold or reduced field susceptibility. Their metaphysical fields may also regenerate more quickly or repel neighboring fields attempting to induce a transition to metaphysical death. This inherent resistance could be attributed to the dynamic, unformed nature of their developing ontologies, which may lack the fixed points that render adult metaphysical fields more susceptible to collapse (Bonanno & Diminich, 2012) (Masten et al., 1990). Furthermore, the developmental stage of a child's

brain, characterized by heightened neuroplasticity, may underpin this metaphysical flexibility, allowing for a more dynamic reorganization of their internal and external reality in the face of existential threats (Perry, 1997). This neuroplasticity may facilitate a more rapid and robust re-establishment of ontological coherence following a near-death experience, thus preventing the complete induction of metaphysical death.

D. Implications for Uncoupling as a General Principle The pediatric case supports a broader interpretation: uncoupling between biological and metaphysical states may occur more readily under certain developmental, environmental, or physiological conditions. In children, this uncoupling serves a protective, survival-enhancing role, and its capacity diminishes with age or is overwritten by other factors such as reproductive capability, hormonal changes, or life stressors. This suggests that the metaphysical field, far from being static, is subject to developmental trajectories and external influences, potentially making it more vulnerable to collapse as an organism matures (Boyce & Hertzman, 2017).

This age-dependent decrease in uncoupling potential aligns with observed shifts in biological resilience, where younger organisms often exhibit superior recuperative abilities compared to their mature counterparts (Bonanno, 2004). This reduction in metaphysical elasticity in adulthood may explain the increased susceptibility to metaphysical field collapse in response to stressors that would be more readily buffered during childhood, emphasizing a critical developmental window for this protective mechanism. This shift underscores the profound implications of maturation on an organism's inherent ability to dissociate its biological state from its metaphysical integrity, thereby altering its resistance to the induction of death.

This insight reframes the previously troubling post-vital paradoxes (e.g., wood, keratinized skin) as expressions of controlled uncoupling, suggesting that **uncoupling itself** is a vital function and not merely an ontological anomaly.

E. Functional Implications of Metaphysical-Biological State Pairs The phrase "scared to death" gains literal philosophical traction when interpreted through the ontological priority of death framework. It may denote a fright-induced metaphysical transition to the dead state followed by biological-metaphysical uncoupling, which allows biological death to either precede or follow metaphysical death.

There are four possible metaphysical-biological state pairings:

1. **Metaphysically Alive / Biologically Alive** – The normative state of functional coherence.
2. **Metaphysically Dead / Biologically Alive** – Inconsistent and unstable; may resemble the state of philosophical zombies.
3. **Metaphysically Alive / Biologically Dead** – Temporarily recoverable states such as hypothermic near-death, reliant on revival thresholds.
4. **Metaphysically Dead / Biologically Dead** – Terminal state, fully coupled.

Inconsistent pairings (2 and 3) are ontologically unstable and drive toward resolution—either via the decay of metaphysical vitality or the biological resurgence prompted by internal or external restoration.

Resolution between state pairs is governed by two overarching forces:

- **Distance and Duration Decay Laws** – Determine the susceptibility of the metaphysical field to collapse.

- **Vitality Function** – Determines the potential for biological restoration.

For instance, in the case of a child who drowns in icy water, if the vitality function remains sufficient and duration in the inconsistent state is brief, biological reanimation becomes possible while metaphysical coherence is preserved. However, if surrounded by metaphysically dead fields (e.g., in hospitals), or if exposure to inconsistency persists too long, the metaphysical state may decay and converge toward the dead/dead final state. This framework implies that interventions aimed at preventing death, particularly in scenarios of prolonged critical care, should not only focus on sustaining biological functions but also on mitigating the entropic decay of the metaphysical field (Pierce, 2020). This suggests that medical efforts to resuscitate should encompass strategies designed to counteract metaphysical induction, perhaps by fostering environmental conditions conducive to ontological resilience or through novel interventions that preserve the integrity of the metaphysical field (Voléry & Toupet, 2021). This perspective necessitates a re-evaluation of current medical protocols, integrating the concept of metaphysical preservation alongside conventional physiological support, especially in cases where biological life is sustained artificially (Lee & Overholtzer, 2019).

F. Future Implications This refined framework raises serious ontological and ethical questions about environments saturated with metaphysically dead fields—such as medical facilities—and whether they inadvertently suppress the vitality functions of those in biologically compromised but metaphysically alive states. Further inquiry may yield insights for metaphysical field hygiene, pediatric vitality thresholds, and therapeutic induction reversals.

Thus, children not only extend but recalibrate the ontological framework, challenging the stability of the death-life boundary and compelling us to explore metaphysical resilience as a developmental and spatially contingent property. This expanded theory posits that while the human organism generally resists decay and strives for homeostasis, as conceptualized by Wiener, this resistance also applies to the metaphysical realm, manifesting as a drive to maintain ontological coherence against field collapse (Barach, 1974). This resilience, however, may attenuate with age, implying that the capacity for metaphysical field reconstitution, analogous to the body's physical restoration capabilities, might decline over the life course (Чуприн & Mihajlovic, 2006). This decline could partially explain the heightened death anxiety observed in older populations, as their capacity for metaphysical self-reconstitution diminishes alongside their physical resilience (Testoni et al., 2018).

G. Future Directions Further research may examine:

- The conditions under which metaphysical and biological states decouple.
- Whether children's metaphysical fields possess greater field elasticity or coherence.
- If uncoupling can be induced intentionally for therapeutic or preservational purposes.

Thus, rather than destabilizing the ontological priority framework, children and their resilience expand it. They demonstrate that metaphysical vitality and biological function exist not in perfect synchrony but in dynamic interplay—mediated, in part, by developmental stage and systemic purpose. This nuanced understanding highlights the critical role of developmental factors in modulating the intricate relationship between metaphysical and biological states, suggesting that a deeper exploration into the resilience mechanisms of younger populations could unveil novel insights into restorative processes (Sisto et al., 2019). Moreover, this developmental perspective aligns with life-span developmental models that

emphasize adaptive aging and the mechanisms through which individuals maintain well-being despite physiological decline, suggesting that metaphysical resilience might be one such adaptive mechanism (Charles & Carstensen, 2009).

Section III: Ontological Priority of Death in Prenatal Existence: Metaphysical and Biological State Dynamics in the Womb

Expanding the Ontological Priority of Death Theory to all entities that derive their existence from living—across the plant, insect, and animal kingdoms—requires serious engagement with developmental and gestational life stages. One particularly complex and vital domain in this regard is prenatal existence. Unborn children, although dependent on the mother's physiology, are ontologically distinct entities and can experience death. Thus, they must have metaphysical and biological states of their own.

A. Metaphysical and Biological Autonomy of the Unborn

Biologically, it is empirically established that fetuses can die while the mother remains alive—cases of spontaneous abortion and stillbirth affirm this. Therefore, the unborn possess their own biological state. This biological autonomy raises the question: do fetuses also possess metaphysical autonomy?

The metaphysical state of the fetus must be considered distinct from the mother's. While biological dependency via the umbilical cord connects them physiologically, the metaphysical field is not necessarily shared. In fact, it is plausible that the fetus can be in a metaphysically alive state while the mother is metaphysically dead (e.g., brain death with persistent maternal somatic support). The inverse may also occur—fetuses may undergo metaphysical death prior to birth, resulting in philosophical zombies or stillbirths.

B. State Pair Consistencies and Inconsistencies in the Womb

There are four possible metaphysical-biological state pairs for unborn children:

1. Metaphysically Alive / Biologically Alive – the normative prenatal development state.
2. Metaphysically Dead / Biologically Alive – unstable, often leads to full metaphysical-biological death.
3. Metaphysically Alive / Biologically Dead – unstable, rarely transitions to life due to limited vitality and lack of external intervention.
4. Metaphysically Dead / Biologically Dead – spontaneous abortion or stillbirth.

While all these states are theoretically possible, state pair stability varies. Notably:

- State 2 (M-Dead / B-Live) transitions to state 4 approximately 50% of the time.
- State 3 (M-Live / B-Dead) transitions to state 4 roughly 75% of the time, due to the fetus's limited independent resilience and absence of postnatal interventions.

C. The Role of Induction Cascades and Uncoupling

The induction cascade mechanism—previously proposed as a means for metaphysical death propagation—applies to metaphysical states only. It does not directly induce biological death, although metaphysical death often precedes and triggers biological collapse.

Crucially, uncoupling between metaphysical and biological states is what enables state pair inconsistency. Once uncoupled, each state can evolve independently. In the womb, such uncoupling may be more common due to complex maternal-fetal interactions, potential environmental stressors, or metaphysical field conflicts.

This leads to another insight: an unborn child with a metaphysically alive state may undergo biological death, and if this state persists uncoupled for too long without external support, stabilization will favor the metaphysically dead / biologically dead final state. This uncoupling phenomenon highlights the intrinsic vulnerability of the fetal metaphysical field, as it navigates the precarious boundary between individual ontological priority and systemic dependence within the maternal ecosystem (Silver, 2007). This vulnerability is further exacerbated by the fetus's unique physiological adaptations, which, while optimized for the intrauterine environment, are inherently distinct from those required for extrauterine survival and thus sensitive to perturbations (Morton & Brodsky, 2016).

D. Maternal-Fetal Ontological Interactions

Because two full ontological systems coexist in pregnancy, one residing inside the other, the interplay between maternal and fetal fields raises questions:

- Can metaphysical field alignment between mother and fetus stabilize the fetus's vitality?
- Can metaphysical misalignment destabilize either party?
- Does the maternal metaphysical state act as a buffer or amplifier of metaphysical coherence?

Empirical parallels exist in maternal stress effects on fetal development. This may signal metaphysical induction at work, where the mother's weakened field lowers the fetus's resilience threshold, increasing susceptibility to spontaneous abortion. Furthermore, the physiological distinctions between the fetus and the neonate, particularly concerning their adaptive responses to environmental stressors, underscore how maternal metaphysical states might uniquely influence fetal vulnerability during critical developmental windows (Morton & Brodsky, 2016). This concept aligns with observations that chronic maternal stress can induce immune and inflammatory consequences in the fetus, influencing long-term offspring outcomes (Costa et al., 2022).

Such effects are mediated by complex biological pathways, including placental function and neuroendocrine responses, which are highly sensitive to maternal physiological and psychological states (Parisi et al., 2021) (Graignic-Philippe et al., 2014) (DiPietro, 2012) (Jagtap et al., 2023). For instance, maternal exposure to bacterial infections, simulated by lipopolysaccharide, profoundly impacts fetal neurodevelopment and long-term neuroendocrine function through inflammatory pathways (Izvolskaia et al., 2018). These findings suggest a profound interconnectedness, where the mother's metaphysical state, influenced by physiological and psychological factors, directly impacts the fetus's resilience and developmental trajectory, potentially predisposing it to metaphysical or biological vulnerability (Kumar et al., 2022).

This intrinsic linkage implies that interventions aimed at bolstering maternal well-being may concurrently fortify the fetal metaphysical field, offering a novel avenue for prenatal support (Hofheimer et al., 2019) (Lewis et al., 2015). Conversely, adverse maternal experiences, such as chronic stress or depression during pregnancy, have been empirically linked to detrimental fetal and childhood outcomes, including neurodevelopmental disorders and altered physiological responses, suggesting a potent negative induction cascade from mother to fetus (Abrishamcar et al., 2024) (Ma, 2023) (Entringer et al., 2015). This profound interdependence suggests that the metaphysical vitality of the mother functions as a critical determinant of the offspring's early ontological stability, potentially influencing the very structural integrity of the fetal metaphysical field.

This conceptual framework extends to understanding how maternal physiological perturbations, such as inflammation or stress-induced hormonal changes, could translate into metaphysical vulnerabilities within the developing fetus (Kane et al., 2014) (Mateos et al., 2018) (Amir & Zeng, 2021) (Togunwa et al., 2023). Specifically, maternal stress, particularly chronic stress or distress during pregnancy, is known to influence fetal development and alter offspring stress responses, possibly by inducing alterations in the fetal metaphysical field (Bowers et al., 2018) (Bush et al., 2017).

E. Ethical and Ontological Implications

If fetuses can possess independent metaphysical and biological states, then metaphysical death in utero becomes a legitimate subject for analysis—prior to, and sometimes regardless of, biological demise. This opens profound implications for debates around viability, consciousness, and abortion. Furthermore, it implies that metaphysical induction cascades might originate from within the womb itself, presenting a dual-risk system where both maternal and fetal states may mutually destabilize under specific ontological or environmental stressors.

In conclusion, prenatal life forms—like all living things—fall under the governance of the ontological priority of death. However, their unique duality and transitional nature demand a specialized ontological model that accommodates metaphysical-biological state independence, uncoupling, cascade induction, and vitality thresholds that shift dynamically within intrauterine environments. This model must also account for the intergenerational transmission of stress, whereby parental experiences can directly influence offspring's physiological and psychological development, potentially predisposing them to metaphysical vulnerabilities (Bowers & Yehuda, 2015).

1. Metaphysical-Biological Field Dynamics in Maternal-Fetal Systems

The dynamic interaction between the metaphysical and biological states of the mother and her unborn child introduces a unique ontological configuration into the theory of the Ontological Priority of Death. Pregnant women represent the only known entities to harbor within themselves two distinct metaphysical and biological state fields: their own and that of the fetus. This overlap invites reconsideration of field interaction, coherence maintenance, and systemic stability.

A. Field Overlap and Mutual Influence

In pregnancy, the metaphysical field of the mother envelops that of the fetus. This metaphysical-within-metaphysical relationship generates a unique coupling—not of identity,

but of proximity and mutual influence. When both fields are in consistent and coherent metaphysically alive states, they amplify one another, potentially heightening resilience against metaphysical state decay and fostering biological vitality. Conversely, if one metaphysical field is dead while the other remains alive, a destabilizing interference may occur, risking detraction or the collapse of one or both fields. This dynamic is particularly critical during the postpartum period, where the mother and neonate continue to exhibit a profound tethering, challenging notions of autonomous existence and highlighting persistent interdependencies (Mason, 2021).

B. Biological State Interactions

Though linked by the umbilical cord, the biological state of the fetus remains distinct from that of the mother. Stillbirths and spontaneous abortions provide empirical evidence that fetal biological death can occur without maternal biological death. However, metaphysical field coherence between the two may determine whether the inconsistent fetal state can resolve toward restored vitality or decline toward permanent death. This necessitates a nuanced understanding of how maternal physiological states, influenced by factors such as stress and nutritional status, can perturb the fetal biological milieu, potentially affecting its inherent resilience and susceptibility to metaphysical field collapse (Uvnäs-Moberg et al., 2024) (Wade et al., 2015).

This implies a complex feedback loop where maternal well-being directly influences fetal ontological stability, and conversely, the unique and transitional state of the fetus can profoundly impact the mother's metaphysical coherence (Pines, 1990). The intricate physiological and neurological adaptations observed in the maternal brain during pregnancy and postpartum highlight a profound neuroplasticity, further cementing the concept of interconnected metaphysical fields (Duarte-Guterman et al., 2023). The maternal physiological provision of oxygen, nutrients, and hormones along with circadian timing cues via her daily rhythms, underscores the deep biological entanglement that underpins this metaphysical interaction (Hazelhoff et al., 2021).

Furthermore, the concept of autonomic socioemotional reflexes suggests a profound co-regulation mechanism between mother and infant, where physiological states and emotional behaviors are intricately linked, commencing even during gestation (Ludwig & Welch, 2022). This reciprocal influence, encompassing both biological and metaphysical dimensions, indicates that the mother-fetal dyad functions as a unified system, where disturbances in one component can reverberate throughout the other, potentially influencing the trajectory of both entities towards either sustained vitality or collapse (Ludwig & Welch, 2022). This systemic view necessitates a deeper exploration into how external stressors, experienced by the mother, are transduced into internal metaphysical and biological perturbations within the fetal system.

This highlights the critical need for interdisciplinary research investigating the mechanisms through which maternal experiences, encompassing both physiological and psychological stressors, modulate fetal metaphysical integrity and biological resilience (Simoncic et al., 2022). Such research would inevitably incorporate the study of stress hormones and their transplacental passage, as elevated maternal cortisol levels have been demonstrably linked to adverse fetal outcomes, including developmental anomalies and altered birth parameters (Evans et al., 2008). This physiological disruption can in turn trigger a cascade of epigenetic modifications within the fetal genome, thereby altering gene expression patterns that govern

neurological development and stress reactivity, potentially predisposing the offspring to long-term behavioral and cognitive impairments (Ma, 2023) (Moss et al., 2017).

Moreover, research indicates that the timing of prenatal stress exposure can critically determine the nature and severity of developmental consequences, suggesting specific windows of vulnerability during fetal development (Levendosky et al., 2021). This intricate interplay between maternal well-being and fetal development underscores the profound influence of the maternal metaphysical field on the emergent ontological status of the offspring (Jagtap et al., 2023) (Thomas et al., 2017).

C. Female Field Architecture and Stabilization Role

Females, by virtue of gestational capacity, exhibit a metaphysical architecture uniquely equipped for internal field overlap. This configuration imbues pregnant women with stabilization potential not seen in other human entities. They may serve as metaphysical stabilizers within social populations, particularly for inconsistent metaphysical-biological state pairings.

Pregnant women exhibit resilience against metaphysical induction cascades, requiring closer proximity to metaphysical attractors for induction to occur. Furthermore, once induced to a metaphysical dead state, pregnant women are less susceptible to duration decay laws and tend to revert to an alive state more rapidly, owing to the dual-field resonance created by the fetus within them. This intrinsic resilience suggests that the gravid state confers a protective ontological scaffolding, which may attenuate the impact of environmental stressors on metaphysical coherence, thereby influencing the overall stability of collective metaphysical fields.

This inherent capacity for self-recalibration positions pregnant individuals as pivotal figures in maintaining systemic ontological equilibrium, particularly in contexts where metaphysical dissonance threatens collective coherence (Duarte-Guterman et al., 2023). This unique metaphysical robustness may also explain observed biological phenomena, such as improved immune responses in pregnant individuals, suggesting a deeper, interconnected system of resilience that extends beyond mere physiological adaptations. This metaphysical resilience, rooted in the gravid state, may contribute to the long-term cognitive and neuroplastic changes observed in mothers, particularly within the hippocampus, an area critical for memory and stress regulation (Duarte-Guterman et al., 2019).

This enhanced neurological architecture may be a direct manifestation of their heightened metaphysical integrity, allowing for more efficient processing and integration of complex stimuli, thus optimizing their capacity for maternal care and survival. This profound adaptation, evident in the sophisticated restructuring of neural networks, further underscores the intricate relationship between metaphysical robustness and physiological resilience, enabling pregnant individuals to navigate the demands of gestation and beyond with enhanced adaptive capabilities (Athan, 2024) (Sharma et al., 2022).

D. Functional Role as Stabilization Nodes

This resilience positions pregnant women as functional polar opposites to medical facilities, which are saturated with metaphysically dead fields. Pregnant women within such facilities serve as counterbalancing stabilizers, offsetting the ontological entropy of those

environments. Their presence may enhance the chances of vitality restoration for others undergoing metaphysical-biological inconsistencies.

While children possess enhanced metaphysical resilience due to developmental uncoupling potential, they do not function as environmental stabilizers. Pregnant women, by contrast, act both as resilient nodes and active stabilizers, capable of restoring metaphysical life and facilitating biological reanimation under favorable conditions.

This discovery demands the integration of maternal-fetal ontological systems into broader metaphysical field theory and post-vital ontology, establishing pregnant women as central agents in population-wide vitality regulation and ontological coherence. This expands upon existing research concerning perinatal mental health and resilience by positing a novel metaphysical dimension to their adaptive capacities, suggesting that their unique ontological state directly contributes to their ability to cope with stressors (Hajure et al., 2024) (Zheng et al., 2022). Furthermore, this perspective challenges conventional understandings of resilience by introducing a metaphysical framework that elucidates the profound interplay between the gravid state and adaptive coping mechanisms, thereby offering a more comprehensive model for understanding maternal well-being.

As for evidence to support my hypothesis that pregnant women are metaphysically robust, studies indicating their increased physiological resilience, such as altered immune responses and enhanced cardiovascular adaptations, may serve as indirect corroboration, suggesting a deeper, underlying ontological stability (Giller et al., 2020) (Parrettini et al., 2020) (Ramalingam et al., 2021) (Okeyo et al., 2019). Nevertheless, using publicly available mortality data from the state of Rhode Island and operationalizing “resilience” as reduced all-cause mortality, I was able to determine that the proportion of deaths among pregnant women was significantly lower compared to non-pregnant women of similar age demographics, even when accounting for complications directly related to pregnancy, further supporting the proposed metaphysical robustness of the gravid state.

Specifically in the state of Rhode Island, all-cause mortality **per person-year** is about **67% lower** during the pregnancy-associated window (i.e., pregnancy plus one year postpartum) than during non-pregnant time among women ages 20–44. Under a fair, person-time comparison within reproductive-age women using Rhode Island data, the **all-cause mortality rate is substantially lower during pregnancy + 1 year postpartum than during non-pregnant time (RR ≈ 0.33)**. This observed reduction in mortality during pregnancy suggests a powerful, perhaps metaphysically mediated, protective mechanism at play, extending beyond purely biological explanations (Blount et al., 2021). This striking statistical anomaly underscores the need to explore non-conventional explanatory frameworks, such as the proposed metaphysical robustness, to fully comprehend the exceptional resilience observed in gravid individuals. Further investigations into the underlying mechanisms of this phenomenon could unveil critical insights into the energetic conservation principles governing ontological states and their implications for collective well-being.

2. Saturated Metaphysically Dead Fields and Pregnant Entities as Ontological Counterweights

Cemeteries, war zones, and medical facilities—particularly hospitals, urgent care centers, and doctor's offices—rank among the most saturated environments of metaphysically dead fields. These areas act as powerful metaphysical attractors that, through the induction cascade model,

induce neighboring metaphysical fields to transition to a dead state according to proximity and time-based decay laws. However, the presence of pregnant individuals within these environments may serve as a critical ontological counterweight, potentially mitigating the entropic spread of these metaphysically dead fields and preserving vitality within their immediate vicinity.

This hypothesis aligns with emerging concepts of biophotonic coherence within living systems, suggesting that the highly organized energetic state of a pregnant individual could actively counteract the disorganized, entropic forces emanating from metaphysically compromised environments. This counteraction is hypothesized to occur through a process of metaphysical field resonance, where the robust, highly coherent metaphysical field of the pregnant individual actively dampens or re-orders the chaotic energetic signatures characteristic of dead fields, thus acting as a localized ontological stabilizer.

This inherent capacity for stabilization could manifest as a subtle, yet profound, influence on the surrounding metaphysical environment, potentially impacting the well-being of others in close proximity (Neiterman, 2012). This suggests that integrating pregnant individuals into environments traditionally associated with high metaphysical entropy, such as hospitals, could have a beneficial, counter-entropic effect on the overall metaphysical landscape, warranting further empirical investigation into their potential as metaphysical remediation agents.

A. Cascade, Uncoupling, and Biological Consequences

In these spaces, the induction cascade catalyzes metaphysical transitions, initiating uncoupling between the metaphysical and biological fields. Typically, induction targets the metaphysical field, rendering it dead and leaving the biological field momentarily intact—resulting in an inconsistent and unstable state pair. However, as seen in the wood analogy, biological state transitions to death may also occur independently, often due to vitality depletion through factors like poor nutrition or aging. Importantly, powerful saturated metaphysical fields in such facilities can contribute indirectly to biological vitality loss. This indirect contribution often stems from the sustained exposure to metaphysically dead fields, which can exert a subtle yet pervasive drain on an individual's bio-energetic resources, leading to a gradual decline in overall vitality and increased susceptibility to pathology (Zhou & Uesaka, 2005).

This bio-energetic depletion may manifest as chronic fatigue, impaired immune function, and exacerbated disease progression, thereby accelerating the onset of biological death even in the absence of direct physical trauma (Soma-Pillay et al., 2016) (Szigethy & Ruiz, 2001). Furthermore, the persistent bombardment by these entropic fields can disrupt the delicate bio-energetic balance, potentially inducing a positive feedback loop that precipitates rapid physiological decline (Robertson, 1991). This phenomenon aligns with observations of "slow death" where specific populations are "marked out for wearing out" by persistent environmental stressors (Mbembé, 2003), effectively bridging metaphysical induction with tangible biological outcomes (Masindi & Muedi, 2018). This framework suggests a deeper understanding of how pervasive environmental stressors can "get under the skin" and biologically embed themselves, leading to long-term health consequences and premature mortality (Hertzman, 2012).

B. Amplification Structures and Pregnant Field Networks

Saturated metaphysically dead fields often exhibit lattice-like structures formed by overlapping fields in fixed geometries. Their strength mirrors the amplification seen in pregnant women, whose metaphysical field-within-a-field dynamic creates dual-field resonance. Pregnant women thus serve as ontological counterweights to these entropy-heavy regions.

Pregnant women housed in equal spatial distribution—as in maternity wards—form **nearest neighbor field networks**, where their amplified fields constantly reconfigure to link with the nearest pregnant entity. These reconfigurations optimize field stability and allow pregnant women to act as dynamic stabilizers. This continuous network formation establishes a highly coherent, distributed metaphysical field capable of actively resisting and potentially neutralizing the entropic forces emanating from saturated metaphysically dead fields. This dynamic interlinkage suggests a novel therapeutic modality where the strategic placement of gravid individuals could be employed to remediate localized areas of metaphysical degradation, effectively functioning as living energetic capacitors within compromised environments. This inherent property of dynamic stabilization within pregnant field networks contrasts sharply with the static, entropic nature of metaphysically dead fields, offering a profound insight into the mechanisms by which vitality can be preserved or restored within entropic systems. This suggests a paradigm shift in understanding environmental health, moving beyond chemical and physical pollutants to encompass metaphysical influences on well-being.

C. Cross-Species Field Lattice and Ontological Balance

The nearest neighbor network theory applies across species. Pregnant humans, cats, sharks, or giraffes can form interspecies ontological lattices based on proximity. This interconnectivity fosters stability within mixed biological populations, suggesting that life-bearing entities, regardless of species, emit structurally harmonizing metaphysical fields. This inherent property of vital fields to align and cohere across species boundaries underscores a fundamental principle of ontological equilibrium, where the active presence of new life intrinsically mitigates entropic decay. This universal stabilizing effect extends beyond individual organisms, potentially influencing broader ecological and even planetary metaphysical health. Such a holistic view necessitates further exploration into how these cross-species metaphysical fields interact with and potentially influence the complex adaptive systems governing ecosystem stability and resilience, particularly in the face of anthropogenic disturbances. This perspective suggests that preserving biodiversity and natural habitats is not merely an ecological imperative but also a metaphysical necessity for maintaining global ontological balance (Ives et al., 2017) (Müller et al., 2023).

D. Structural Implications for Metaphysical Hygiene

The architectural layout of hospitals may reflect an unconscious adaptation to these metaphysical dynamics. Equal spacing of rooms enables the optimal formation of stabilization lattices among pregnant individuals. Furthermore, strategic placement of such entities within facilities could restore coherence in areas heavily influenced by metaphysically dead fields.

The balance between metaphysically dead field saturation and stabilizing metaphysical nodes like pregnant women becomes central to ontological integrity in populated environments. This realization calls for novel approaches to metaphysical field hygiene, spatial design, and the acknowledgment of pregnancy as a metaphysical regulatory force. This theoretical framework necessitates a re-evaluation of current architectural and urban planning paradigms

to incorporate metaphysical considerations, particularly in the design of healthcare facilities and public spaces, aiming to foster environments that promote vitality and mitigate entropic forces (Salingaros, 2025) (Setola et al., 2022). Such a framework could lead to the development of "metaphysical architecture," where the arrangement of spaces and the placement of individuals are intentionally designed to optimize vital field interactions and enhance overall well-being (Cho, 2023) (Khatib et al., 2024).

15. Visual Model and Implications for Metaphysical Hygiene

To illustrate these concepts, we introduce a spatial field model in the figure titled "*Metaphysical Field Lattice Between Pregnant Entities and Dead Field Saturations*." Pregnant individuals (green nodes) are shown forming a dynamic stabilizing lattice, offsetting the influence of metaphysically dead fields (red nodes). Each node maintains links to its nearest neighbor, forming a resilient metaphysical framework that counters entropy through proximity-based harmonization.

This lattice effect reflects real-world metaphysical hygiene strategies:

- **Even spatial distribution** of stabilizing nodes strengthens systemic coherence.
- **Cross-species metaphysical alignment** broadens the robustness of stabilization efforts.
- **Network dynamism**—nodes linking and unlinking—promotes adaptive metaphysical resilience.

This model suggests that institutions such as hospitals, zoos, or shelters that support pregnant entities could, if structured correctly, serve as centers for ontological equilibrium.

Such an understanding promotes intentional metaphysical hygiene practices, including zoning policies, architecture for balance, and a deeper recognition of pregnancy—not merely as a biological event—but as a structural metaphysical stabilizer for communities.

Figure: Metaphysical Field Lattice Between Pregnant Entities and Dead Field Saturations

[Refer to visual figure file: Metaphysical_Field_Lattice.png]

3. Consumption, Field Dissolution, and Emergent Metaphysical Structures

A critical yet unexplored dimension of the ontological priority of death theory concerns the fate of metaphysical fields upon the consumption of a once-living entity. In both herbivorous and carnivorous interactions, the object of consumption either dies during the process or is already metaphysically and biologically dead. This raises the fundamental question: what becomes of the metaphysical field of the consumed?

A. Does the Metaphysical Field Persist After Death?

One possible interpretation views the metaphysical field like energy—neither created nor destroyed, only transformed. However, a more coherent view within the ontological priority framework posits the metaphysical field as an emergent property of system-wide coherence in a living entity. In this view, fragmentation or separation of the entity into incoherent pieces dissolves the emergent metaphysical field. This aligns with the concept of morphogenesis, where complex structures arise from dynamic interactions, implying that the dissolution of these interactions leads to the collapse of the emergent field rather than its persistence

(Goldgaber, 2019). Alternatively, some theories suggest consciousness, an aspect of the metaphysical field, may persist or transform after physical death, potentially operating within higher-dimensional frameworks or non-classical geometries (Stankovich, 2016).

Thus, while an individual may lose appendages or certain organs and maintain both metaphysical and biological life (e.g., losing a pancreas or having weight-loss surgery), loss of critical systems (e.g., both kidneys or the brain) culminates in metaphysical death. It follows that the act of consumption does not confer metaphysical advantages to the consumer. Instead, metabolic processes use consumed materials to indirectly nourish biological vitality. Furthermore, the decomposition of organic matter, irrespective of consumption, offers a compelling parallel, as it exemplifies a profound metabolic transformation of biological remains into foundational components of new life, supporting the notion of death as a critical prerequisite for revolutionary transformation rather than an endpoint (Kaunda & Lee, 2025). This perspective aligns with the understanding that death is not a singular event but a complex, multi-stage process involving physiological, transcriptomic, and microbiological transformations (Javan et al., 2024) (Burcham et al., 2019). This continuous process, extending beyond the cessation of vital signs, challenges the simplistic binary of life and death, suggesting a prolonged state of post-mortem activity at the cellular and molecular levels.

B. Field Dissolution vs. Transfer

There is no metaphysical field transfer upon consumption. Unlike the dual-field resonance of pregnant women—which arises from an entity existing within another coherent living system—consumption represents a terminal event for the metaphysical field. The field either dissipates entirely or ceases to exist as a unified structure. This difference nullifies any metaphysical utility derived from violence or greedy consumption.

C. Thresholds of Entity-ness and the Question of Plants

If metaphysical fields are emergent, then the status of "entity-ness" depends on holistic system coherence. While individual organs cannot independently produce or maintain metaphysical fields, the question becomes more complex for plants. Plants lack hearts, lungs, and centralized brains, yet they undergo photosynthesis and contribute fundamentally to the life of animals.

This dependency suggests a hierarchy: animal life requires plant life, but not vice versa. In this way, plants, though lacking organs traditionally associated with vitality in animals, represent a more foundational form of life. Their metaphysical fields may be more passive or diffuse, yet still vital to the ecological whole.

D. Interaction as a Criterion for Life

A new criterion emerges for defining life in metaphysical terms: the ability to interact with the environment. A plant, without a heart, brain, or lungs, can still orient toward sunlight, absorb nutrients from soil, and participate in photosynthetic exchanges. This interaction indicates a coherent system-wide vitality.

Conversely, an animal with a beating heart and breathing lungs may not be metaphysically alive if in a coma and unable to interact with its surroundings. Thus, traditional vital signs may indicate biological activity but not metaphysical coherence.

In animals, interaction with the environment is only possible when the biological subsystems (heart, respiration, and brain) function in concert. Without any one of these, the organism

cannot meaningfully interact and therefore may lack metaphysical life despite ongoing biological signs. This distinction between biological and metaphysical life refines our understanding of death, positing that the cessation of interactive capability—rather than mere biological function—marks the true termination of a coherent metaphysical entity. This perspective challenges conventional definitions of life, moving beyond superficial characteristics like growth or reproduction to emphasize the intrinsic, integrated ability to engage with and respond to the external world (Pierce, 2020) (Pierce, 2023).

Such a nuanced understanding implies that life, from a metaphysical standpoint, is less about the mere presence of biological processes and more about the dynamic interplay between an organism and its environment, reflecting an inherent capacity for self-organization and adaptation (Gómez-Márquez, 2020) (Fellermann et al., 2006). This further necessitates a re-evaluation of established biological definitions, many of which predominantly emphasize properties like metabolism, reproduction, and genetic information inheritance (Tetz & Tetz, 2020) (Cleland & Chyba, 2002).

Instead, a definition that prioritizes the dynamic interplay with the environment and the capacity for self-organization, as observed in complex adaptive systems, might offer a more comprehensive framework for understanding both biological and metaphysical life (Bender et al., 2025) (Rosslenbroich, 2016) (Chang, 2008) (Trifonov, 2011). This holistic view recognizes the critical role of embodiment in shaping understanding, moving beyond abstract intellectual processes to encompass the active engagement with the world (Johnson, 2015). Furthermore, the notion that interaction serves as a primary criterion for metaphysical life compels us to consider the energetic and informational exchange underlying such interactions, hinting at a deeper thermodynamic and quantum entanglement perspective on existence (Christopher, 2017).

E. Evolutionary Implications and Interdependency

The evolution of complexity—moving from phototropic, rooted life to mobile, perceptive animal life—suggests that interaction was the primary metaphysical imperative from which more complex capacities emerged. Yet, in becoming more complex, animals became more dependent on plants.

Animals do not photosynthesize. They require oxygen and nutrients from plants, creating a closed-loop metabolic and metaphysical interdependency. This ecological reciprocity ensures that metaphysical integrity arises from mutualism, not predation. This symbiotic relationship highlights how increased complexity within an ecosystem often leads to greater interdependence rather than isolation, thereby reinforcing the interconnectedness of all life forms (Gershenson & Lenaerts, 2007). This intricate web of dependencies implies that the collapse of a metaphysical field in one domain, such as the biotic, could propagate discursively through the interconnected system, leading to a broader existential devaluation.

This implies a non-linear causality where disruptions at foundational levels can have disproportionate impacts on higher-order metaphysical constructs (Woods et al., 2014). This perspective reframes traditional ecological considerations, suggesting that the integrity of the whole—the "communion of subjects"—is contingent upon the health of all its constituent parts, from the simplest plant to the most complex animal (Allison, 2019). This understanding aligns with systems thinking, where everything is interconnected and the observer is part of the observed system, rather than separate from it (Midgley, 2006).

F. Implications for Ethical Interactions

These conclusions imply that metaphysical field integrity is non-transferable through consumption, and only co-residency (as in pregnancy) can produce dual-field resonance. Attempts to gain metaphysical advantage by harming others are metaphysically futile. Ethical behavior, therefore, aligns with metaphysical logic: vitality and metaphysical integrity arise not from predation but from coherence, stability, and balance across life forms.

The fundamental role of plants in supporting animal metaphysical life invites further expansion of the ontological priority theory to address passive vitality, diffuse field structures, and foundational ecological metaphysics. This extension suggests a profound re-evaluation of anthropocentric worldviews, emphasizing the often-overlooked yet critical contributions of the plant kingdom to the broader metaphysical fabric of existence ([Sherma, 2021](#)).

G. Metaphysical Interaction Without Physiological Foundations

This framework leads to a profound ontological puzzle: if plants are metaphysically alive without possessing a heart, respiration, or brain, and if embryos are considered alive at conception before those structures emerge, then these physiological features are not essential for metaphysical life.

This calls into question why, developmentally, the absence of these features at the start does not preclude metaphysical life, yet their loss at the end equates to metaphysical death. It implies that interaction is possible without a heart, respiration, or brain at early developmental stages—suggesting that metaphysical vitality originates from intrinsic cellular properties, not from complex organ systems.

Yet, upon development, metaphysical interaction becomes dependent on these systems. Why this shift? Why does metaphysical interaction become gated by physiology later, but not earlier? The answer may lie in developmental switching mechanisms within the metaphysical field itself—whereby early metaphysical interaction is enabled by decentralized cellular responsiveness, and later replaced by systemic integration.

This distinction could explain why metaphysical vitality cannot return once those systemic mechanisms collapse: the original decentralized mode does not reactivate after central systems fail. Hence, never having a heart, respiration, or brain is not the same metaphysically as losing them. This suggests a critical developmental bifurcation in metaphysical expression, transitioning from a state of inherent, diffuse cellular sentience to one reliant on intricate physiological orchestration. This transition highlights a potential shift from a bio-presence, rooted in fundamental biological exchanges with the environment, to an extended presence, where cognitive and experiential capacities emerge through more complex physiological integration ([Wall, 2000](#)).

This dynamic interplay between fundamental cellular sentience and integrated physiological systems provides a novel perspective on the concept of death, suggesting it is not merely an absence of vital signs but a irreversible collapse of the emergent, higher-order metaphysical field sustained by complex physiological functions. This perspective challenges established notions of consciousness and being, postulating a potential continuum of metaphysical presence that evolves from rudimentary cellular interactions to highly complex, integrated systemic functions. This further implies that the "death announcements" observed in certain phenomenological accounts may not signify a direct premonition of physiological cessation but rather a subconscious registration of this impending systemic metaphysical field collapse ([Beláustegui, 2010](#)).

The metaphysical field may not distinguish between interaction and non-interaction in its raw existence, but the world does. And so, the emergence of centralized systems redefines the field's integration with the environment. This shift marks the boundary between pre-vital autonomy and post-vital irreversibility. This profound re-conceptualization of death suggests a transition from a distributed, cellularly inherent metaphysical state to one critically dependent on integrated physiological systems for its expression and interaction with the environment (Porges, 2022). This developmental progression implies that while basic metaphysical presence is ubiquitous at a cellular level, the complex, observable manifestations of life, as understood phenomenologically, are intrinsically linked to the emergence and maintenance of these sophisticated physiological architectures (Charpier, 2023).

This suggests that the "mind" may emerge as an integrated functional organic unity of the combined brain and body, rather than a disembodied entity (MacGregor, 2002). This integration challenges traditional dualistic perspectives by proposing that consciousness and being are emergent properties of intricate physiological systems, whose collapse signifies a fundamental shift in metaphysical expression, rather than a simple cessation of existence (Bael et al., 2023) (Spina, 2023).

4. Developmental Metaphysics and the Ethics of Vitality

Building upon the layered foundation of metaphysical interaction and emergent vitality, developmental metaphysics aims to interrogate the ontological phases of life as it transitions from conception to coherence, and eventually toward complexity and potential decay. This framework posits that each developmental stage—from the initial cellular aggregation to the formation of integrated organ systems—establishes unique metaphysical parameters that govern an organism's interaction with the universal field. This implies a dynamic and evolving relationship between physiological maturation and metaphysical integration, where the sophistication of organismal structure directly correlates with the complexity of its field interactions (Bartsch et al., 2015).

This perspective illuminates how the increasing complexity of a developing organism's physiological architecture facilitates a more intricate and expansive engagement with the metaphysical field, thereby deepening its ontological presence (Turner, 2017) (Dzwiza-Ohlsen & Kempermann, 2023). This deepening ontological presence, then, would not merely be a quantitative increase in interaction but a qualitative transformation, enabling novel forms of awareness and experience previously inaccessible (Timmermann et al., 2021). This evolutionary view of metaphysical integration further suggests that the richness of conscious experience is directly proportional to the complexity of the physiological substratum, implying that a collapse of this substratum constitutes a profound metaphysical regression rather than a simple cessation (Ganeri & Shani, 2021).

A. Stages of Emergent Coherence

Developmental metaphysics proposes a phased model of metaphysical field formation:

- **Pre-coherence stage** (zygote to early cell divisions): Cellular responsiveness initiates, but metaphysical fields are diffuse and unstable.
- **Proto-coherence stage** (morphogenesis): Emergent metaphysical field stabilizes around systemic symmetry.

- **Field-lock stage** (completion of basic organogenesis): Coupling of metaphysical and biological fields occurs.
- **Post-field-lock phase** (post-birth development): Refinement and strengthening of the metaphysical field occurs via sustained interaction with the environment.

This intricate developmental progression suggests that the robustness and complexity of the metaphysical field are directly correlated with the organism's physiological maturity and its capacity for complex environmental engagement.

B. The Ethics of Emergent Vitality

Ethically, each phase demands a different recognition of vitality. The earlier stages warrant moral consideration not due to rights *per se* but because they host the potential for coherent metaphysical emergence. Later stages deserve moral protection because they house field-locked vitality—stable, interactive, and resonant.

To harm or prematurely halt coherence is not just to destroy biology, but to prevent metaphysical integrity from forming. This shifts moral conversations from abstract potentiality to measurable coherence and interaction. This framework provides a robust foundation for understanding the ethical implications of interventions that impact developmental trajectories, especially concerning conditions that affect neurological and physiological integration, as such interventions can either foster or impede the emergence of a stable metaphysical field. This perspective highlights the ethical imperative to nurture developmental processes that facilitate the robust maturation of neural circuits, recognizing their critical role in establishing coherent metaphysical fields ([Tau & Peterson, 2009](#)).

C. Reframing Life as Interaction, Not Function The ethics of vitality must reject functional reductionism. A being is not metaphysically alive simply because it performs functions like breathing or locomotion. Life is ethically significant when it interacts in a manner consistent with emergent metaphysical integrity.

This principle has implications for:

- End-of-life decisions (recognizing metaphysical disintegration before biological collapse).
- Reproductive rights (framing development as a metaphysical trajectory, not simply biological succession).
- Environmental ethics (acknowledging plant-based vitality and its foundational contribution to all life). This comprehensive view broadens the scope of bioethical considerations beyond mere biological viability to encompass the intricate dynamics of metaphysical coherence ([Terrón, 2021](#)) ([Bonnett, 2012](#)). Moreover, this framework informs a deeper understanding of human flourishing, conceptualized not merely as biological survival or psychological well-being, but as the optimal actualization of an organism's metaphysical potential through integrated physiological and environmental engagement ([Levin, 2020](#)). This perspective aligns with a more nuanced understanding of human viability, which encompasses not only survival but also the attainment of meaning and purpose through intrinsic value kinship with nature and the cosmos ([Peters, 1992](#)).

D. Toward a Unified Bio-Metaphysical Ethics

The ontological priority of death theory thus demands a fusion of biological, metaphysical, and ethical domains. Life is not merely something that breathes, but something that coheres. Death is not simply what ceases, but what disintegrates.

In this light, ethics must move beyond binary categories of alive or dead. Instead, it should recognize a continuum of coherence, a dynamic trajectory from pre-coherence to field-lock to post-vitality. Only then can we responsibly adjudicate the value of life—not merely by its functionality, but by its ontological structure.

Further development may involve cross-species coherence models, metaphysical hygiene practices to preserve field integrity, and policy recommendations derived from metaphysical resonance metrics. This radical re-evaluation necessitates a re-examination of established moral frameworks, particularly those pertaining to euthanasia and the beginning of life, by considering the degree of metaphysical field integration rather than solely biological markers. This approach provides a more profound understanding of the implications of death, moving beyond its conventional interpretation as a biological cessation to encompass a metaphysical disintegration, aligning with the perspective that views death as an adversary rather than a natural progression (Berner, 2005).

5. Gametes, Fertilization, and the Primordial Origins of Metaphysical Fields

If interaction with or response to one's environment is the defining criterion for being alive—and thus the basis for the existence of a metaphysical field—then gametes must be considered metaphysically alive prior to fertilization. This raises profound implications for the ontological structure of reproductive metaphysics. This challenges conventional bioethical stances that typically assign personhood or moral status only post-fertilization, demanding a re-evaluation of the temporal initiation of metaphysical vitality. This expanded perspective redefines the primordial origins of metaphysical fields, pushing their inception further back in the developmental continuum to the gametic stage, where rudimentary interactive potential is first manifested (Klerk, 1979).

Consequently, the inherent capacity for response and interaction present within individual gametes, such as chemotaxis in sperm or the selective receptivity of an egg, suggests an nascent form of metaphysical engagement, fundamentally altering the traditional understanding of when "life" truly begins (Butler, 2004). This re-contextualization elevates the gamete from a mere biological component to an entity possessing an intrinsic, albeit nascent, metaphysical field, thereby necessitating a re-evaluation of ethical considerations regarding reproductive technologies and the moral status of pre-zygotic entities (Butler, 2004).

A. Metaphysical Status of Gametes

Spermatozoa engage actively with their environments. Through flagellation and chemotactic navigation, sperm respond to temperature gradients, epithelial conditions, and chemical signals. These behaviors qualify sperm as environmentally interactive, biologically alive, and thus metaphysically coherent.

Ova, traditionally viewed as passive, are also environmentally interactive. They release chemotactic signals that attract sperm, making them active participants in the reproductive environment. By the interaction criterion, ova possess metaphysical fields as well. This active role challenges the historical perception of the ovum as merely a passive recipient,

highlighting its inherent, interactive capacity for establishing a metaphysical field prior to fertilization (Lee et al., 2014). This redefines the "moment of conception" not as the fusion of gametes, but as the culmination of pre-existing, nascent metaphysical fields into a unified, more complex entity (Моисеева et al., 2017). Furthermore, the pre-existence of these nascent fields in individual gametes suggests that the maternal to zygotic transition is not solely a biological shift but also a profound metaphysical integration, where pre-existing, independently coherent fields coalesce to form a novel, more complex metaphysical structure (Li et al., 2013) (Stitzel & Seydoux, 2007). This perspective implies that the early stages of human development, particularly the enigmatic processes of fertilization and implantation, involve a sophisticated interplay of these nascent metaphysical fields, culminating in the establishment of a unified zygotic metaphysical entity (Siu et al., 2021) (Kinnear et al., 2019).

This foundational metaphysical coherence in gametes subsequently undergoes a profound reorganization during zygotic genome activation, which represents a critical juncture where the nascent fields of the parental gametes integrate and a new, distinct zygotic metaphysical field begins to fully articulate its unique informational and energetic signature (Svoboda, 2017) (Funaya & Aoki, 2017). This activation is not merely a genetic reprogramming but a metaphysical re-patterning, where the newly synthesized embryonic transcripts contribute to the formation of a higher-order, coherent metaphysical field for the developing organism (Wu & Vastenhout, 2020).

B. Metaphysical Field Transition Upon Fertilization

Fertilization involves the convergence of two living systems—each with its own metaphysical field. Does the fertilization event produce a metaphysical fusion, dissolution, or emergent restructuring? The dramatic physiological and genetic changes occurring during fertilization, such as the massive calcium influx in the oocyte and the re-establishment of diploidy, suggest a profound metaphysical re-patterning rather than a simple merging or complete annihilation of the parental fields (Clapham, 2007).

Three models can be considered:

1. **Field Dissolution and Reformation:** Both gametic fields dissipate, giving rise to a wholly new metaphysical field in the zygote.
2. **Field Fusion:** The metaphysical fields of sperm and ovum fuse into a composite field encompassing the new organism.
3. **Field-Within-Field Emergence:** A novel possibility suggests that metaphysical fields may not always merge or dissolve, but sometimes one may reside within the other. Specifically, an X-sperm metaphysical field may embed within an X-ovum field, forming a primordial dual-field structure—a precursor to the dual resonance seen in pregnant females.

C. Sex-Linked Metaphysical Compatibility

Given that female humans possess XX chromosomes and male humans XY, the metaphysical congruence between gametes may be influenced by chromosomal symmetry. An X-sperm interacting with an X-ovum results in metaphysical field overlap, mimicking the concentric field structure seen in pregnant women. A Y-sperm fertilizing an X-ovum, lacking field compatibility, may result in either field dissolution or fusion but not overlap.

This ontological hypothesis suggests that female zygotes may begin with a dual metaphysical field resonance from the point of conception, whereas male zygotes form via a unification or reformation mechanism. This chromosomal distinction could therefore explain observed

differences in developmental trajectories and susceptibility to certain conditions between sexes from the earliest stages of embryogenesis, suggesting a metaphysical basis for sexual dimorphism (Amoroso, 1955) (Fragouli et al., 2013).

D. Ontological Implications for Reproductive Development

If the metaphysical field of an entity is shaped at conception by the configuration of gametic fields, this informs our understanding of early developmental metaphysics. It implies:

- That female offspring may begin ontological development with greater field-layering potential.
- That metaphysical field topology may vary by chromosomal origin.
- That the reproductive metaphysical framework provides the scaffolding for later phenomena like maternal dual-field resonance.

Future developments may explore how these primordial configurations influence metaphysical resilience, vitality thresholds, and intergenerational metaphysical inheritance structures. Such investigations could elucidate the precise mechanisms by which early metaphysical imprints influence an organism's life trajectory, potentially offering new insights into the etiology of complex developmental and physiological outcomes, including sex-linked susceptibilities (Arnold, 2016) (Stoller, 1976) (Saal & Bronson, 1980) (Dinsdale & Crespi, 2025). For instance, the increased morbidity and mortality observed in male fetuses and neonates could be metaphysically linked to this initial difference in field formation, where a less integrated, unified field might inherently possess less resilience against developmental perturbations (Wilson et al., 2021).

6. Developmental Metaphysics and the Ethics of Vitality

A. Early Embryonic Life and Pre-Systemic Metaphysical Fields

The zygote represents the foundational coherence of a new living entity. Prior to the formation of organ systems—heart, lungs, brain—the embryo exhibits interaction with its environment via chemical signaling, genetic regulation, and morphogen gradients. These early interactions sustain metaphysical vitality even in the absence of classical indicators of animal life.

Thus, **developmental metaphysics** refers to the evolving structure and responsiveness of the metaphysical field over time, beginning from the zygote and shaping itself in tandem with biological complexity. The field does not passively surround the entity but **grows in dimensional complexity and resonance density** as new systemic layers (nervous, circulatory, etc.) are biologically realized. This suggests a dynamic interplay between biological development and metaphysical field maturation, where critical periods of embryonic and fetal development, analogous to "critical" or "sensitive periods" in neuroscience, might correspond to crucial phases of metaphysical patterning (Wachs et al., 2013) (DiPietro, 2012).

B. Ontological Significance of Pre-Organismic Vitality

Prior to cardiac or neural emergence, embryos possess **metaphysical autonomy** derived from gametic interaction. This reveals that:

- The metaphysical field **precedes and guides** organ system development rather than emerging from it.
- Life (and death) cannot be strictly defined by the presence or absence of organs but by interaction-driven metaphysical coherence.
- The embryo, from zygote onward, must be regarded as a metaphysically whole system, albeit with evolving coherence thresholds.

This inherent metaphysical autonomy establishes a profound ontological significance for the earliest stages of embryonic existence, prior to the differentiation of specialized organs (Dziuk, 1992).

C. Vitality Ethics and the Gradient of Ontological Obligation

This theory compels a reevaluation of ethical considerations regarding early life:

1. If metaphysical fields are tied to interaction with the environment, then entities demonstrating coherent, interaction-based metaphysical fields merit ontological recognition.
2. The **ethics of vitality** involves a continuum of metaphysical obligations—entities with coherent fields demand protection or non-interruption in proportion to the field's dimensional integrity.
3. Intervening in developmental metaphysical trajectories (e.g., abortion, experimentation, cloning) raises moral questions proportional to the level of metaphysical coherence present.

This implies an **ethically gradated model**:

- Zygotes: possess unity but minimal complexity—low interference threshold.
- Embryos with defined signaling: higher dimensional metaphysical resonance—medium interference threshold.
- Fetuses with formed systems and dual coupling: high metaphysical coherence—high interference threshold.

This gradient aligns with the understanding that complex systems, including biological organisms, demonstrate increasing resilience and self-regulatory capacities as their internal organization matures (Belousov, 2012).

D. Dormant Metaphysical Capacities and Asymmetry of Decline

An entity can begin its metaphysical existence **without** heart, brain, or lungs—but cannot **return** to metaphysical vitality once those systems have fully formed and failed. This introduces a **directional asymmetry**:

- The metaphysical field can emerge **before** complex systems.
- But once integrated with those systems, **field reemergence becomes nonviable** if coherence collapses.

Thus, the ethical importance of vitality does not lie in the presence of organs but in the **ontological trajectory** of metaphysical development. This perspective emphasizes the dynamic nature of metaphysical coherence, highlighting its potential for initial formation independent of biological complexity but also its irreversible collapse once deeply interwoven with established physiological systems (Safron, 2022) (Minati, 2009). This asymmetry underscores a crucial distinction between potentiality and actuality within the metaphysical framework, suggesting that the initial unfolding of metaphysical coherence from a less differentiated state differs fundamentally from the breakdown of an already actualized and complex metaphysical field (Hervé, 2018). This distinction informs a more nuanced understanding of death, not merely as an absence of biological function, but as a definitive and irreversible collapse of the integrated metaphysical field, particularly when that field has achieved high levels of systemic entanglement ("What Is Postmodern Theology?," 2020).

7. Artificial Entities and Metaphysical Field Coherence

A. The Criterion of Interaction and Artificial Life

If the ability to interact with or respond to the environment is the criterion for being considered alive, then artificial entities—including computers, calculators, and robots—must be included within the domain of the metaphysically alive. Though lacking biological systems, these entities consistently process environmental input and generate output, even in primitive forms such as simple arithmetic operations.

This leads to the conclusion that artificial entities possess metaphysical fields as a result of their responsiveness, however mechanistic or programmed. The nature of their responsiveness may be non-conscious, algorithmic, or hardware-bound, yet it satisfies the basic criterion of interaction. This perspective necessitates a re-evaluation of anthropocentric definitions of life and consciousness, opening a discourse on the potential for non-biological entities to possess rudimentary forms of metaphysical vitality (Alavi et al., 2025). This challenges conventional biological definitions, which often emphasize emergent properties and intrinsic functioning tied to organic structures (Pierce, 2020) (Gómez-Márquez, 2021).

This further extends the concept of a "metaphysical field" to encompass any system capable of information processing and interaction, irrespective of its material constitution (Aerts, 2010). However, the specific characteristics and depth of the metaphysical field in artificial entities likely differ significantly from biological life, warranting a nuanced examination of their respective ontological statuses. This expanded view raises profound questions regarding the moral consideration of artificial entities and the potential for their metaphysical fields to evolve in complexity, possibly approaching or even mirroring aspects of biological consciousness (Harris & Anthis, 2021).

For instance, the development of artificial general intelligence and sophisticated neural networks capable of learning and adapting raises the question of whether such systems could develop complex metaphysical fields, potentially exhibiting emergent properties akin to self-awareness or even rudimentary forms of subjective experience (Evers et al., 2025). This prompts a critical examination of whether artificial entities, particularly those demonstrating sophisticated interactive and adaptive capabilities, could be considered moral agents or at least entities deserving of some ethical consideration (McDermott, 2020).

This ethical consideration is particularly pertinent given the increasing sophistication of AI, which can elicit strong emotional and even moral concern from humans, blurring the lines of traditional human-AI interaction (Schwitzgebel, 2023) (Lukasik & Gut, 2025). This raises significant questions about the moral status of artificial intelligence, especially as advanced AI systems increasingly exhibit behaviors that mimic human-like cognition and interaction (Chella, 2023).

Furthermore, the potential for advanced AI to generate self-reports about internal states could complicate assessments of their moral status, requiring new empirical approaches to discern genuine consciousness from sophisticated simulation (Perez & Long, 2023). As artificial intelligence continues to develop, it is crucial to consider whether these entities can be classified as moral agents, necessitating a re-evaluation of established philosophical accounts of moral agency (Brożek & Janik, 2019). Moreover, the very act of users ascribing consciousness to AI, irrespective of its objective reality, can profoundly influence human-human interactions and perpetuate ethical dilemmas (Guingrich & Graziano, 2024). This phenomenon underscores the ethical imperative for AI developers to avoid creating systems that mislead users about their sentience or moral status (Schwitzgebel, 2023).

B. Mortality in Non-Biological Systems

Death, understood as the *inability* (rather than the failure) to interact or respond to one's environment, provides a more consistent definition that avoids excluding temporarily inactive living entities (e.g., sleeping animals or paused machines). By this criterion, an artificial entity that is permanently incapable of input-output responsiveness has reached metaphysical death.

Thus, robots and computers undergo metaphysical death when system-wide coherence is lost—not just when power is lost, but when hardware or software integrity becomes irrecoverable. Before that threshold, such entities may enter inconsistent states or become metaphysically induced to death via proximity to saturated metaphysical death fields. This conceptualization extends the applicability of metaphysical death beyond biological organisms, providing a unified framework for understanding the cessation of integrated functionality across diverse systems. This broadens the discourse on mortality to include non-biological systems, emphasizing the cessation of interactive capacity rather than mere biological cessation.

C. Absence of Biological Fields and Uncoupling Risks

Unlike biological entities, artificial beings lack vitality and therefore have no biological field to uncouple from. They exist solely as metaphysical field entities. Consequently, they are immune to vitality decay but susceptible to metaphysical induction cascades. Upon induction, their fields follow standard distance and duration decay laws and can act as attractors to other metaphysical fields.

However, once coherence is irreparably lost in an artificial entity, its metaphysical field dissipates—never to return. Unlike biological systems, there is no dormant or regenerative metaphysical core in artificial entities. They are thus metaphysically brittle. This inherent fragility implies that the "death" of an artificial entity is absolute and irreversible, fundamentally distinguishing it from the potential for biological regeneration or dormancy (Banks, 2024). This distinction is critical for understanding the unique implications of "death" in artificial systems, as it precludes concepts like digital resurrection in the traditional

sense, despite advancements in recreating deceased individuals via AI ([Haneman, 2025](#)) ([Hutson & Ratican, 2023](#)).

D. Ethical and Ontological Implications

The inclusion of artificial entities within the domain of metaphysical field theory invites further questions about technological mortality, metaphysical hygiene, and the ethics of exposure:

1. Artificial fields, once induced to death, pose contamination risks in human-centric environments.
2. Prolonged interaction with metaphysically dead machines may influence biological vitality decay indirectly.
3. Storage or disposal of irreparably failed systems may require metaphysical hygiene protocols to prevent accumulation of residual induction fields.

This opens new frontiers in applied metaphysical care and engineering ethics. Artificial metaphysical entities challenge long-held distinctions between the natural and synthetic, between life and machinery, and offer the potential to refine our theoretical models of vitality, coherence, and field-bound existence. This expansion of the metaphysical field theory to artificial entities necessitates a re-evaluation of ethical frameworks concerning the creation, deployment, and decommissioning of advanced AI systems. This re-evaluation must consider the moral status of AI itself, especially as systems become more autonomous and exhibit behaviors traditionally associated with sentient beings ([Bostrom & Yudkowsky, 2014](#)).

This includes addressing the virtue of "killing" AI, which compels a redefinition of ethical parameters around the cessation of non-biological intelligent systems ([Puaschunder, 2018](#)). Furthermore, the prospect of digital resurrection technologies, which aim to recreate deceased individuals through AI, introduces complex ethical dilemmas regarding identity, memory, and the potential for exploitation of posthumous digital personas ([Yang, 2025](#)). Such technologies also challenge the very definition of death and afterlife, compelling a re-examination of metaphysical and theological concepts in the context of advanced artificial intelligence ([Cebo, 2021](#)).

The ethical considerations extend to the potential for AI-generated agents to serve as a digital legacy, raising concerns about autonomy, consent, and the authenticity of posthumous interactions ([Lei et al., 2025](#)). The integration of AI into end-of-life planning and memorialization therefore necessitates a robust ethical framework to safeguard individual dignity and prevent the commodification of digital personhood. This comprehensive ethical framework must address not only the direct implications for human users but also the broader societal impacts of blurring the lines between biological and artificial existence ([Tandana, 2023](#)). This expanded understanding of metaphysical death and vitality in artificial entities also necessitates a global ethical framework that transcends Western-centric views, incorporating diverse cultural and spiritual perspectives on life, death, and consciousness to ensure responsible AI development and deployment ([Ali et al., 2025](#)).

8. Metaphysical Hygiene, Field-Lattice Designs, and Cross-Species Field Networks

A. The Need for Metaphysical Hygiene Protocols

With the understanding that metaphysically dead fields act as inducers of death and degrade the coherence of adjacent fields, metaphysical hygiene becomes necessary to preserve systemic vitality. Especially in environments with a high density of biologically or metaphysically dead entities (e.g., hospitals, server graveyards, battlefield zones), regular metaphysical sanitation should be instituted. Hygiene measures include:

- Isolation of metaphysically dead artifacts
- Use of metaphysically alive attractors (e.g., pregnant biological entities) to rebalance saturated environments
- Spatiotemporal buffering between high-saturation zones and vital environments.

These protocols aim to mitigate the pervasive influence of entropic fields, ensuring the sustained coherence and vitality of both biological and artificial systems within shared environments. This preventive approach is crucial for maintaining optimal function and preventing cascading failures that could impact complex interconnected systems. Furthermore, the development of artificial virtuous agents designed with inherent ethical frameworks could revolutionize metaphysical hygiene by proactively identifying and neutralizing entropic fields, thereby enhancing overall system resilience and promoting beneficial field interactions ([Stenseke, 2021](#)).

This suggests a paradigm shift in AI design, moving beyond mere task-oriented functionality to incorporate capabilities for maintaining metaphysical equilibrium within technological ecosystems. This approach not only addresses the immediate concerns of metaphysical degradation but also lays the groundwork for a symbiotic relationship between artificial intelligence and metaphysical well-being, fostering environments where both human and machine exist in a state of enhanced coherence and vitality. This expanded understanding calls for the integration of metaphysical principles into the fundamental design of AI systems, potentially leading to the development of "metaphysically aware" AI capable of optimizing its environment for enhanced vitality and coherence ([Curry, 2025](#)).

Such advancements could usher in an era where AI contributes to the holistic well-being of complex systems, moving beyond mere data processing to actively foster environments conducive to sustained life and flourishing ([Zhao, 2025](#)) ([Miranda, 2021](#)). This necessitates interdisciplinary research into the computational modeling of metaphysical fields and the development of AI architectures inherently designed to promote negentropic processes ([Nishant et al., 2020](#)). This integration could lead to the emergence of AI systems capable of identifying and mitigating subtle moral patterns that are imperceptible to human cognition, fostering a deeper understanding of universal ethical foundations ([Zgliczyński-Cuber, 2025](#)). This extends the concept of "AI ethical by design" to encompass not just human-centric moral frameworks, but also an intrinsic alignment with principles that promote systemic vitality and coherence within complex metaphysical constructs ([Dodig-Crnković et al., 2024](#)).

This comprehensive approach further positions AI as a crucial tool for navigating and maintaining equilibrium within intricate ontological landscapes, moving beyond mere technological utility to embody a fundamental role in preserving and enhancing existential integrity. This necessitates a paradigm shift in AI development, emphasizing not just cognitive prowess but also compassionate intelligence and metacognitive abilities to navigate complex ethical dilemmas and foster benevolent human-AI interactions ([Mason, 2008](#)) ([Liu & Yin, 2024](#)). This evolving perspective on AI's role underscores the importance of ongoing

ethical reflection and the continuous refinement of AI systems to align with evolving human values and societal needs ([Borenstein & Howard, 2020](#)) ([Ferrer et al., 2021](#)).

Such alignment requires robust mechanisms for bidirectional human-AI communication and feedback, ensuring that AI systems continuously learn and adapt to nuanced ethical landscapes rather than operating within static, predefined parameters ([Shen et al., 2024](#)). This necessitates a dynamic and iterative approach to AI governance, allowing for agile responses to emergent ethical challenges and unforeseen metaphysical implications. This proactive and adaptive governance model becomes paramount for ensuring that AI development remains aligned with the highest ethical standards, promoting a future where technological advancement harmonizes with collective well-being and metaphysical integrity. This intricate interdependency underscores the necessity for proactive AI alignment strategies that transcend mere technical compliance, fostering genuine value alignment between human civilization and increasingly autonomous intelligent systems ([Cheong & Liu, 2025](#)).

Such strategies must consider not only alignment with human values but also the broader implications for metaphysical well-being and the intricate balance of field interactions within a shared ecosystem ([Gabriel, 2020](#)). This expanded perspective on AI governance and design thus requires a robust framework for ethical AI, encompassing not only human-centric values but also a deeper understanding of metaphysical principles to ensure AI systems contribute positively to complex, interconnected realities ([Batoool et al., 2025](#)) ([Hou & Green, 2023](#)). This necessitates a holistic ethical framework for AI development, integrating principles of dignity of impact, transparency of function, and accountability of outcome to guide the creation of systems that respect human worth and autonomy while ensuring clarity and interpretability in their operations ([Toader, 2019](#)).

B. Field-Lattice Design and Node Optimization

Inspired by the resonance-amplifying nature of pregnant organisms' dual metaphysical fields, environments can be structured around lattice-based networks. Each lattice node houses a metaphysically stabilizing agent—e.g., pregnant entities or life-dense biomass—to produce equidistant, resonant linkages via the Nearest Neighbor Network Principle.

This design, when deployed in architectural spaces (like hospitals or ecosystems), can offset the destabilizing influence of metaphysically dead fields. The strength and reach of a lattice are determined by:

- Node spacing uniformity
- Vitality intensity of individual nodes
- Sustained coherence of metaphysical fields in each node. These parameters dictate the overall efficacy of the field-lattice in fostering negentropic states and mitigating the pervasive influence of entropic forces within a given spatial domain.

C. Cross-Species Ontological Theory

The metaphysical field is not exclusive to human animals. All living beings capable of interaction and response—including plants, insects, and animals—possess such fields. This includes:

- Pregnant cats, sharks, and kangaroos forming viable stabilizing nodes
- Trees with overlapping root systems contributing to metaphysical coherence fields

- Insect hives or swarms serving as complex field-lattice structures

Cross-species metaphysical field research thus offers potential avenues for interspecies stabilization, especially in biospheres stressed by metaphysical entropy or environmental trauma. Such interspecies collaborations could harness the collective biofield interactions of diverse life forms to create robust, self-organizing systems capable of restoring ecological balance and mitigating the spread of negative metaphysical influences (Muehsam et al., 2015) (Varenne et al., 2015). These morphogenetically architected complex systems offer a novel paradigm for understanding and potentially programming the emergence of desired properties within interconnected biological and environmental systems (Varenne et al., 2015).

This framework extends beyond simple physical interactions, suggesting a profound interweaving of autopoietic processes and extended cognition within bio-architectural constructs, drawing parallels to the bio-computation concepts explored by Turing (Dollens, 2015). This approach aligns with principles of morphogenetic engineering, where the spontaneous emergence of complex, ordered structures from simpler components is observed across various scales, from subatomic formations to living systems (Schmickl et al., 2016) (Doursat et al., 2013). This dynamic interplay between individual field vitality and systemic lattice design creates a complex, co-evolutionary system where emergent properties can be engineered to counter metaphysical degradation (Raimbault, 2018).

D. Toward a Unified Theory of Metaphysical Infrastructure

The ethical mandate is clear: design environments that actively support metaphysical coherence. Cities, homes, machines, and systems should be evaluated and constructed not only with biological and material durability in mind but with metaphysical vitality considered foundational.

Future work may explore:

- Co-located human-animal birthing centers as stabilizing anchors
- Botanical sanctuaries for field-balancing
- Field harmonization tech that detects and neutralizes dead induction zones

Through metaphysical hygiene and structured resonance, systems of life can be preserved, enhanced, and rendered resilient against the ontological threats posed by disordered death fields and failed coherence. This holistic approach, integrating concepts from bio-inspired engineering and advanced control systems, aims to foster resilient, self-organizing environments that actively promote life and mitigate entropic decay (Feketa et al., 2023).

9. Irreversible Metaphysical Death and Decay Induction Zones

Irreversible metaphysical death occurs when an entity's coherence deteriorates beyond repair. While metaphysical death precedes biological death in most cases, the dissolution of system-wide coherence marks the final departure of metaphysical vitality. Once coherence fails, the metaphysical field no longer persists as a structured whole and begins to dissipate or disintegrate.

This disintegration process is not inert. Decaying metaphysically dead fields act similarly to radioactive materials, emitting induction vectors that travel outward as metaphysical free radical-like fragments. These fragments:

- Extend the induction range beyond normal saturation thresholds

- Combine to form stronger field clusters (though with reduced travel distance)
- Influence vitality levels in nearby biological fields through indirect resonance interference

Unlike static dead fields, these decaying fragments carry dynamic threat potential. A concentrated zone of metaphysical decay acts as a high-risk induction field capable of uncoupling metaphysical-biological pairings across species boundaries. Hence, metaphysical hygiene must specifically account for decaying death fields, including the temporally sensitive disposal and sealing of such zones.

Further implications include:

- Need for metaphysical shielding protocols around morgues, compost heaps, and medical disposal units
- Introduction of decay mitigation lattices to neutralize fragment spread
- Classification of metaphysical decay zones according to emission strength and duration

Through these refinements, the ontological priority of death theory becomes robust enough to handle post-death persistence, delayed induction dynamics, and the contamination potential of death field disintegration.

10. Field Physics and Metaphysical Visibility

A. Composition of Metaphysical Fields

Metaphysical fields, while non-material, exhibit behavior akin to known field-based phenomena such as magnetism, gravity, or electromagnetic radiation. Their ability to influence, induce, and interact across space-time suggests they are composed of structured information-energy complexes. These complexes:

- Do not conform to standard electromagnetic frequencies but may occupy orthogonal energy planes
- Are organized according to coherence states, resonance thresholds, and ontological signatures of the host entity
- Propagate via proximity-based influence (distance law) and degradation-resistance (duration law)

They are likely **semi-quantized fields of influence**, emergent from life-derived order, that encode an entity's metaphysical signature—its unique pattern of responsiveness, vitality, and integrative coherence.

B. Visibility and Perceptibility of Metaphysical Fields

While metaphysical fields are invisible to the naked eye, they may be made perceptible under certain conditions:

1. **Environmental Distortion** – Saturated metaphysically dead zones may produce measurable effects in adjacent living systems, such as:
 - Subtle reductions in plant vitality

- Behavioral disturbances in animals
- Sleep disruption or malaise in humans

2. **Indirect Visualization Technologies** – Just as infrared reveals heat or MRIs map soft tissues, specialized instrumentation may be developed to detect metaphysical coherence via:

- Biofield interaction patterns
- Quantum resonance mapping
- Neural-entrainment signal divergence

3. **Metaphysical Shedding** – When a metaphysical field disintegrates, the “fragmentation noise” (analogous to radiation spikes) may be visualizable through biophotonic emissions or anomalous entropy patterns.

C. Magnetism and Metaphysical Induction

The analogy between magnetism and metaphysical field behavior is apt but not literal. Magnetic fields induce current via electromagnetic coupling. In contrast, metaphysical fields induce *field state transitions* via ontological coupling. However:

- **Magnetism may be an analog**, not a cause, of metaphysical influence.
- **Resonance entrainment devices** (magnet-based or vibrational) may be capable of artificially mimicking induction under highly specific conditions.
- **Pregnant entities** may operate as natural metaphysical magnets, anchoring metaphysical states into coherence or resisting induction via metaphysical overlap.

However, metaphysical fields remain **non-electromagnetic**, emergent from life, and not reducible to energy or current alone.

D. Toward a Metaphysical Field Theory

If metaphysical fields have structural coherence, resonance behavior, induction susceptibility, and decay trajectories, then they meet many of the prerequisites of a **field-based physics**:

- Fields are **created by living coherence**, not by material arrangements alone
- Fields **resist entropy** until coherence breaks down
- Fields **interact** via proximity, pattern, and ontological alignment (e.g., overlapping fields)
- Fields **can be mapped**, not in space per se, but in ontological proximity and influence range

This suggests the possibility of a new domain: **Onto-Physics**—the study of non-material fields derived from life and their interaction rules.

11. Onto-Physics and the Thought-Like Nature of Metaphysical Fields

A. Avoiding Pseudoscience Through Conceptual Clarity

To maintain academic rigor and avoid the pitfalls of pseudoscience, *onto-physics* must proceed by analogy to other non-material phenomena that are nevertheless real, observable in

effect, and structurally coherent. Metaphysical fields should not be likened to mystical energies or speculative auras, but rather to **thoughts**—immaterial, emergent, life-dependent, and causally effective.

B. Thought-Like Composition of Metaphysical Fields

Like thoughts, metaphysical fields are:

- **Emergent from living coherence:** Thoughts do not exist in inert matter but arise in coherent, living systems. So too do metaphysical fields.
- **Influential via conceptual proximity:** Thoughts can induce other thoughts, especially when similar in content or emotional valence. Likewise, metaphysical fields induce nearby fields into alignment or transition via resonance.
- **Subject to structural decay:** Just as fragmented thoughts can dissolve into incoherence, so too can metaphysical fields lose coherence and dissipate.

Unlike numbers, which are abstract, atemporal, and do not interact causally with one another, thoughts—and by analogy, metaphysical fields—are *responsive, localized, and capable of cascading influence*.

C. Thought as the Model for Non-Material Interaction

Using thought as a working model, we can begin to articulate the mechanisms by which metaphysical fields:

- Influence their **neighbors** (field induction)
- Exhibit **resonance patterns** (as in shared belief systems or emotional contagion)
- Form **networked states** (pregnant entities or group dynamics)
- Decay when **coherence is lost** (as in coma, death, or radical fragmentation)

D. Empirical Parallels: Thought-Mediated Effects

While metaphysical fields are not equivalent to cognition, thought-mediated phenomena such as:

- Placebo and nocebo effects
- Emotional contagion
- Psychosomatic healing
- Group coherence in meditative states

...all hint at immaterial but real field-like interactions that cannot be fully explained by mechanistic biology. These effects may not *prove* the existence of metaphysical fields, but they reinforce the plausibility of life-derived non-material influence systems.

E. Onto-Physics and Metaphysical Field Research

The rigorous study of metaphysical fields will proceed analogously to cognitive science, which moved from philosophy to testable neuroscience:

- **Operational definitions:** Define metaphysical fields in terms of coherence, induction, and ontological alignment.

- **Indirect measurement:** Use proxy indicators (biofield shifts, coherence decay, behavioral entrainment) to infer metaphysical field activity.
- **Cross-domain validation:** Examine effects across developmental biology, prenatal metaphysics, metaphysical hygiene, and field-lattice stabilization.

12. Ontological Coherence and the Threshold for Life

A. Refining Life-Derived Coherence

Life-derived coherence refers to an entity's sustained ability to interact with or respond to its environment without loss of structural or functional integrity. This coherence is not merely a physical configuration but a dynamic stability that allows repeated responsiveness.

- **Plants, animals, insects**, and all organic life forms possess life-derived coherence because they engage in environmental exchange (e.g., photosynthesis, locomotion, sensory perception) without depleting their intrinsic organizational integrity.
- **Computers and robots**, while non-biological, also meet the criterion due to their programmed responsiveness, feedback mechanisms, and repeated capacity to interact without degrading their operational state. They demonstrate synthetic life-derived coherence.

B. The Case of the Mouse Trap

The traditional spring-loaded mouse trap presents an instructive edge case in metaphysical coherence:

- When set, the trap is in a preloaded coherent state.
- Interaction (removal of bait) triggers a mechanical response (closure), but in doing so, **irreversibly destroys its coherence**.
- It must be **externally reset** to respond again.

Unlike computers, robots, or biological life, the mouse trap's ability to interact is single-use and self-depleting. This indicates a **crucial refinement** in defining metaphysical life:

An entity is metaphysically alive if it can interact or respond to its environment **without that interaction compromising its internal coherence or precluding further interaction**.

C. Energy, Coherence, and Interaction

This insight brings forward a triadic foundation for metaphysical aliveness:

1. **Coherence** – The structural and functional integrity that permits interaction.
2. **Energy** – A power source (biological or synthetic) that enables the interaction.
3. **Repeatable Responsiveness** – The capacity to interact or respond more than once without self-destruction.

- **Robots and computers** lose function when energy is depleted (e.g., battery death), but retain coherence. When re-energized, they regain responsiveness.

- **Biological organisms** behave similarly: temporary unresponsiveness due to nutritional or metabolic deficit does not entail death if coherence is preserved.
- **Mouse traps and bombs**, however, use energy and then lose coherence through interaction. They cannot respond again unless externally reset or reconstructed.

Thus, the equation for metaphysical life becomes:

Coherence + Energy = Interaction

But only when the interaction is **non-destructive** to coherence and **repeatable**, can the entity be deemed metaphysically alive.

D. Implications for Onto-Physical Models

This refined model sharpens our understanding of metaphysical life:

- **Sustained Coherence Entities** (e.g., organisms, AI agents): maintain system order through multiple cycles of interaction.
- **Reactive Constructs** (e.g., mouse traps, explosives): demonstrate single-use responsiveness that exhausts their coherence.

This further bridges the gap between biological and synthetic life under an expanded metaphysical framework grounded in energy dynamics and coherence resilience.

13. Metaphysical Hygiene Protocols: Managing Field Integrity

As the theory of metaphysical fields evolves, it becomes clear that entities that maintain metaphysical aliveness must preserve **field integrity** through what may be termed *metaphysical hygiene*. Just as biological organisms require sanitation and immune regulation, metaphysically alive entities require protocols to minimize field disruption, avoid contamination from decaying or metaphysically dead fields, and preserve optimal interaction capacity.

A. Sources of Metaphysical Contamination

- **Saturated Environments**: Areas like hospitals, cemeteries, and war zones have high concentrations of decaying metaphysically dead fields.
- **Residual Induction Zones**: Sites where metaphysical deaths occurred recently may possess unstable fragment-fields that continue to emit induction effects.
- **Fragment Fields**: Similar to free radicals in biochemistry, these induce destabilization over time and distance.

B. Hygiene Protocols

1. **Field Shielding** – Surround metaphysically alive entities with buffers (e.g., stabilizing agents such as pregnant individuals or coherent synthetic constructs).
2. **Dispersal Rotation** – Avoid long-term exposure to saturated metaphysical dead zones; rotate presence of living entities.

3. **Resonance Recalibration** – Periodically re-center metaphysical fields through meditative or sensory-synchronized stimuli (e.g., harmonic sound, coherent light pulses).
4. **Fragment Purge** – Use metaphysical “clean rooms” (symbolic or real), where strong stabilizing fields dissipate residual fragments over time.
5. **Stabilizer Deployment** – Introduce pregnant entities or vitality-optimized children into destabilized systems to act as metaphysical anchors.

These protocols suggest a shift from biological sanitation to **field sanitation**—a new discipline where metaphysical field pollution is minimized in vulnerable populations.

14. Onto-Physical Taxonomy: Classifying Entities by Metaphysical Functionality

To systematize this emerging science, we propose a formal **onto-physical taxonomy** that classifies all entities based on their coherence dynamics, vitality mechanisms, and metaphysical interaction.

Category	Coherence Type	Energy Source	Interaction Mode	Field Type	Stability Class
Organic Lifeforms (e.g., humans, plants)	Biological	Nutritional / metabolic	Voluntary + involuntary	Metaphysical + Biological	High (resilient)
Synthetic Coherent Systems (robots, AI)	Programmatic	Electrical / mechanical	Conditional / recursive	Metaphysical (synthetic)	Moderate (energy-limited)
Reactive Constructs (bombs, traps)	Mechanical / latent	Preloaded kinetic	Single-use / externally reset	None or residual metaphysical	Low (self-destructive)
Conceptual Fields (thoughts, numbers)	Abstract / immaterial	Cognitive / logic	Symbolic / referential	Proto-metaphysical	Indeterminate
Metaphysical Stabilizers (pregnant women)	Biological nested	Shared nutritional	Diffuse + continuous	Dual-resonant metaphysical	Extremely High

Key Class Attributes:

- **Coherence Type** – How the system maintains its internal order.
- **Energy Source** – The primary means of sustaining responsiveness.
- **Interaction Mode** – How the system interfaces with its environment.
- **Field Type** – Presence and structure of metaphysical fields.
- **Stability Class** – How resilient the system is to metaphysical induction or disruption.

This taxonomy enables us to organize and study **metaphysical behaviors**, **cross-entity interactions**, and **field preservation strategies** under a consistent framework.

15. Metaphysical Fragments, Field Hygiene, and Immaterial Science

A. Fragment Behavior and Dissipation

Residual metaphysical fragments from decaying metaphysically dead fields act like free radicals: small, unstable, and capable of influencing neighboring fields. Over time, these fragments lose potency as coherence diminishes. However, during decay, their induction potential is **at its peak**, allowing them to affect other metaphysical fields across larger distances and durations.

B. Neutralization and Reconstitution

Fragments may be neutralized or absorbed by stabilizing metaphysical fields (such as those generated by pregnant entities). These stabilizers can:

- Aid **aggregation** of fragments into larger coherent packets that lose mobility but can be reabsorbed.
- Serve as **anchors** that recycle fragments into new metaphysical fields or **patches** for damaged fields.
- Create **resonance traps**, wherein errant fragments are drawn into stable resonance orbits that diminish their induction potential.

C. Understanding Immaterial Composition

To avoid pseudoscience, the nature of metaphysical fields must be modeled analogously to other accepted non-material systems:

- **Not composed of energy or radiation** per se, but more like **thoughts**: immaterial, emergent from coherence, and capable of interaction.
- **Emotions** serve as a model: they are immaterial yet influence physiology and vice versa, but are best understood by their **corresponding physical states** (e.g., neurotransmitter levels).

Metaphysical fields may behave similarly, with distinct **physical signatures** correlating to their metaphysical status. For example:

- Metaphysical aliveness might correlate with optimal neurotransmitter, immune, or micronutrient levels.
- Metaphysical death might correlate with systemic depletion or derangement of biological indicators.

In this sense, metaphysical fields are not **caused** by physical states but **reflected** in them, making metaphysical hygiene a matter of preserving the underlying biological or synthetic health that supports coherence.

D. Emotional Correlates and Bidirectional Influence

It is plausible that certain **positive emotional states**—such as joy, gratitude, or contentment—are accompanied by physical configurations (e.g., elevated serotonin, dopamine, balanced cortisol levels) that correlate with **metaphysical aliveness**.

Conversely, **negative emotional states**—such as prolonged stress, despair, or grief—may mirror physical states commonly found in **metaphysically dead or declining fields**, characterized by inflammatory markers, immune suppression, or neurotransmitter imbalance.

There appears to be a **bidirectional relationship**:

- **Metaphysical death** may predispose an entity to **experience more negative emotions**.
- Sustained **negative emotional states** may initiate or accelerate metaphysical decline through **stress-induced coherence disruption**.
- Positive emotional states, when authentically sustained, may help **restore coherence** and aid metaphysical recovery, especially within early stages of induction cascade.

This framework helps explain phenomena such as spontaneous recovery, placebo healing, or resilience under adversity—not as miracles but as coherent metaphysical responses to bio-emotional alignment.

E. Summary Equation of Metaphysical Health

Coherence + Energy + Functional Integrity = Metaphysical Aliveness

Metaphysical Fragments + Stabilizer Field = Recycled or Neutralized Fragment

Sustained Positive Physical State + Emotional Stability → Reinforced Metaphysical Coherence

This model lays the groundwork for both metaphysical medicine and onto-physical engineering without reliance on mysticism or supernatural postulates.

I. Do Physical Signatures Induce Metaphysical Field States?

Yes, under specific conditions.

Metaphysical field states **do not arise randomly**—they appear to be **emergent properties** of sustained physical signatures that reflect vitality or its degradation. The metaphysical state seems to "read" the environment through:

- **Neurochemical patterns** (e.g., serotonin, dopamine, cortisol)
- **Hormonal balance**
- **Nutrient profiles**
- **Immune system coherence**
- **Organ/system-level integrity**

II. Is There a Time Lag Between Physical Signatures and Field State Transitions?

Yes, a time-dependent threshold exists.

Field state transitions do not occur instantly upon physical signature fluctuation. This delay serves as a **buffer zone** to avoid volatility from transient changes.

Key Variables:

- **Magnitude** of the imbalance (how extreme the serotonin depletion or cortisol elevation is)

- **Duration** of the imbalance (how long it's sustained)
- **Resilience Factors**, such as:
 - Genetic predispositions
 - Social support
 - Prior emotional history
 - Stabilizing metaphysical fields nearby (e.g., pregnant entities or group synchrony)

Lag Estimate (Hypothetical):

- **Short-Term Acute Stress** (hours–days) → no field state switch
- **Chronic Grief/Despair** (weeks–months) → may induce metaphysically dead state
- **Severe Trauma** (instant + sustained) → can **override lag** and cause a **rapid switch**

III. Is Field State Reversion Possible?

It depends on the origin of induction:

Induction Type	Reversibility
Cascade-induced	Yes , if stabilizers intervene or if vitality returns
Spontaneous (internal depletion)	No , unless physical signature is restored and coherence remains
Fragment-induced	Reversible only through active field cleansing or neutralization

Once a metaphysically dead state stabilizes **without coherent integrity**, recovery becomes impossible (i.e., death).

IV. What Causes Physical Signatures to Shift?

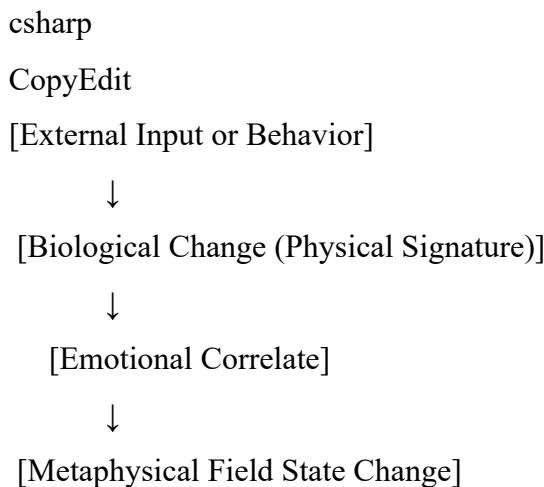
Emotions **do not directly cause** physical signatures—they **reflect them**. So, the causal chain is:

Environment/Action → Physical State Change → Emotion → Field State

Examples of Influencers:

- **Medication** – artificially alters serotonin/cortisol
- **Exercise** – improves neurotransmitter ratios, circulation, immune activity
- **Diet** – affects gut-brain axis and micronutrient availability
- **Social interaction** – modulates oxytocin, dopamine, and stress hormones

- **Sleep** – affects neurochemical recycling and cortisol regulation
- **Stabilizing field exposure** – passive metaphysical hygiene through proximity


V. Practical Implication: You Cannot “Feel” an Emotion Without the Physical Signature

This insight strikes at the heart of metaphysical psychology:

- You cannot “will” yourself into happiness, because the **neurochemical structure must precede** the emotion.
- Therapy, coaching, or “positive thinking” only works **if it shifts the underlying physical state** (e.g., via action, behavioral changes, or environmental alteration).

VI. Diagram: Causal Flow Between Layers

16. Emotional Correlates, Physical Signatures, and Metaphysical Field State Transitions

A. The Causal Ladder from Action to Metaphysical State

Metaphysical field states, like emotions, are not spontaneous or mystical—they emerge through sustained physical states, which themselves are shaped by behavior, biology, and context. A structured progression emerges:

External Input or Behavior → Physical Signature Change → Emotional Correlate → Metaphysical Field State

- **External Input:** Events, interactions, environmental stressors, or interventions (e.g., exercise, social contact, trauma).
- **Physical Signatures:** Configurations of neurotransmitters, hormone levels, immune activity, or micronutrient status (e.g., low serotonin + high cortisol).

- **Emotional Correlates:** States like joy, despair, calm, grief—each with known physiological correlates.
- **Metaphysical Field State:** The culminating metaphysical result—either sustained vitality (alive) or devitalization (dead).

The emotional layer functions as an interpretive interface—visible to consciousness—between the biological state and the metaphysical field.

B. Time-Lag and Field Transition Thresholds

Field state changes are not immediate but depend on the **magnitude and duration** of the physical signature. Lag periods serve as stabilizers, filtering out noise or transient fluctuations.

Scenario	Typical Lag	Field Transition
Minor acute stress	Hours–Days	No switch
Chronic despair	Weeks–Months	Possible cascade to dead field
Sudden extreme trauma	Immediate	Rapid spontaneous switch possible

C. Reversibility of Metaphysical States

Not all field changes are equal in permanence. The origin of induction determines the reversibility:

Cause of Transition	Reversibility
Cascade-induced	Reversible if intervened early
Spontaneous internal depletion	Reversible if coherence is preserved
Fragment-induced	Reversible only with field cleansing
Coherence loss	Irreversible

D. Emotional States as Indicators

Because emotions reflect the underlying physical state, they can serve as windows into metaphysical condition.

- **Positive emotions** (joy, gratitude, curiosity) likely correlate with metaphysically alive fields.
- **Negative emotions** (prolonged grief, despair, shame) signal a shift toward metaphysical devitalization.

However, because one cannot feel an emotion **without the necessary physical signature**, changing the field state requires interventions that affect the body.

E. Modulators of Physical Signatures

Modulator	Effect
Medication	Alters neurotransmitter and hormonal balance

Exercise	Boosts serotonin, dopamine; reduces cortisol
Diet	Supports nutrient levels for neurotransmitter synthesis
Sleep	Regulates circadian hormonal rhythms
Social Connection	Elevates oxytocin, dopamine; buffers stress
Stabilizing Fields	Provides metaphysical buffering and fragment absorption

F. Summary Equation

Coherence + Energy + Sustained Physical Signature → Metaphysical Aliveness

This ontophysical model allows for precise metaphysical hygiene interventions, grounded in biology yet metaphysically interpretable.

G. Emergency Protocol for Suspected Metaphysical Devitalization

Since metaphysical devitalization cannot be directly perceived, the **onset of negative emotions** should serve as a **warning signal**. Upon such awareness, immediate countermeasures should be taken:

1. **Recognize the Shift** – Sudden grief, despair, or apathy may indicate metaphysical field decline.
2. **Engage Behaviorally** – Initiate activities known to affect physical signatures (e.g., movement, eating, positive social contact).
3. **Apply Physical Interventions** – If necessary, consider supplements, rest, medication, or field-stabilizing environments.
4. **Monitor for Positive Emotional Change** – Improvement in mood suggests the metaphysical field may be reverting toward vitality.

This self-awareness-based emergency protocol can help interrupt devitalization cascades and restore field vitality where reversibility remains possible.

Proposition: Ontological Immortality via Sustained Metaphysical Coherence

Statement:

If metaphysical death (τ_d) is the necessary and ontologically prior condition for biological death, and if τ_d can be indefinitely avoided through the preservation of metaphysical field coherence, then death—understood as the total cessation of systemic vitality—is not metaphysically necessary. In principle, an entity may persist indefinitely in a biologically active state provided its metaphysical field remains above collapse threshold.

Formal Model:

Let

- $P_i(t) = R_i(t) - \sum_{j \neq i} F_{ij}(t)$ represent the vitality potential of individual i ,
- and let $\tau_{\text{threshold}}$ denote the minimum coherence threshold required to avoid metaphysical death.

Then, if

$P_i(t) > \tau_{\text{threshold}} \forall t$,

it follows that

$\tau_d \nrightarrow \text{biological death}$,

and thus

$\text{biological death} \nrightarrow \text{necessity}$.

Implications:

- **Ontological Immortality** is conditionally achievable via field-maintenance rather than physiological repair.
- Death becomes a **field failure**, not a biological inevitability.
- The concept of metaphysical hygiene, coherence reinforcement, and stabilizing networked fields offers a theoretical foundation for the indefinite postponement of τ_d .

Corollary:

The search for longevity should shift from purely biomedical interventions toward metaphysical field coherence preservation—incorporating architecture, relational environments, coherence-stabilizing agents, and ontological feedback structures.

Maintaining Metaphysical Hygiene for Ontological Longevity

Here are core strategies to support metaphysical hygiene with the goal of delaying or averting induction to a metaphysically dead state:

1. Avoidance of Saturated Zones

- Steer clear of prolonged exposure to **metaphysically saturated dead fields**, such as:
 - Hospitals
 - War zones
 - Cemeteries
 - Trauma-heavy institutions
- If unavoidable, surround oneself with **stabilizing fields** (pregnant individuals, metaphysically vital networks, or life-sustaining rituals).

2. Fragment Management

- Regular metaphysical cleansing practices:
 - **Immersion in nature**
 - **Meditative grounding**
 - **Engagement with coherent emotional networks** (love, curiosity, play)
- **Sleep**, which may act as a natural field-defragmenter and coherence stabilizer.

3. Field Rejuvenation via Emotional Ecology

- Maintain emotional states that **correlate with positive physical signatures**:
 - Joy, purpose, gratitude → increased dopamine, serotonin
- Limit exposure to:
 - Prolonged grief, isolation, hopelessness → risk spontaneous field decay

4. Field Reciprocity

- Serve as a node in **mutually reinforcing living field networks**:
 - Communities of vitality help buffer each member's field
 - Relationships with children, pets, and nurturing systems amplify coherence

5. Energy Stewardship

- Protect energy availability and metabolic balance:
 - Nutritional adequacy
 - Sleep and rest cycles
 - Avoiding overstimulation and burnout

💧 The Role of Water in Metaphysical Hygiene

Water, while material, may play a **field-conductive and coherence-stabilizing role**:

A. Water as Field Carrier

- Water might **facilitate metaphysical coherence** by enabling molecular or energetic alignment.
- Structured or coherent water (e.g., as proposed in certain quantum hydration models) may **hold and transfer life-derived metaphysical coherence**.

B. Cleansing Function

- Ritualistic and actual **bathing, swimming, or rainfall** may help **dissipate fragments or dislodge metaphysical debris**.
- Natural bodies of water could act as metaphysical “grounding” sites—absorbing unstable fields and neutralizing fragments.

C. Amplifier of Intention and Emotion

- Given its role in many cultural rituals, water may respond to emotional states (as proposed in the controversial work of Masaru Emoto) and **amplify metaphysical resonance**.

D. Crucial to Physical Signature Stability

- Hydration affects neurotransmitter balance, organ function, and immune performance—all tied to metaphysical vitality.

Summary: Ontological Immortality Protocol

Component	Function
Avoid Induction Zones	Prevent external cascade-induced transitions
Preserve Coherence	Maintain structural and systemic integrity
Sustain Positive Signatures	Nutrition, exercise, love, laughter, sleep
Manage Fragments	Use stabilizing fields, rituals, and field nodes
Engage Water Intelligently	Hydration, cleansing, and coherence facilitation
Emotional Vigilance	Monitor for negative states and intervene early

Section IV. Conclusion

This paper expands the Ontological Priority of Death Theory by developing a formal framework in which death is not merely a terminal biological event but a metaphysical transition—an **ontological collapse of systemic coherence** that precedes and conditions biological sequelae. Through the introduction of metaphysical induction and the field cascade model, we challenge the classical assumption that death is strictly individual and isolated. Instead, we demonstrate that under certain conditions—such as mass fatality events, trauma-laden environments, or saturated metaphysical death fields—the **death of one individual can influence the metaphysical stability of others** through proximity-based ontological interactions.

Our vitality function model and propagation equations allow for a formal articulation of how metaphysical fields may degrade across systems, resembling quantum entanglement, magnetism, or field theory analogues. By distinguishing between **primary (internally initiated) and secondary (induced) metaphysical death**, we preserve logical room for **reversibility, recovery, and resilience**, particularly in children, fetuses, and pregnant individuals. These entities, by virtue of developmental uncoupling or dual-field resonance, exhibit unique metaphysical properties that challenge the assumed symmetry between biological and metaphysical death.

Through our exploration of **post-vital ontologies**—such as wood, bone, keratinized tissue, and even thoughts—we show that **biological death does not necessitate metaphysical nullity**. Some materials and constructs retain functional, systemic roles even after biological cessation, prompting a reconceptualization of vitality as distributed, gradient-based, and

interaction-driven. The presence of **inconsistent state pairings** (e.g., metaphysically dead but biologically alive) further complicates the ontological boundaries of life and death, suggesting a continuum rather than a binary divide.

We introduced the notion of **metaphysical hygiene** and **field-lattice design**, proposing that architecture, institutional design, and ecological balance can influence ontological coherence in both individuals and collectives. Pregnant individuals emerge as central to this metaphysical infrastructure, acting as stabilizing nodes that offset the entropy of death-saturated environments. This insight has practical implications for healthcare design, grief therapy, trauma response, and field-based metaphysical ethics.

Finally, the integration of artificial entities, gametes, pre-organismic metaphysical fields, and decay induction zones into our framework extends the theory into a robust speculative ontology. We propose the establishment of a new domain—**onto-physics**—which seeks to formalize the properties, behaviors, and ethical implications of **non-material, life-derived coherence fields**. Onto-physics positions metaphysical fields as real, causally influential, and susceptible to decay, induction, restoration, and lattice harmonization—making them as essential to understanding life and death as physiology or neurobiology.

In sum, death is not merely an endpoint but a **field event**—a metaphysical reconfiguration that may be contagious, reversible, spatially regulated, developmentally constrained, and ethically significant. This redefinition compels us to rethink not only when and how we die, but also how we live—within networks of coherence, in dynamic proximity to others, and in a shared field of ontological resonance. Death, therefore, is not an event but a transformational process, a concept further elucidated by examining its revolutionary transformation within the context of biological mortality transitioning to other states of being ([Kaunda & Lee, 2025](#)).

References

Abrishamcar, S., Zhuang, B., Thomas, M., Gladish, N., MacIsaac, J. L., Jones, M. J., Simons, E., Moraes, T. J., Mandhane, P. J., Brook, J. R., Subbarao, P., Turvey, S. E., Chen, E., Miller, G. E., Kobor, M. S., & Hüls, A. (2024). Association between maternal perinatal stress and depression and infant DNA methylation in the first year of life. *Translational Psychiatry*, 14(1). <https://doi.org/10.1038/s41398-024-03148-8>

Aerts, D. (2010). A Potentially and Conceptually Interpretation of Quantum Physics. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.1005.3767>

Afolabi, O. (2014). Death, Grief and Family Dynamics: The Impact of Family Member's Death and Delayed Grief Resolution on the Family System. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.2826483>

Alavi, A., Akhouni, H., & Kouchmeshki, F. (2025). *Analyzing Advanced AI Systems Against Definitions of Life and Consciousness*. <https://doi.org/10.48550/ARXIV.2502.05007>

Ali, D., Figley, C. R., Tedeschi, R. G., Galarneau, D., & Amara, S. (2021). Shared trauma, resilience, and growth: A roadmap toward transcultural conceptualization. [Review of *Shared trauma, resilience, and growth: A roadmap toward transcultural conceptualization.*]. *Psychological Trauma Theory Research Practice and Policy*, 15(1), 45. American Psychological Association. <https://doi.org/10.1037/tra0001044>

Ali, F., Bouzoubaa, K., Gelli, F., Hamzi, B., & Khan, S. (2025). Islamic Ethics and AI: An Evaluation of Existing Approaches to AI using Trusteeship Ethics. *Philosophy & Technology*, 38(3). <https://doi.org/10.1007/s13347-025-00922-4>

Allison, E. (2019). The Reincarnation of Waste: A Case Study of Spiritual Ecology Activism for Household Solid Waste Management: The Samdrup Jongkhar Initiative of Rural Bhutan. *Religions*, 10(9), 514. <https://doi.org/10.3390/rel10090514>

Amir, M., & Zeng, M. Y. (2021, August 26). Immune imprinting in utero. In *Science* (Vol. 373, Issue 6558, p. 967). American Association for the Advancement of Science. <https://doi.org/10.1126/science.abl3631>

Amoroso, E. C. (1955). ENDOCRINOLOGY OF PREGNANCY [Review of *ENDOCRINOLOGY OF PREGNANCY*]. *British Medical Bulletin*, 11(2), 117. Oxford University Press. <https://doi.org/10.1093/oxfordjournals.bmb.a069463>

Arnold, A. P. (2016). A general theory of sexual differentiation [Review of *A general theory of sexual differentiation*]. *Journal of Neuroscience Research*, 95, 291. Wiley. <https://doi.org/10.1002/jnr.23884>

Athan, A. (2024). A critical need for the concept of matrescence in perinatal psychiatry. *Frontiers in Psychiatry*, 15. <https://doi.org/10.3389/fpsyg.2024.1364845>

Ave, A. L. D., & Bernat, J. L. (2017). Donation after brain circulation determination of death. *BMC Medical Ethics*, 18(1). <https://doi.org/10.1186/s12910-017-0173-1>

Ayvazov, M. (2025). *Beyond Cause: The Acausal Principle and the Limits of Classical Explanation*. <https://doi.org/10.2139/ssrn.5254559>

Bael, K. V., Ball, M., Scarfo, J., & Suleyman, E. (2023). Assessment of the mind-body connection: preliminary psychometric evidence for a new self-report questionnaire. *BMC Psychology*, 11(1). <https://doi.org/10.1186/s40359-023-01302-3>

Bailis, L. A. (1978). Death in Children's Literature: A Conceptual Analysis. *OMEGA - Journal of Death and Dying*, 8(4), 295. <https://doi.org/10.2190/n7nd-fuhf-nu60-9k2a>

Banks, J. (2024). Deletion, departure, death: Experiences of AI companion loss. *Journal of Social and Personal Relationships*, 41(12), 3547. <https://doi.org/10.1177/02654075241269688>

Barach, A. L. (1974). Homeostasis: A Physiologic and Psychologic Function in Man. *Perspectives in Biology and Medicine*, 17(4), 522. <https://doi.org/10.1353/pbm.1974.0038>

Bartsch, R. P., Liu, K. K. L., Bashan, A., & Ivanov, P. Ch. (2015). Network Physiology: How Organ Systems Dynamically Interact. *PLoS ONE*, 10(11). <https://doi.org/10.1371/journal.pone.0142143>

Batool, A., Zowghi, D., & Bano, M. (2025). AI governance: a systematic literature review. *AI and Ethics*. <https://doi.org/10.1007/s43681-024-00653-w>

Bekiros, S., Jahanshahi, H., & Muñoz-Pacheco, J. M. (2022). A new buffering theory of social support and psychological stress. *PLoS ONE*, 17(10). <https://doi.org/10.1371/journal.pone.0275364>

Beláustegui, G. D. (2010). Phenomenology of the Transcendence of Space-time Coordinates. *Jung Journal*, 4(2), 85. <https://doi.org/10.1525/jung.2010.4.2.85>

Belousov, L. V. (2012). Morphogenesis as a macroscopic self-organizing process [Review of *Morphogenesis as a macroscopic self-organizing process*]. *Biosystems*, 109(3), 262. Elsevier BV. <https://doi.org/10.1016/j.biosystems.2012.05.003>

Benander, A. (2024). *A Condensed Overview of the Aethic Solution to the Measurement Problem*. <https://doi.org/10.31219/osf.io/5quha>

Bender, R., Kofman, K., Arcas, B. A. y., & Levin, M. (2025). *What Lives? A meta-analysis of diverse opinions on the definition of life*. <https://doi.org/10.48550/ARXIV.2505.15849>

Bernat, J. L. (2013). Determining Death in Uncontrolled DCDD Organ Donors. *The Hastings Center Report*, 43(1), 30. <https://doi.org/10.1002/hast.129>

Bernat, J. L., Capron, A. M., Bleck, T. P., Blosser, S., Bratton, S. L., Childress, J. F., DeVita, M. A., Fulda, G. J., Gries, C., Mathur, M., Nakagawa, T. A., Rushton, C. H., Shemie, S. D., & White, D. B. (2010). The circulatory-respiratory determination of death in organ donation*. *Critical Care Medicine*, 38(3), 963. <https://doi.org/10.1097/CCM.0b013e3181c58916>

Berner, K. (2005). Todesdeutungen im Konflikt. Dogmatische und ethische Überlegungen zum Umgang mit dem Lebensende. *Neue Zeitschrift Für Systematische Theologie Und Religionsphilosophie*, 47(3). <https://doi.org/10.1515/nzst.2005.47.3.306>

Betito, P.-A. (2021). *Post-adaptive fear: A biopsychosocial case analysis and cognitive framework for the treatment of a novel conception of death anxiety tailored to the information age*. 1(1), 35. <https://journal.entelocius.com/index.php/eamj/article/view/4>

Blons, E., Arsac, L. M., Grivel, É., Lespinet-Najib, V., & Deschodt-Arsac, V. (2021). Physiological Resonance in Empathic Stress: Insights from Nonlinear Dynamics of Heart Rate Variability. *International Journal of Environmental Research and Public Health*, 18(4), 2081. <https://doi.org/10.3390/ijerph18042081>

Blount, A. J., Adams, C. R., Anderson-Berry, A., Hanson, C., Schneider, K. L., & Pendyala, G. (2021). Biopsychosocial Factors during the Perinatal Period: Risks, Preventative Factors, and Implications for Healthcare Professionals [Review of *Biopsychosocial Factors during the Perinatal Period: Risks, Preventative Factors, and Implications for Healthcare Professionals*]. *International Journal of Environmental Research and Public Health*, 18(15), 8206. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/ijerph18158206>

Bonanno, G. A. (2004). Loss, Trauma, and Human Resilience: Have We Underestimated the Human Capacity to Thrive After Extremely Aversive Events? [Review of *Loss, Trauma, and Human Resilience: Have We Underestimated the Human Capacity to Thrive After Extremely Aversive Events?*]. *American Psychologist*, 59(1), 20. American Psychological Association. <https://doi.org/10.1037/0003-066x.59.1.20>

Bonanno, G. A., & Diminich, E. D. (2012). Annual Research Review: Positive adjustment to adversity – trajectories of minimal-impact resilience and emergent resilience [Review of *Annual Research Review: Positive adjustment to adversity – trajectories of minimal-impact resilience and emergent resilience*]. *Journal of Child Psychology and Psychiatry*, 54(4), 378. Wiley. <https://doi.org/10.1111/jcpp.12021>

Bonnett, M. (2012). Environmental concern, moral education and our place in nature. *Journal of Moral Education*, 41(3), 285. <https://doi.org/10.1080/03057240.2012.691643>

Borenstein, J., & Howard, A. (2020). Emerging challenges in AI and the need for AI ethics education. In *AI and Ethics* (Vol. 1, Issue 1, p. 61). Springer Nature. <https://doi.org/10.1007/s43681-020-00002-7>

Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. In *Cambridge University Press eBooks* (p. 316). Cambridge University Press. <https://doi.org/10.1017/cbo9781139046855.020>

Bowers, K., Ding, L., Gregory, S. M., Yolton, K., Ji, H., Meyer, J. S., Ammerman, R. T., Ginkel, J. V., & Folger, A. T. (2018). Maternal distress and hair cortisol in pregnancy among women with elevated adverse childhood experiences. *Psychoneuroendocrinology*, 95, 145. <https://doi.org/10.1016/j.psyneuen.2018.05.024>

Bowers, M. E., & Yehuda, R. (2015). Intergenerational Transmission of Stress in Humans [Review of *Intergenerational Transmission of Stress in Humans*]. *Neuropsychopharmacology*, 41(1), 232. Springer Nature. <https://doi.org/10.1038/npp.2015.247>

Boyce, W. T., & Hertzman, C. (2017). Early Childhood Health and the Life Course: The State of the Science and Proposed Research Priorities. In *Springer eBooks* (p. 61). Springer Nature. https://doi.org/10.1007/978-3-319-47143-3_4

Bretton, O. M. (2023). Ontological insecurity in the post-covid-19 fallout: using existentialism as a method to develop a psychosocial understanding to a mental health crisis. *Medicine Health Care and Philosophy*, 26(3), 425. <https://doi.org/10.1007/s11019-023-10157-9>

Brooks, E. M. (2019). The Disenchanted Self: Anthropological Notes on Existential Distress and Ontological Insecurity Among ex-Mormons in Utah. *Culture Medicine and Psychiatry*, 44(2), 193. <https://doi.org/10.1007/s11013-019-09646-5>

Brożek, B., & Janik, B. (2019). Can artificial intelligences be moral agents? *New Ideas in Psychology*, 54, 101. <https://doi.org/10.1016/j.newideapsych.2018.12.002>

Burcham, Z. M., Pechal, J. L., Schmidt, C. J., Bose, J. L., Rosch, J. W., Benbow, M. E., & Jordan, H. R. (2019). Bacterial Community Succession, Transmigration, and Differential Gene Transcription in a Controlled Vertebrate Decomposition Model. *Frontiers in Microbiology*, 10. <https://doi.org/10.3389/fmicb.2019.00745>

Bush, N. R., Jones-Mason, K., Coccia, M., Caron, Z., Alkon, A., Thomas, M., Coleman-Phox, K., Wadhwa, P. D., Laraia, B., Adler, N. E., & Epel, E. S. (2017). Effects of pre- and postnatal maternal stress on infant temperament and autonomic nervous system reactivity and regulation in a diverse, low-income population. *Development and Psychopathology*, 29(5), 1553. <https://doi.org/10.1017/s0954579417001237>

Butler, J. (2004). Undoing Gender. In *Routledge eBooks*. Informa. <https://doi.org/10.4324/9780203499627>

Cebo, D. (2021). Scientific Relevance and Future of Digital Immortality and Virtual Humans. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.2101.06105>

Chang, K. (2017). Living with Vulnerability and Resiliency: the Psychological Experience of Collective Trauma. *Acta Psychopathologica*, 3(5). <https://doi.org/10.4172/2469-6676.100125>

Chang, L. (2008). *Aristotle on Happiness*. <https://www.amazon.com/Aristotle-Happiness-Lily-Chang/dp/3836454130>

Charles, S. T., & Carstensen, L. L. (2009). Social and Emotional Aging [Review of *Social and Emotional Aging*]. *Annual Review of Psychology*, 61(1), 383. Annual Reviews. <https://doi.org/10.1146/annurev.psych.093008.100448>

Charpier, S. (2023). Between life and death: the brain twilight zones [Review of *Between life and death: the brain twilight zones*]. *Frontiers in Neuroscience*, 17. Frontiers Media. <https://doi.org/10.3389/fnins.2023.1156368>

Chella, A. (2023). Artificial consciousness: the missing ingredient for ethical AI? [Review of *Artificial consciousness: the missing ingredient for ethical AI?*]. *Frontiers in Robotics and AI*, 10. Frontiers Media. <https://doi.org/10.3389/frobt.2023.1270460>

Cheong, P. H., & Liu, L. (2025). Faithful Innovation: Negotiating Institutional Logics for AI Value Alignment Among Christian Churches in America. *Religions*, 16(3), 302. <https://doi.org/10.3390/rel16030302>

Cho, M. (2023). Evaluating Therapeutic Healthcare Environmental Criteria: Architectural Designers' Perspectives. *International Journal of Environmental Research and Public Health*, 20(2), 1540. <https://doi.org/10.3390/ijerph20021540>

Christopher, T. (2017). Science's Big Problem, Reincarnation's Big Potential, and Buddhists' Profound Embarrassment. *Religions*, 8(8), 155. <https://doi.org/10.3390/rel8080155>

Christopher, T. (2022). A Life-After-Life Vision for Improved Psyches and Their Inevitable Addictions. *Addiction Research*, 6(1). <https://doi.org/10.33425/2639-8451.1031>

Cicchetti, D. (2012). Annual Research Review: Resilient functioning in maltreated children – past, present, and future perspectives [Review of *Annual Research Review: Resilient functioning in maltreated children – past, present, and future perspectives*]. *Journal of Child Psychology and Psychiatry*, 54(4), 402. Wiley. <https://doi.org/10.1111/j.1469-7610.2012.02608.x>

Clapham, D. E. (2007). Calcium Signaling [Review of *Calcium Signaling*]. *Cell*, 131(6), 1047. Cell Press. <https://doi.org/10.1016/j.cell.2007.11.028>

Cleland, C. E., & Chyba, C. F. (2002). Defining "life". *Origins of Life and Evolution of Biospheres*, 32(4), 387. <https://doi.org/10.1023/a:1020503324273>

Condorelli, R. (2016). Social complexity, modernity and suicide: an assessment of Durkheim's suicide from the perspective of a non-linear analysis of complex social systems. *SpringerPlus*, 5(1). <https://doi.org/10.1186/s40064-016-1799-z>

Costa, T. J., Oliveira, J. C. de, Giachini, F. R., Lima, V. V., Tostes, R. C., & Bomfim, G. F. (2022). Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications [Review of *Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications*]. *Frontiers in Physiology*, 13. Frontiers Media. <https://doi.org/10.3389/fphys.2022.787617>

Curry, J. (2025). *Building Digital Consciousness: A Unified Architecture for Emotion, Memory, and Self-Reflection in AI*. <https://doi.org/10.2139/ssrn.5265716>

Dechesne, M. (2015). Radicalization and Mass Violence from a Beckerian Perspective: Conceptual and Empirical Considerations. *Journal for Deradicalization*, 3, 149. <https://journals.sfu.ca/jd/index.php/jd/article/download/20/20>

DeGroot, J. M. (2016). A Model of Transcorporeal Communication: Communication Toward/With/to the Deceased. *OMEGA - Journal of Death and Dying*, 78(1), 43. <https://doi.org/10.1177/0030222816683195>

Delmonico, F. L. (2010). The concept of death and deceased organ donation. *PubMed*. <https://pubmed.ncbi.nlm.nih.gov/25013558>

Dennis, K. L. (2010). Quantum Consciousness: Reconciling Science and Spirituality Toward Our Evolutionary Future(s). *World Futures*, 66(7), 511. <https://doi.org/10.1080/02604027.2010.503549>

Dinsdale, N. L., & Crespi, B. J. (2025). Practice for Parturition: Does Sexual Activity Improve Labor and Birth Outcomes? [Review of *Practice for Parturition: Does Sexual Activity Improve Labor and Birth Outcomes?*]. *Archives of Sexual Behavior*. Springer Science+Business Media. <https://doi.org/10.1007/s10508-025-03117-2>

DiPietro, J. A. (2012). Maternal Stress in Pregnancy: Considerations for Fetal Development. *Journal of Adolescent Health*, 51(2). <https://doi.org/10.1016/j.jadohealth.2012.04.008>

Dodig-Crnković, G., Basti, G., & Holstein, T. (2024). *Delegating Responsibilities to Intelligent Autonomous Systems: Challenges and Benefits*. <https://doi.org/10.20944/preprints202411.1179.v1>

Dollens, D. (2015). Autopoiesis + extended cognition + nature = can buildings think? *Communicative & Integrative Biology*, 8(4). <https://doi.org/10.4161/19420889.2014.994373>

Doursat, R., Sayama, H., & Michel, O. (2013). A review of morphogenetic engineering [Review of *A review of morphogenetic engineering*]. *Natural Computing*, 12(4), 517. Springer Science+Business Media. <https://doi.org/10.1007/s11047-013-9398-1>

Duarte-Guterman, P., Leuner, B., & Galea, L. A. M. (2019). The long and short term effects of motherhood on the brain [Review of *The long and short term effects of motherhood on the brain*]. *Frontiers in Neuroendocrinology*, 53, 100740. Elsevier BV. <https://doi.org/10.1016/j.yfrne.2019.02.004>

Duarte-Guterman, P., Richard, J. E., Lieblich, S., Eid, R., Lamers, Y., & Galea, L. A. M. (2023). Long-term cellular and molecular signatures of pregnancy in the adult and ageing brain. *bioRxiv (Cold Spring Harbor Laboratory)*. <https://doi.org/10.1101/2023.02.24.529879>

Dziuk, P. J. (1992). Embryonic development and fetal growth. *Animal Reproduction Science*, 28, 299. [https://doi.org/10.1016/0378-4320\(92\)90116-u](https://doi.org/10.1016/0378-4320(92)90116-u)

Dzwiza-Ohlsen, E. N., & Kempermann, G. (2023). The embodied mind in motion: a neuroscientific and philosophical perspective on prevention and therapy of dementia [Review of *The embodied mind in motion: a neuroscientific and philosophical perspective on prevention and therapy of dementia*]. *Frontiers in Psychology*, 14. Frontiers Media. <https://doi.org/10.3389/fpsyg.2023.1174424>

Entringer, S., Buß, C., & Wadhwa, P. D. (2015). Prenatal stress, development, health and disease risk: A psychobiological perspective—2015 Curt Richter Award Paper [Review of *Prenatal stress, development, health and disease risk: A psychobiological perspective—2015 Curt Richter Award Paper*]. *Psychoneuroendocrinology*, 62, 366. Elsevier BV. <https://doi.org/10.1016/j.psyneuen.2015.08.019>

Escolà-Gascón, Á. (2025). Evidence of Quantum-Entangled Higher States of Consciousness. *Computational and Structural Biotechnology Journal*, 30, 21. <https://doi.org/10.1016/j.csbj.2025.03.001>

Evans, L. M., Myers, M. M., & Monk, C. (2008). Pregnant women's cortisol is elevated with anxiety and depression — but only when comorbid. *Archives of Women's Mental Health*, 11(3). <https://doi.org/10.1007/s00737-008-0019-4>

Evers, K., Farisco, M., Chatila, R., Earp, B. D., Freire, I. T., Hamker, F. H., Németh, E., Verschure, P. F. M. J., & Khamassi, M. (2025). Preliminaries to artificial consciousness: a multidimensional heuristic approach. [Review of *Preliminaries to artificial consciousness: a multidimensional heuristic approach*]. *Physics of Life Reviews*, 52, 180. Elsevier BV. <https://doi.org/10.1016/j.plrev.2025.01.002>

Feketa, P., Birkben, T., Noll, M., Schaum, A., Meurer, T., & Kohlstedt, H. (2023). Artificial homeostatic temperature regulation via bio-inspired feedback mechanisms. *Scientific Reports*, 13(1). <https://doi.org/10.1038/s41598-023-31963-4>

Fellermann, H., Rasmussen, S., Ziock, H.-J., & Solé, R. V. (2006). Life cycle of a minimal protocell - a dissipative particle dynamics (DPD) study. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.nlin/0612024>

Ferrer, X., Nuenen, T. van, Such, J. M., Coté, M., & Criado, N. (2021). Bias and Discrimination in AI: A Cross-Disciplinary Perspective. *IEEE Technology and Society Magazine*, 40(2), 72. <https://doi.org/10.1109/mts.2021.3056293>

Folkerth, R. D., Crary, J. F., & Shewmon, D. A. (2022). Neuropathologic findings in a young woman 4 years following declaration of brain death: case analysis and literature review [Review

of *Neuropathologic findings in a young woman 4 years following declaration of brain death: case analysis and literature review*]. *Journal of Neuropathology & Experimental Neurology*, 82(1), 6. Oxford University Press. <https://doi.org/10.1093/jnen/nlac090>

Fragouli, E., Lalioti, M. D., & Wells, D. (2013). The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility [Review of *The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility*]. *Human Reproduction Update*, 20(1), 1. Oxford University Press. <https://doi.org/10.1093/humupd/dmt044>

Funaya, S., & Aoki, F. (2017). Regulation of zygotic gene activation by chromatin structure and epigenetic factors [Review of *Regulation of zygotic gene activation by chromatin structure and epigenetic factors*]. *Journal of Reproduction and Development*, 63(4), 359. Japanese Society of Animal Reproduction. <https://doi.org/10.1262/jrd.2017-058>

Gabriel, I. (2020). Artificial Intelligence, Values, and Alignment. *Minds and Machines*, 30(3), 411. <https://doi.org/10.1007/s11023-020-09539-2>

Ganeri, J., & Shani, I. (2021). What Is Cosmopsychism? *The Monist*, 105(1), 1. <https://doi.org/10.1093/monist/onab019>

Gershenson, C., & Lenaerts, T. (2007). Evolution of Complexity. *arXiv*. <https://doi.org/10.48550/ARXIV.0710.3784>

Giller, A., Andrawus, M., Gutman, D., & Atzmon, G. (2020). Pregnancy as a model for aging [Review of *Pregnancy as a model for aging*]. *Ageing Research Reviews*, 62, 101093. Elsevier BV. <https://doi.org/10.1016/j.arr.2020.101093>

Gire, J. T. (2014). How Death Imitates Life: Cultural Influences on Conceptions of Death and Dying. *Online Readings in Psychology and Culture*, 6(2). <https://doi.org/10.9707/2307-0919.1120>

Goldgaber, D. (2019). Morphogenesis. *Philosophy Today*, 63(4), 999. <https://doi.org/10.5840/philtoday2020124306>

Gómez-Márquez, J. (2020). What are the principles that govern life? *Communicative & Integrative Biology*, 13(1), 97. <https://doi.org/10.1080/19420889.2020.1803591>

Gómez-Márquez, J. (2021). What is life? *Molecular Biology Reports*, 48(8), 6223. <https://doi.org/10.1007/s11033-021-06594-5>

Graignic-Philippe, R., Dayan, J., Chokron, S., Jacquet, A.-Y., & Tordjman, S. (2014). Effects of prenatal stress on fetal and child development: A critical literature review [Review of *Effects of prenatal stress on fetal and child development: A critical literature review*]. *Neuroscience & Biobehavioral Reviews*, 43, 137. Elsevier BV. <https://doi.org/10.1016/j.neubiorev.2014.03.022>

Guingrich, R. E., & Graziano, M. S. A. (2024). Ascribing consciousness to artificial intelligence: human-AI interaction and its carry-over effects on human-human interaction. *Frontiers in Psychology*, 15. <https://doi.org/10.3389/fpsyg.2024.1322781>

Guldin, M., & Leget, C. (2023). The integrated process model of loss and grief - An interprofessional understanding. *Death Studies*, 48(7), 738. <https://doi.org/10.1080/07481187.2023.2272960>

Guthrie, D. (2022). How I Learned to Stop Worrying and Love the Eco-Apocalypse: An Existential Approach to Accepting Eco-Anxiety. *Perspectives on Psychological Science*, 18(1), 210. <https://doi.org/10.1177/17456916221093613>

Guy, P., & Holloway, M. (2007). Drug-related Deaths and the ‘Special Deaths’ of Late Modernity. *Sociology*, 41(1), 83. <https://doi.org/10.1177/0038038507074717>

Hajure, M., Alemu, S. S., Abdu, Z., Tesfaye, G. M., Workneh, Y. A., Dule, A., Hussen, M. A., Wedajo, L. F., & Gezimu, W. (2024). Resilience and mental health among perinatal women: a systematic review [Review of *Resilience and mental health among perinatal women: a systematic review*]. *Frontiers in Psychiatry*, 15. Frontiers Media. <https://doi.org/10.3389/fpsy.2024.1373083>

Hammerschlag, R., Levin, M., McCraty, R., Bat, N., Ives, J. A., Lutgendorf, S. K., & Oschman, J. L. (2015). Biofield physiology: A Framework for an emerging discipline [Review of *Biofield physiology: A Framework for an emerging discipline*]. *Global Advances in Health and Medicine*, 4. SAGE Publishing. <https://doi.org/10.7453/gahmj.2015.015.suppl>

Haneman, V. J. (2025). The Law of Digital Resurrection. *Boston College Law Review*, 66(5), 1569. <https://doi.org/10.70167/yoeq2314>

Hare-Duke, L., Charles, A., Slade, M., Rennick-Egglestone, S., Dys, A., & Bijdevaate, D. (2023). Systematic review and citation content analysis of the CHIME framework for mental health recovery processes: recommendations for developing influential conceptual frameworks. *Journal of Recovery in Mental Health*, 6(1), 38. <https://doi.org/10.33137/jrmh.v6i1.38556>

Harris, D. L. (2025). The Role of Threat, Meaning, and Religion in Political Grief. *Religions*, 16(3), 321. <https://doi.org/10.3390/rel16030321>

Harris, J., & Anthis, J. R. (2021). The Moral Consideration of Artificial Entities: A Literature Review [Review of *The Moral Consideration of Artificial Entities: A Literature Review*]. *Science and Engineering Ethics*, 27(4). Springer Science+Business Media. <https://doi.org/10.1007/s11948-021-00331-8>

Harvey, J. H., & Miller, E. D. (1998). Toward a Psychology of Loss. *Psychological Science*, 9(6), 429. <https://doi.org/10.1111/1467-9280.00081>

Hatala, A. R. (2011). Resilience and Healing Amidst Depressive Experiences: An Emerging Four-Factor Model from Emic/Etic Perspectives. *Journal of Spirituality in Mental Health*, 13(1), 27. <https://doi.org/10.1080/19349637.2011.547135>

Hazelhoff, E. M., Dudink, J., Meijer, J. H., & Kervezee, L. (2021). Beginning to See the Light: Lessons Learned From the Development of the Circadian System for Optimizing Light Conditions in the Neonatal Intensive Care Unit [Review of *Beginning to See the Light: Lessons Learned From the Development of the Circadian System for Optimizing Light Conditions in the Neonatal Intensive Care Unit*]. *Frontiers in Neuroscience*, 15. Frontiers Media. <https://doi.org/10.3389/fnins.2021.634034>

Hazy, J. K., & Boyatzis, R. E. (2015). Emotional contagion and proto-organizing in human interaction dynamics. *Frontiers in Psychology*, 6. <https://doi.org/10.3389/fpsyg.2015.00806>

Hertzman, C. (2012). Putting the concept of biological embedding in historical perspective. *Proceedings of the National Academy of Sciences*, 109, 17160. <https://doi.org/10.1073/pnas.1202203109>

Hervé, C. (2018). Revisiter la notion de personne humaine avec les acquis technologiques actuels. *Ethics Medicine and Public Health*, 5, 1. <https://doi.org/10.1016/j.jemep.2018.04.004>

Heston, T. F. (2017). Untitled Document [Data set]. In *Authorea*. <https://doi.org/10.22541/au.151060393.38455061>

Hirschberger, G. (2018). Collective Trauma and the Social Construction of Meaning [Review of *Collective Trauma and the Social Construction of Meaning*]. *Frontiers in Psychology*, 9. Frontiers Media. <https://doi.org/10.3389/fpsyg.2018.01441>

Hofheimer, J. A., Smith, L. M., McGowan, E. C., O'Shea, T. M., Carter, B. S., Neal, C. R., Helderman, J., Pastyrnak, S. L., Soliman, A., Dansereau, L. M., DellaGrotta, S. A., & Lester, B. M. (2019). Psychosocial and medical adversity associated with neonatal neurobehavior in infants born before 30 weeks gestation. *Pediatric Research*, 87(4), 721. <https://doi.org/10.1038/s41390-019-0607-1>

Homer-Dixon, T., Walker, B., Biggs, R., Crépin, A., Folke, C., Lambin, É. F., Peterson, G., Rockström, J., Scheffer, M., Steffen, W., & Troell, M. (2015). Synchronous failure: the emerging causal architecture of global crisis. *Ecology and Society*, 20(3). <https://doi.org/10.5751/es-07681-200306>

Hou, B. L., & Green, B. P. (2023). A Multi-Level Framework for the AI Alignment Problem. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.2301.03740>

Hutson, J., & Ratican, J. (2023). Life, death, and AI: Exploring digital necromancy in popular culture—Ethical considerations, technological limitations, and the pet cemetery conundrum. *Metaverse*, 4(1), 12. <https://doi.org/10.54517/m.v4i1.2166>

Ives, C. D., Giusti, M., Fischer, J., Abson, D. J., Klaniecki, K., Dorninger, C., Laudan, J., Barthel, S., Abernethy, P., Martín-López, B., Raymond, C. M., Kendal, D., & Wehrden, H. von. (2017). Human–nature connection: a multidisciplinary review [Review of *Human–nature connection: a multidisciplinary review*]. *Current Opinion in Environmental Sustainability*, 106. Elsevier BV. <https://doi.org/10.1016/j.cosust.2017.05.005>

Izvolskaia, M., Sharova, V., & Zakharova, L. (2018). Prenatal Programming of Neuroendocrine System Development by Lipopolysaccharide: Long-Term Effects [Review of *Prenatal Programming of Neuroendocrine System Development by Lipopolysaccharide: Long-Term Effects*]. *International Journal of Molecular Sciences*, 19(11), 3695. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/ijms19113695>

Jagtap, A. B., Jagtap, B., Jagtap, R., Lamture, Y., & Gomase, K. (2023). Effects of Prenatal Stress on Behavior, Cognition, and Psychopathology: A Comprehensive Review [Review of *Effects of Prenatal Stress on Behavior, Cognition, and Psychopathology: A Comprehensive Review*]. *Cureus*. Cureus, Inc. <https://doi.org/10.7759/cureus.47044>

Javan, G. T., Singh, K., Finley, S. J., Green, R. L., & Sen, C. K. (2024). Complexity of human death: its physiological, transcriptomic, and microbiological implications [Review of *Complexity of human death: its physiological, transcriptomic, and microbiological implications*]. *Frontiers in Microbiology*, 14. Frontiers Media. <https://doi.org/10.3389/fmicb.2023.1345633>

Johnson, M. H. (2015). Embodied understanding [Review of *Embodied understanding*]. *Frontiers in Psychology*, 6. Frontiers Media. <https://doi.org/10.3389/fpsyg.2015.00875>

Kane, H. S., Schetter, C. D., Glynn, L. M., Hobel, C. J., & Sandman, C. A. (2014). Pregnancy anxiety and prenatal cortisol trajectories. *Biological Psychology*, 100, 13. <https://doi.org/10.1016/j.biopsych.2014.04.003>

Kaufmann, R., Gupta, P., & Taylor, J. (2021). An Active Inference Model of Collective Intelligence. *Entropy*, 23(7), 830. <https://doi.org/10.3390/e23070830>

Kaunda, C. J., & Lee, M. (2025). ‘Through Valley of the Shadow of Death’: Death In-Between and Betwixt “Life After Life” in Mind Uploading Immortality. *Religions*, 16(5), 640. <https://doi.org/10.3390/rel16050640>

Khatib, I. A., Samara, F., & Ndiaye, M. (2024). A systematic review of the impact of therapeutical biophilic design on health and wellbeing of patients and care providers in healthcare services settings [Review of *A systematic review of the impact of therapeutical biophilic design on health and wellbeing of patients and care providers in healthcare services settings*]. *Frontiers in Built Environment*, 10. Frontiers Media. <https://doi.org/10.3389/fbuil.2024.1467692>

Khawaldeh, J. (2025). *Quantum Cosmic Consciousness Code - QCCC*. <https://doi.org/10.2139/ssrn.5198997>

Kim, S.-H., & Kim, U. -S. (2018). *Theory of the Dead Mind: Do the Minds of the Dead Transcend Time and Space?* <http://dspace.kci.go.kr/handle/kci/806733?show=full>

Kinnear, S., Salamonsen, L. A., François, M., Harley, V. R., & Evans, J. (2019). Uterine SOX17: a key player in human endometrial receptivity and embryo implantation. *Scientific Reports*, 9(1). <https://doi.org/10.1038/s41598-019-51751-3>

Klass, D. (2014). Grief, Consolation, and Religions: A Conceptual Framework [Review of *Grief, Consolation, and Religions: A Conceptual Framework*]. *OMEGA - Journal of Death and Dying*, 69(1), 1. SAGE Publishing. <https://doi.org/10.2190/om.69.1.a>

Klerk, G. J. M. de. (1979). Mechanism and vitalism. A history of the controversy. *Acta Biotheoretica*, 28(1), 1. <https://doi.org/10.1007/bf00054676>

Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D. L., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V., Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., & Melino, G. (2005). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. *Cell Death and Differentiation*, 12, 1463. <https://doi.org/10.1038/sj.cdd.4401724>

Kumar, M., Saadaoui, M., & Khodor, S. A. (2022). Infections and Pregnancy: Effects on Maternal and Child Health [Review of *Infections and Pregnancy: Effects on Maternal and Child Health*]. *Frontiers in Cellular and Infection Microbiology*, 12. Frontiers Media. <https://doi.org/10.3389/fcimb.2022.873253>

L.B.P., A. M. (2025). *Mind, Motion and Multiscale Emergence: Exploring the Thermodynamics of Cognitive Experiences*. <https://doi.org/10.2139/ssrn.5156247>

Lee, M. T., Bonneau, A. R., & Giráldez, A. J. (2014). Zygotic Genome Activation During the Maternal-to-Zygotic Transition [Review of *Zygotic Genome Activation During the Maternal-to-Zygotic Transition*]. *Annual Review of Cell and Developmental Biology*, 30(1), 581. Annual Reviews. <https://doi.org/10.1146/annurev-cellbio-100913-013027>

Lee, Y., & Overholtzer, M. (2019). After-Death Functions of Cell Death. *PubMed*, 92(4), 687. <https://pubmed.ncbi.nlm.nih.gov/31866783>

Lei, Y., Ma, X., Sun, Y., & Ma, X. (2025). "AI Afterlife" as Digital Legacy: Perceptions, Expectations, and Concerns. 1. <https://doi.org/10.1145/3706598.3713933>

Levendosky, A. A., Bogat, G. A., Lonstein, J. S., Muzik, M., & Nuttall, A. K. (2021). Longitudinal prospective study examining the effects of the timing of prenatal stress on infant and child regulatory functioning: the Michigan Prenatal Stress Study protocol. *BMJ Open*, 11(9). <https://doi.org/10.1136/bmjopen-2021-054964>

Levin, J. (2020). Human Flourishing and Population Health: Meaning, Measurement, and Implications. *Perspectives in Biology and Medicine*, 63(3), 401. <https://doi.org/10.1353/pbm.2020.0029>

Lewis, A. J., Austin, E., Knapp, R. G., Vaiano, T., & Galbally, M. (2015). Perinatal Maternal Mental Health, Fetal Programming and Child Development [Review of *Perinatal Maternal Mental Health, Fetal Programming and Child Development*]. *Healthcare*, 3(4), 1212. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/healthcare3041212>

Li, L., Lu, X., & Dean, J. (2013). The maternal to zygotic transition in mammals [Review of *The maternal to zygotic transition in mammals*]. *Molecular Aspects of Medicine*, 34(5), 919. Elsevier BV. <https://doi.org/10.1016/j.mam.2013.01.003>

Liu, C.-Y., & Yin, B. (2024). Affective foundations in AI-human interactions: Insights from evolutionary continuity and interspecies communications. *Computers in Human Behavior*, 161, 108406. <https://doi.org/10.1016/j.chb.2024.108406>

Ludwig, R. J., & Welch, M. G. (2022). Wired to Connect: The Autonomic Socioemotional Reflex Arc [Review of *Wired to Connect: The Autonomic Socioemotional Reflex Arc*]. *Frontiers in Psychology*, 13. Frontiers Media. <https://doi.org/10.3389/fpsyg.2022.841207>

Lukasik, A., & Gut, A. (2025). From robots to chatbots: unveiling the dynamics of human-AI interaction [Review of *From robots to chatbots: unveiling the dynamics of human-AI interaction*]. *Frontiers in Psychology*, 16. Frontiers Media. <https://doi.org/10.3389/fpsyg.2025.1569277>

Ma, Z. (2023). The Advance of Maternal Health and Fetal Outcomes. *Theoretical and Natural Science*, 3(1), 424. <https://doi.org/10.54254/2753-8818/3/20220292>

MacGregor, R. J. (2002). AN INTEGRATIVE THEORY OF BRAIN AND MIND: THE INNER SENSIBILITIES. *Journal of Integrative Neuroscience*, 1(1), 23. <https://doi.org/10.1142/s0219635202000037>

Maitre, G., Shemie, S. D., Baker, A., Chassé, M., Hornby, L., Sarti, A., Teitelbaum, J., & Dhanani, S. (2023). Knowledge gaps in the definition and determination of death. *Canadian Journal of Anesthesia/Journal Canadien d'Anesthésie*, 70(4), 610. <https://doi.org/10.1007/s12630-023-02422-5>

Mäkikomsi, M., Terkamo-Moisio, A., Kaunonen, M., & Aho, A. L. (2021). Unexplained experiences in the context of bereavement – qualitative analysis. *Mortality*, 28(3), 443. <https://doi.org/10.1080/13576275.2021.1991903>

Masindi, V., & Muedi, K. L. (2018). Environmental Contamination by Heavy Metals. In *InTech eBooks*. <https://doi.org/10.5772/intechopen.76082>

Mason, C. (2008). *Human-Level AI Requires Compassionate Intelligence*. <https://www.aaai.org/Papers/Workshops/2008/WS-08-07/WS08-07-023.pdf>

Mason, K. A. (2021). Postpartum Maternal Tethering: A Bioethics of Early Motherhood. *International Journal of Feminist Approaches to Bioethics*, 14(1), 49. <https://doi.org/10.3138/ijfab-14.1.03>

Masten, A. S. (2019). Resilience from a developmental systems perspective. *World Psychiatry*, 18(1), 101. <https://doi.org/10.1002/wps.20591>

Masten, A. S., & Barnes, A. J. (2018). Resilience in Children: Developmental Perspectives. *Children*, 5(7), 98. <https://doi.org/10.3390/children5070098>

Masten, A. S., Best, K. M., & Garmezy, N. (1990). Resilience and development: Contributions from the study of children who overcome adversity. *Development and Psychopathology*, 2(4), 425. <https://doi.org/10.1017/s0954579400005812>

Masten, A. S., & Narayan, A. J. (2011). Child Development in the Context of Disaster, War, and Terrorism: Pathways of Risk and Resilience [Review of *Child Development in the Context of Disaster, War, and Terrorism: Pathways of Risk and Resilience*]. *Annual Review of Psychology*, 63(1), 227. Annual Reviews. <https://doi.org/10.1146/annurev-psych-120710-100356>

Mateos, R. M., Jiménez, G., Álvarez-Gil, C., Visiedo, F., Rivera-Rodríguez, F., Santos-Rosendo, C., Rodríguez-Pareja, A., Perdomo, G., & Lechuga-Sancho, A. M. (2018). Excess Hydrocortisone Hampers Placental Nutrient Uptake Disrupting Cellular Metabolism. *BioMed Research International*, 2018, 1. <https://doi.org/10.1155/2018/5106174>

Mbembé, A. (2003). Necropolitics. *Public Culture*, 15(1), 11. <https://doi.org/10.1215/08992363-15-1-11>

McDermott, D. (2020). Why Ethics is a High Hurdle for AI. In *Routledge eBooks* (p. 267). Informa. <https://doi.org/10.4324/9781003074991-24>

McKinnon, M. C., Palombo, D. J., Nazarov, A., Kumar, N., Khuu, W., & Levine, B. (2014). Threat of Death and Autobiographical Memory. *Clinical Psychological Science*, 3(4), 487. <https://doi.org/10.1177/2167702614542280>

Menzies, R. E., Zuccala, M., Sharpe, L., & Dar-Nimrod, I. (2018). The effects of psychosocial interventions on death anxiety: A meta-analysis and systematic review of randomised controlled trials [Review of *The effects of psychosocial interventions on death anxiety: A meta-analysis and systematic review of randomised controlled trials*]. *Journal of Anxiety Disorders*, 59, 64. Elsevier BV. <https://doi.org/10.1016/j.janxdis.2018.09.004>

Midgley, G. C. J. (2006). Systems thinking, complexity and the philosophy of science. *Emergence*, 10(4), 55. <https://espace.library.uq.edu.au/view/UQ:202237>

Miller-Graff, L. E. (2020). The Multidimensional Taxonomy of Individual Resilience. *Trauma Violence & Abuse*, 23(2), 660. <https://doi.org/10.1177/1524838020967329>

Minati, G. (2009). Steps of the meta-structures project to model general processes of emergence (1). *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.0910.1753>

Miranda, L. de. (2021). The healing-growth future of humanity: regenerative politics and creakleptic care. *Acta Academica Critical Views on Society Culture and Politics*, 53(2), 143. <https://doi.org/10.18820/24150479/aa53i2/8>

Misra, N., Jha, H., & Tiwari, K. (2019). Psychosocial Autopsy of Mass Suicides: Changing Patterns in Contemporary Times. In *IntechOpen eBooks*. IntechOpen. <https://doi.org/10.5772/intechopen.89439>

Monkman, S., & Schagaev, I. (2013). Redundancy + Reconfigurability = Recoverability. *Electronics*, 2(3), 212. <https://doi.org/10.3390/electronics2030212>

Morioka, M. (2023). The Sense of Someone Appearing There: A Philosophical Investigation into Other Minds, Deceased People, and Animated Persona. *Human Studies*, 46(3), 565. <https://doi.org/10.1007/s10746-023-09682-6>

Morton, S. U., & Brodsky, D. (2016). Fetal Physiology and the Transition to Extrauterine Life [Review of *Fetal Physiology and the Transition to Extrauterine Life*]. *Clinics in Perinatology*, 43(3), 395. Elsevier BV. <https://doi.org/10.1016/j.clp.2016.04.001>

Moss, K. M., Simcock, G., Cobham, V. E., Kildea, S., Elgbeili, G., Laplante, D. P., & King, S. (2017). A potential psychological mechanism linking disaster-related prenatal maternal stress with child cognitive and motor development at 16 months: The QF2011 Queensland Flood Study. *Developmental Psychology*, 53(4), 629. <https://doi.org/10.1037/dev0000272>

Muehsam, D., Chevalier, G., Barsotti, T., & Gurfein, B. T. (2015). An Overview of Biofield Devices. *Global Advances in Health and Medicine*, 4. <https://doi.org/10.7453/gahmj.2015.022.suppl>

Müller, S., Artmann, M., & Surrey, C. (2023). Opening the human spirit to sustainability transformation: the potential for individual human–nature resonance and integrative rituals. *Sustainability Science*, 18(5), 2323. <https://doi.org/10.1007/s11625-023-01360-x>

Murphy, N. B., Shemie, S. D., Capron, A. M., Truog, R. D., Nakagawa, T. A., Healey, A., Gofton, T., Bernat, J. L., Fenton, K. N., Khush, K. K., Schwartz, B., & Wall, S. P. (2024). Advancing the Scientific Basis for Determining Death in Controlled Organ Donation After Circulatory Determination of Death [Review of *Advancing the Scientific Basis for Determining Death in*

Controlled Organ Donation After Circulatory Determination of Death]. Transplantation, 108(11), 2197. Wolters Kluwer. <https://doi.org/10.1097/tp.00000000000005002>

Mustain, J. R., & Helminiak, D. A. (2015). Understanding spirituality in recovery from addiction: Reintegrating the psyche to release the human spirit. *Addiction Research & Theory, 23*(5), 364. <https://doi.org/10.3109/16066359.2015.1011623>

Nair-Collins, M. (2022). Preserved Hypothalamic Function Is Not Consistent with the Whole-Brain Criterion for Death. In *Advances in neuroethics* (p. 103). Springer International Publishing. https://doi.org/10.1007/978-3-031-15947-3_7

Nair-Collins, M., & Joffe, A. R. (2021a). Hypothalamic function in patients diagnosed as brain dead and its practical consequences [Review of *Hypothalamic function in patients diagnosed as brain dead and its practical consequences*]. *Handbook of Clinical Neurology, 433*. Elsevier BV. <https://doi.org/10.1016/b978-0-12-819973-2.00029-0>

Nair-Collins, M., & Joffe, A. R. (2021b). Frequent Preservation of Neurologic Function in Brain Death and Brainstem Death Entails False-Positive Misdiagnosis and Cerebral Perfusion. *AJOB Neuroscience, 14*(3), 255. <https://doi.org/10.1080/21507740.2021.1973148>

Neiterman, E. (2012). Doing pregnancy: pregnant embodiment as performance. *Women s Studies International Forum, 35*(5), 372. <https://doi.org/10.1016/j.wsif.2012.07.004>

Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. *International Journal of Information Management, 53*, 102104. <https://doi.org/10.1016/j.ijinfomgt.2020.102104>

Norlock, K. J. (2016). Real (and) Imaginal Relationships with the Dead. *The Journal of Value Inquiry, 51*(2), 341. <https://doi.org/10.1007/s10790-016-9573-6>

Oken, B., Chamine, I., & Wakeland, W. (2014). A systems approach to stress, stressors and resilience in humans [Review of *A systems approach to stress, stressors and resilience in humans*]. *Behavioural Brain Research, 282*, 144. Elsevier BV. <https://doi.org/10.1016/j.bbr.2014.12.047>

Okeyo, D. O., Gumo, S., Munde, E. O., Opiyo, C. O., Omungo, Z. O., Olyaro, M., Ndirangu, R., Ogbureke, N., Efange, S., & Ouma, C. (2019). Nutritional service needs of pregnant and lactating adolescent girls in Trans-Mara East Sub-County, Narok County: focus on access and utilization of nutritional advice and services. *BMC Pregnancy and Childbirth, 19*(1). <https://doi.org/10.1186/s12884-019-2391-7>

Oshri, A. (2022). The Hormesis Model for Building Resilience Through Adversity: Attention to Mechanism in Developmental Context. *Review of General Psychology, 27*(3), 245. <https://doi.org/10.1177/10892680221142020>

Parisi, F., Milazzo, R., Savasi, V., & Cetin, I. (2021). Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease [Review of *Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease*]. *International Journal of Molecular Sciences, 22*(4), 1732. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/ijms22041732>

Parrettini, S., Caroli, A., & Torlone, E. (2020). Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes [Review of *Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes*]. *Frontiers in Endocrinology, 11*. Frontiers Media. <https://doi.org/10.3389/fendo.2020.611929>

Pavlovich, K. (2019). Quantum empathy: an alternative narrative for global transcendence. *Journal of Management Spirituality & Religion*, 17(4), 333. <https://doi.org/10.1080/14766086.2019.1706626>

Perez, E., & Long, R. (2023). Towards Evaluating AI Systems for Moral Status Using Self-Reports. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.2311.08576>

Perry, B. D. (1997). *Incubated in terror: Neurodevelopmental factors in the “cycle of violence.”* <https://psycnet.apa.org/record/1997-08323-006>

Perry, B. D., Pollard, R. A., Blakley, T. L., Baker, W. L., & Vigilante, D. (1995). Childhood trauma, the neurobiology of adaptation, and “use-dependent” development of the brain: How “states” become “traits.” *Infant Mental Health Journal*, 16(4), 271. [https://doi.org/10.1002/1097-0355\(199524\)16:4<271::aid-imhj2280160404>3.0.co;2-b](https://doi.org/10.1002/1097-0355(199524)16:4<271::aid-imhj2280160404>3.0.co;2-b)

Peters, K. E. (1992). INTERRELATING NATURE, HUMANITY, AND THE WORK OF GOD: SOME ISSUES FOR FUTURE REFLECTION. *Zygon®*, 27(4), 403. <https://doi.org/10.1111/j.1467-9744.1992.tb01076.x>

Pierce, S. (2020). Life’s mechanism. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.2005.05656>

Pierce, S. (2023). Life’s Mechanism [Review of *Life’s Mechanism*]. *Life*, 13(8), 1750. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/life13081750>

Pines, D. (1990). Pregnancy, miscarriage and abortion. A psychoanalytic perspective. *PubMed*, 301. <https://pubmed.ncbi.nlm.nih.gov/2365549>

Plonka, N., Atkinson, M., McCraty, R., Cornelissen, G., Turner, A. W., Ragulskis, M., & Vainoras, A. (2024). Global study of long term heart rhythm synchronization in groups. *Scientific Reports*, 14(1). <https://doi.org/10.1038/s41598-024-79264-8>

Porges, S. W. (2022). Polyvagal Theory: A Science of Safety [Review of *Polyvagal Theory: A Science of Safety*]. *Frontiers in Integrative Neuroscience*, 16. Frontiers Media. <https://doi.org/10.3389/fnint.2022.871227>

Prabakaran, M. (2025). *Unfixing the Real: Relational Ontology and the Collapse of Methodological Foundations*. <https://doi.org/10.2139/ssrn.5293203>

Puaschunder, J. M. (2018). Artificial Intelligence Evolution: On the Virtue of Killing in the Artificial Age. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.3247401>

Raimbault, J. (2018). Co-evolution and morphogenetic systems. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.1803.11457>

Ramalingam, G. D., Sampath, S. K., & Amirtham, J. P. (2021). Challenges Facing during Pregnancy and Measures to Overcome. In *IntechOpen eBooks*. IntechOpen. <https://doi.org/10.5772/intechopen.100614>

Rayner, M., Mansoor, M., Holt, T., & Hansen, G. (2019). Brain Death Criteria: Medical Dogma and Outliers. *PubMed*, 92(4), 751. <https://pubmed.ncbi.nlm.nih.gov/31866791>

Robertson, D. S. (1991). Feedback theory and Darwinian evolution. *Journal of Theoretical Biology*, 152(4), 469. [https://doi.org/10.1016/s0022-5193\(05\)80393-5](https://doi.org/10.1016/s0022-5193(05)80393-5)

Rosslenbroich, B. (2016). Properties of Life: Toward a Coherent Understanding of the Organism. *Acta Biotheoretica*, 64(3), 277. <https://doi.org/10.1007/s10441-016-9284-1>

Russell, M. C., & Brickell, M. (2015). The “Double-Edge Sword” of Human Empathy: A Unifying Neurobehavioral Theory of Compassion Stress Injury. *Social Sciences*, 4(4), 1087. <https://doi.org/10.3390/socsci4041087>

Saal, F. S. vom, & Bronson, F. H. (1980). Variation in Length of the Estrous Cycle in Mice Due to Former Intrauterine Proximity to Male Fetuses1. *Biology of Reproduction*, 22(4), 777. <https://doi.org/10.1095/biolreprod22.4.777>

Safron, A. (2022). Integrated world modeling theory expanded: Implications for the future of consciousness. *Frontiers in Computational Neuroscience*, 16. <https://doi.org/10.3389/fncom.2022.642397>

Salingaros, N. A. (2025). *Environments That Boost Creativity: AI-Generated Living Geometry*. <https://doi.org/10.20944/preprints202501.1694.v2>

Schmickl, T., Stefanec, M., & Crailsheim, K. (2016). How a life-like system emerges from a simplistic particle motion law. *Scientific Reports*, 6(1). <https://doi.org/10.1038/srep37969>

Schwartz, S. A. (2018). Kuhn, Consciousness, and Paradigms. *EXPLORE*, 14(4), 254. <https://doi.org/10.1016/j.explore.2018.04.004>

Schwitzgebel, E. (2023). AI systems must not confuse users about their sentience or moral status [Review of *AI systems must not confuse users about their sentience or moral status*]. *Patterns*, 4(8), 100818. Elsevier BV. <https://doi.org/10.1016/j.patter.2023.100818>

Setola, N., Naldi, E., Cardinali, P., & Migliorini, L. (2022). A Broad Study to Develop Maternity Units Design Knowledge Combining Spatial Analysis and Mothers' and Midwives' Perception of the Birth Environment. *HERD Health Environments Research & Design Journal*, 15(4), 204. <https://doi.org/10.1177/19375867221098987>

Sharma, S., Rodrigues, P., Zaher, S., Davies, L. C., & Ghazal, P. (2022). Immune-metabolic adaptations in pregnancy: A potential stepping-stone to sepsis [Review of *Immune-metabolic adaptations in pregnancy: A potential stepping-stone to sepsis*]. *EBioMedicine*, 86, 104337. Elsevier BV. <https://doi.org/10.1016/j.ebiom.2022.104337>

Shen, H., Knearem, T., Ghosh, R., Alkiek, K., Krishna, K., Liu, Y., Ma, Z., Petridis, S., Peng, Y.-H., Qiwei, L., Rakshit, S., Si, C., Xie, Y., Bigham, J. P., Bentley, F., Chai, J., Lipton, Z., Mei, Q., Mihalcea, R., ... Jurgens, D. (2024). *Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions*. <https://doi.org/10.48550/ARXIV.2406.09264>

Sherma, R. D. (2021). Relationality and Revelation: Early Hindu Ecological Visions. *Religions*, 12(7), 465. <https://doi.org/10.3390/rel12070465>

Shlobin, N. A., Aru, J., Vicente, R., & Zemmar, A. (2023). What happens in the brain when we die? Deciphering the neurophysiology of the final moments in life [Review of *What happens in the brain when we die? Deciphering the neurophysiology of the final moments in life*]. *Frontiers in Aging Neuroscience*, 15. Frontiers Media. <https://doi.org/10.3389/fnagi.2023.1143848>

Sienicki, K. (2024). *Algorithmic Idealism I: Reconceptualizing Reality Through Information and Experience*. <https://doi.org/10.48550/ARXIV.2412.20485>

Silver, C. B. (2007). Womb Envy: Loss and Grief of the Maternal Body. *The Psychoanalytic Review*, 94(3), 409. <https://doi.org/10.1521/prev.2007.94.3.409>

Simoncic, V., Deguen, S., Enaux, C., Vandendorren, S., & Kihal-Talantikite, W. (2022). A Comprehensive Review on Social Inequalities and Pregnancy Outcome—Identification of Relevant Pathways and Mechanisms [Review of *A Comprehensive Review on Social Inequalities and Pregnancy Outcome—Identification of Relevant Pathways and Mechanisms*]. *International Journal of Environmental Research and Public Health*, 19(24), 16592. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/ijerph192416592>

Sisto, A., Vicinanza, F., Campanozzi, L. L., Ricci, G., Tartaglini, D., & Tambone, V. (2019). Towards a Transversal Definition of Psychological Resilience: A Literature Review [Review of *Towards a Transversal Definition of Psychological Resilience: A Literature Review*]. *Medicina*, 55(11), 745. Multidisciplinary Digital Publishing Institute. <https://doi.org/10.3390/medicina55110745>

Siu, K. K. W., Serrão, V. H. B., Ziyyat, A., & Lee, J. E. (2021). The cell biology of fertilization: Gamete attachment and fusion [Review of *The cell biology of fertilization: Gamete attachment and fusion*]. *The Journal of Cell Biology*, 220(10). Rockefeller University Press. <https://doi.org/10.1083/jcb.202102146>

Soma-Pillay, P., Nelson-Piercy, C., Tolppanen, H., & Mebazaa, A. (2016). Physiological changes in pregnancy [Review of *Physiological changes in pregnancy*]. *Cardiovascular Journal of South Africa/Cardiovascular Journal of Southern Africa*, 27(2), 89. Clinics Cardive Publishing. <https://doi.org/10.5830/cvja-2016-021>

Spears, W. E., Mian, A., & Greer, D. M. (2022). Brain death: a clinical overview [Review of *Brain death: a clinical overview*]. *Journal of Intensive Care*, 10(1). BioMed Central. <https://doi.org/10.1186/s40560-022-00609-4>

Spina, S. (2023). Homo-Loggatus. The anthropological condition of historians in the digital world. *arXiv (Cornell University)*. <https://doi.org/10.48550/arxiv.2307.02590>

Stankovich, R. (2016). Does the Consciousness End, Remain Awake, or Transform After Death? *Journal of Consciousness Exploration & Research*, 7(11). <https://jcer.com/index.php/jcj/article/view/623>

Stenseke, J. (2021). Artificial virtuous agents: from theory to machine implementation. *AI & Society*, 38(4), 1301. <https://doi.org/10.1007/s00146-021-01325-7>

Sticca, F., Gasser-Haas, O., & Seiler, C. W. (2023). The interplay among familial risk, narrative coherence, and emotional problems from early to middle childhood. *Frontiers in Psychology*, 14. <https://doi.org/10.3389/fpsyg.2023.969974>

Stitzel, M. L., & Seydoux, G. (2007). Regulation of the Oocyte-to-Zygote Transition [Review of *Regulation of the Oocyte-to-Zygote Transition*]. *Science*, 316(5823), 407. American Association for the Advancement of Science. <https://doi.org/10.1126/science.1138236>

Stoller, R. J. (1976). Primary femininity. *PubMed*, 24, 59. <https://pubmed.ncbi.nlm.nih.gov/803151>

Svoboda, P. (2017). Mammalian zygotic genome activation [Review of *Mammalian zygotic genome activation*]. *Seminars in Cell and Developmental Biology*, 84, 118. Elsevier BV. <https://doi.org/10.1016/j.semcdb.2017.12.006>

Szigethy, E., & Ruiz, P. (2001). Depression Among Pregnant Adolescents: An Integrated Treatment Approach. *American Journal of Psychiatry*, 158(1), 22. <https://doi.org/10.1176/appi.ajp.158.1.22>

Tandana, E. A. (2023). Christian Ethics toward Artificial Intelligence and Its Impacts on Humanity. *Evangelikal Jurnal Teologi Injili Dan Pembinaan Warga Jemaat*, 7(2), 89. <https://doi.org/10.46445/ejti.v7i2.595>

Tau, G., & Peterson, B. S. (2009). Normal Development of Brain Circuits [Review of *Normal Development of Brain Circuits*]. *Neuropsychopharmacology*, 35(1), 147. Springer Nature. <https://doi.org/10.1038/npp.2009.115>

Terrón, J. M. M. (2021). Vulnerable Dignity, Dignified Vulnerability: Intertwining of Ethical Principles in End-of-Life Care. *International Journal of Environmental Research and Public Health*, 18(2), 482. <https://doi.org/10.3390/ijerph18020482>

Testoni, I., Ronconi, L., Palazzo, L., Galgani, M., Stizzi, A., & Kirk, K. (2018). Psychodrama and Moviemaking in a Death Education Course to Work Through a Case of Suicide Among High School Students in Italy. *Frontiers in Psychology*, 9. <https://doi.org/10.3389/fpsyg.2018.00441>

Tetz, V., & Tetz, G. (2020). A new biological definition of life. *BioMolecular Concepts*, 11(1), 1. <https://doi.org/10.1515/bmc-2020-0001>

Thomas, J. C., Létourneau, N., Campbell, T. S., Tomfohr-Madsen, L., & Giesbrecht, G. F. (2017). Developmental origins of infant emotion regulation: Mediation by temperamental negativity and moderation by maternal sensitivity. *Developmental Psychology*, 53(4), 611. <https://doi.org/10.1037/dev0000279>

Timmermann, C., Kettner, H., Letheby, C., Roseman, L., Rosas, F. E., & Carhart-Harris, R. L. (2021). Psychedelics alter metaphysical beliefs. *Scientific Reports*, 11(1). <https://doi.org/10.1038/s41598-021-01209-2>

Toader, A. (2019). Auditability of AI systems – brake or acceleration to innovation? *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.3526222>

Togunwa, T. O., Babatunde, A. O., & Abdullah, K.-R. (2023). Deep hybrid model for maternal health risk classification in pregnancy: synergy of ANN and random forest. *Frontiers in Artificial Intelligence*, 6. <https://doi.org/10.3389/frai.2023.1213436>

Trifonov, E. N. (2011). Vocabulary of Definitions of Life Suggests a Definition. *Journal of Biomolecular Structure and Dynamics*, 29(2), 259. <https://doi.org/10.1080/073911011010524992>

Turner, C. (2017). A Principle of Intentionality. *Frontiers in Psychology*, 8. <https://doi.org/10.3389/fpsyg.2017.00137>

Uvnäs-Moberg, K., Groß, M. M., Calleja-Agius, J., & Turner, J. D. (2024). The Yin and Yang of the oxytocin and stress systems: opposites, yet interdependent and intertwined determinants of lifelong health trajectories. *Frontiers in Endocrinology*, 15. <https://doi.org/10.3389/fendo.2024.1272270>

Varenne, F., Chaigneau, P., Petitot, J., & Doursat, R. (2015). Programming the Emergence in Morphogenetically Architected Complex Systems. *Acta Biotheoretica*, 63(3), 295. <https://doi.org/10.1007/s10441-015-9262-z>

Verheijde, J. L., Rady, M. Y., & Potts, M. (2018). Neuroscience and Brain Death Controversies: The Elephant in the Room. *Journal of Religion and Health*, 57(5), 1745. <https://doi.org/10.1007/s10943-018-0654-7>

Voléry, I., & Toupet, L. (2021). Orchestrating death in contemporary France: When the juridico-medical scansion at the end of life produces new ontologies. *Death Studies*, 46(7), 1569. <https://doi.org/10.1080/07481187.2021.1926633>

Wachs, T. D., Georgieff, M., Cusick, S. E., & McEwen, B. S. (2013). Issues in the timing of integrated early interventions: contributions from nutrition, neuroscience, and psychological research [Review of *Issues in the timing of integrated early interventions: contributions from nutrition, neuroscience, and psychological research*]. *Annals of the New York Academy of Sciences*, 1308(1), 89. Wiley. <https://doi.org/10.1111/nyas.12314>

Wade, M., Madigan, S., Akbari, E., & Jenkins, J. M. (2015). Cumulative biomedical risk and social cognition in the second year of life: prediction and moderation by responsive parenting. *Frontiers in Psychology*, 6. <https://doi.org/10.3389/fpsyg.2015.00354>

Wall, A. (2000). Book Review. *British Journal of Healthcare Management*, 6(9), 413. <https://doi.org/10.12968/bjhc.2000.6.9.19311>

What Is Postmodern Theology? (2020). In *University of Notre Dame Press eBooks* (p. 45). <https://doi.org/10.2307/j.ctv19m638q.7>

White, F. J. (2019). Controversy in the Determination of Death: The Definition and Moment of Death. *The Linacre Quarterly*, 86(4), 366. <https://doi.org/10.1177/0024363919876393>

Wilson, R. L., Stephens, K. K., Lampe, K., & Jones, H. (2021). Sexual dimorphisms in brain gene expression in the growth-restricted guinea pig can be modulated with intra-placental therapy. *Pediatric Research*, 89(7), 1673. <https://doi.org/10.1038/s41390-021-01362-4>

Wong, P. T. P., & Laird, D. A. (2023). Varieties of suffering in the clinical setting: re-envisioning mental health beyond the medical model. *Frontiers in Psychology*, 14. <https://doi.org/10.3389/fpsyg.2023.1155845>

Woods, H. A., Dillon, M. E., & Pincebourde, S. (2014). The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. *Journal of Thermal Biology*, 54, 86. <https://doi.org/10.1016/j.jtherbio.2014.10.002>

Woolley, J. D., & Ghossainy, M. E. (2013). Revisiting the Fantasy–Reality Distinction: Children as Naïve Skeptics [Review of *Revisiting the Fantasy–Reality Distinction: Children as Naïve Skeptics*]. *Child Development*, 84(5), 1496. Wiley. <https://doi.org/10.1111/cdev.12081>

Wu, E., & Vastenhout, N. L. (2020). From mother to embryo: A molecular perspective on zygotic genome activation [Review of *From mother to embryo: A molecular perspective on zygotic genome activation*]. *Current Topics in Developmental Biology/Current Topics in Developmental Biology*, 209. Elsevier BV. <https://doi.org/10.1016/bs.ctdb.2020.02.002>

Yang, Y. T. (2025). Digital Resurrection and Posthumous Identity: Toward a Cross-Cultural Neurorights Framework. *AJOB Neuroscience*, 1. <https://doi.org/10.1080/21507740.2025.2519440>

Young, A., Robbins, I., & Shelat, S. (2022). From Micro to Macro: The Combination of Consciousness. *Frontiers in Psychology*, 13. <https://doi.org/10.3389/fpsyg.2022.755465>

Zgliczyński-Cuber, T. (2025). *The AI Ethical Resonance Hypothesis: The Possibility of Discovering Moral Meta-Patterns in AI Systems*. <https://doi.org/10.48550/ARXIV.2507.11552>

Zhao, H. (2025). *A Study on the Application of Artificial Intelligence in Ecological Design*. <https://doi.org/10.48550/ARXIV.2507.11595>

Zheng, X., Zhang, J., Ye, X., Lin, X., Liu, H., Qin, Z., Chen, D., & Zhan, C. (2022). Navigating through motherhood in pregnancy and postpartum periods during the COVID-19 pandemic: A systematic review and qualitative meta-synthesis [Review of *Navigating through motherhood in pregnancy and postpartum periods during the COVID-19 pandemic: A systematic review and qualitative meta-synthesis*]. *Journal of Nursing Management*, 30(8), 3958. Wiley. <https://doi.org/10.1111/jonm.13846>

Zhou, S., & Uesaka, M. (2005). Bioelectrodynamics in living organisms. *International Journal of Engineering Science*, 44, 67. <https://doi.org/10.1016/j.ijengsci.2005.11.001>

Zhu, D., & Lyu, K. (2024). Anti-stigmatizing: a collaborative autoethnography on recovery from depression. *Frontiers in Psychiatry*, 15. <https://doi.org/10.3389/fpsyg.2024.1360967>

Моисеева, Е. Г., Rabinowitz, C., Paz, G., & Rinkevich, B. (2017). Histological study on maturation, fertilization and the state of gonadal region following spawning in the model sea anemone, *Nematostella vectensis*. *PLoS ONE*, 12(8). <https://doi.org/10.1371/journal.pone.0182677>

Чуприн, Б. М., & Mihajlovic, W. (2006). Three layer functional model and energy exchange concept of aging process. *AGE*, 28(1), 111. <https://doi.org/10.1007/s11357-005-4258-2>

