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Abstract 

AI tools hold considerable promise for psychological research. The precise shape of their potential uses 
has become clearer in recent years as machine learning models have been trained to reproduce a variety 
of complex human cognitive behaviors with impressive success. The prospect of AI-human 
performance parity, along with the advantages of AI systems in speed, cost and ease of use, has 
prompted psychologists to explore how science might benefit from reassigning some traditionally 
human research roles to machines. This chapter provides an outlook on such methods. We begin by 
documenting the prospective upsides of what many researchers take to be the most promising types of 
AI surrogacy, including the use of models to efficiently generate, screen and refine preliminary 
hypotheses. We then discuss such methods’ limitations and drawbacks, and more generally the 
methodological considerations researchers must attend to in choosing when and how to rely on 
machine substitutes for human behavior. 

1​ “Can AI models replace human participants?” 

A 2023 paper in Trends in Cognitive Sciences, cited hundreds of times already as of this writing in late 
2024, proposed a guardedly affirmative answer to the question “Can AI Language Models Replace 
Human Participants?” (Dillion et al. 2023). The floodgates have come thundering open in the short 
time since. A large and fast-growing body of work in neuroscience, psychology and behavioral science 
has embraced AI tools as surrogates for human subjects and researchers, in ways already extensive 
enough to make Dillion et al.’s circumscribed vision look rather modest. 

Many commentators have, of course, sounded notes of concern about the supplanting of humans by 
large language models (LLMs) and other AI systems. Some of these worries pertain to AI in science 
broadly (Messeri and Crockett 2024; Koskinen 2024; Binz, Alaniz, et al. 2025), while others involve 
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specific use cases in psychology and adjacent fields (Grossmann et al. 2023; Abdurahman et al. 2024; 
Crockett and Messeri 2023). Our goal is to provide an overview of all sides of this developing picture: 
how psychologists are applying (or proposing to apply) AI to traditionally human research tasks, why 
many are optimistic about these methods, and what we take to be the crucial methodological 
limitations and challenges of the AI surrogacy paradigm.  

The practices we describe also raise many ethical questions, but we limit our discussion here to the 
methodological and epistemological issues surrounding AI surrogacy. (Or rather we do so to the extent 
that the two can be disentangled, though there remain points of close contact. Examples include the 
role of shared perspective in interpreting AI outputs (§2.5),  LLMs’ misportrayal and flattening of 
minority group characteristics (§3.4), and the relationship between human interests and the goals of 
science (§3.5).) For more sustained analysis of AI ethics issues in psychology, see e.g. Agnew et al. 2024; 
Chenneville, Duncan, and Silva 2024; Chen et al. 2024. 

2​ The promise: what AI surrogacy might do for research 

The topic we’ve gestured at stands in need of clarification: what sort of replacement is at issue in 
discussions of AI taking over human research roles? We understand “AI surrogacy” here to cover any 
human-associated tasks substantially assigned to artificial intelligence, especially those constituting 
central cognitive components of theoretical and experimental research.1 (So our focus here will not be 
on, for example, the use of AI tools for proofreading papers or managing lab schedules.) This notion of 
surrogacy is intentionally broad. In addition to cases of direct replacement (where an AI system 
performs a task T but, had it not, some human would have done T instead), our definition applies to 
cases of AI systems doing the kinds of cognitive tasks humans have traditionally done, even if it’s 
unclear or doubtful whether any human would counterfactually have performed the specific tasks at 
issue.2 

Though the title of Dillion et al.’s piece asks about replacing human participants, we consider 
surrogacy on both the researcher and subject sides; the two sets of issues raised are intertwined in any 
case. 

2 It may of course be important to distinguish carefully between replacement-type and augmentation-type cases in some 
contexts. When discussing general methods and hypothetical scenarios (as we often will), however, one can rarely give 
definite answers to counterfactual questions about whether a given AI research task would otherwise have been done by 
humans. So it’s convenient to adopt a notion of surrogacy that’s insensitive to such issues. 

1 In its taxonomy of “visions of AI across the research pipeline”, Messeri and Crockett (2024) uses the language of surrogacy 
to refer specifically to AI-generated synthetic data. Our broader notion of surrogacy includes this use (discussed especially 
in §2.5) among others. 
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So far as we know, not even the most ardent techno-optimists have called for the end-to-end 
mechanization of psychology, at least in the near term (though see Lu et al. (2024) and Manning, Zhu, 
and Horton (2024) for workups of autonomous AI researchers in machine learning and social science, 
respectively). Rather, AI proponents have identified a number of specific locations along the research 
pipeline where machine surrogacy offers apparent advantages. We discuss five such applications in the 
subsections below: AI-driven hypothesis generation, item piloting and instrument development, the 
exploration of novel experimental paradigms, general-purpose cognitive modeling, and the 
replacement of human study subjects. We sketch the state of the art and mention some methodological 
issues in each case. Subsequently, §3 explores concerns about AI methods of a more general sort. 

2.1​ Hypothesis generation 

The engines of scientific progress run well only when fed by a steady stream of questions, problems 
and puzzles. Advancements in knowledge are therefore bottlenecked by the number of high-quality 
testable hypotheses which experts are able to produce. Typical human skills in this domain may, 
moreover, leave something to be desired, given our cognitive limitations and biases; as Berger (2024) 
points out, “relying on intuition, personal observation, or whatever literature [scientists] happen to be 
aware of” (798) hardly stands out as a bulletproof method for identifying the best ideas. 
 
It’s therefore no surprise that AI systems’ hypothesis-generating potential has generated significant 
interest. Speed and cost are obvious points in the machines’ favor: current LLMs can produce dozens 
of research proposals in seconds, for free or nearly so. Sifting through many such outputs might yield 
promising ideas relatively quickly even if most were of low quality.  
 
In fact, however, the perceived goodness of AI-authored hypotheses has also risen to an estimable level. 
Banker et al. (2024) put GPT-4 to work producing research proposals and found that social 
psychologists rated its ideas above human-generated hypotheses on each of five dimensions of quality 
(clarity, originality, impact, plausibility and relevance). There’s some evidence that more sophisticated 
methods may yield further improvements: Tong et al. (2024) used GPT-4 to create a causal graph for 
psychological variables, which was then used as a basis for automated hypothesis generation; proposals 
produced in this way outscored those produced by a baseline LLM in perceived novelty (though not in 
perceived usefulness). Relatedly, good agreement has been found between LLMs and human raters 
asked to judge the quality of AI-generated hypotheses in the field of natural language processing (Chai 
et al. 2024). Other recent works in this vein include (Liu et al. 2024; O’Brien et al. 2024; Xu et al. 2024; 
Zhou et al. 2024). 
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Of course, the fact that AI hypotheses are judged favorably in certain respects (by humans or AI itself) 
doesn’t entail that these hypotheses are especially likely to be true, fruitful or otherwise scientifically 
virtuous. Indeed, LLM outputs are often found to be preferred over alternatives produced by human 
experts, seemingly on account of the fluent, readily digestible nature of LLM text; this effect has been 
observed in domains from poetry (Porter and Machery 2024) to talk therapy (Kuhail et al. 2024), and 
is often accompanied by an impression that AI outputs are more humanlike than genuine human 
work. It’s conceivable that many AI-generated hypotheses are also preferred for broadly stylistic and 
presentational rather than epistemic reasons.3 As far as we’re aware, few efforts have yet been made to 
determine whether raters’ preferences are correlated with positive experimental findings or other 
objective dimensions of scientific merit. 
 
Several studies have, however, attempted to directly measure the accuracy of LLM predictions. Lippert 
et al. (2024) found GPT-4 to achieve parity with human experts in predicting the results of a large 
social psychology experiment. See also Luo et al. (2024) for LLMs’ ability to predict the correct 
versions of published neuroscience abstracts, and Hewitt et al. (2024) for LLM predictions of social 
science survey results. 
 
LLM-based methods are a popular paradigm for hypothesis generation, but not the only AI game in 
town. An alternative approach uses standard machine learning algorithms to discover prospective 
relationships between variables of interest, together with interpretability techniques to render these 
hypotheses intelligible to human scientists. Ludwig & Mullainathan (2024) applied a version of this 
method to judges’ decisions about pretrial detention, finding humanly identifiable but non-obvious 
features of arrestees’ mugshots which significantly predicted detention versus release. As the authors 
note, however, their method depends on the availability of unstructured, high-dimensional data from 
which humanly meaningful features can be extracted, and hence is likely to be useful only for a limited 
set of research questions. Shang & Xiao (2023) explores similar approaches to automated hypothesis 
generation in neuroscience, again acknowledging the dataset-dependent nature of such techniques: in 
this case, the authors “focus on large-scale electrical and optical physiology data because they best 
represent the rich, complex patterns that AI thrives on” (2). 

3 This might explain the findings of Banker et al., for instance, whose AI-generated hypotheses seem noticeably more vivid, 
detailed, self-contained and well-motivated than the human alternatives (which were scraped by machine from the abstracts 
of published papers). A typical GPT-4 hypothesis from this study was “that individuals belonging to a low-status group 
within a society will have more positive attitudes towards a high-status outgroup, in comparison to individuals in the 
high-status group themselves, due to a phenomenon of upward social comparison and aspirational identification”. 
Meanwhile, a typical human hypothesis was “that people may have multiple representations of a preference toward an 
object even within a single context”.  
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2.2​ Instrument development and piloting 

Psychological theories frequently posit unobserved mental traits, like agreeableness, intelligence or 
social anxiety, to explain observed behavior. They develop instruments—tests, scales, questionnaires 
and the like—to indirectly measure these hypothesized traits. Instruments consist of items such as 
survey questions and task prompts. Both instruments and individual items must be carefully evaluated 
prior to wide adoption in experimental settings. Piloting, for instance, refers to preliminary item testing 
for comprehensibility, clarity, inter-item correlations and other statistical properties. 
 
One of Dillion et al.’s primary proposals for how LLMs might supplant humans in the research 
pipeline is by taking over item piloting in the design of new experiments and instruments. They 
suggest, for instance, that “[r]esearchers can give LLMs different questions and see if they act as 
expected within a nomological net (e.g., form a reliable scale)” (598).4 Argyle et al. (2023) similarly 
encourages researchers to “leverage the insights gained from simulated, silicon samples to pilot different 
question wording, triage different types of measures, identify key relationships to evaluate more closely, 
and come up with analysis plans prior to collecting any data with human participants” (349). 
 
Beghetto et al. (2025) discuss such possibilities at greater length, noting three opportunities for AI 
automation in instrument development. First, language models could stand in for human respondents 
in “cognitive interviewing” protocols, helping to ensure that items are worded clearly so as to convey 
their intended meanings to study participants. Second, LLMs might be used to spot global 
misalignment issues and other inconsistencies by “recogniz[ing] patterns in textual information and 
analyz[ing] the semantic relationship among items, constructs, and definitions” (1). Finally, LLMs 
could contribute to item authoring or revising, with an eye toward maintaining stylistic consistency, 
reading-level appropriateness and other desired features. 
 
Beghetto et al. report on two case studies featuring the use of LLMs for these purposes. In the first case, 
researchers sought to improve on a possibility-thinking scale. GPT-4 identified three flawed items from 
the original version of the scale, two of which were also found to be problematically cross-loaded in 

4 Cronbach & Meehl (1955) introduced the notion of a nomological net(work), characterized as “the interlocking system 
of laws which constitute a theory” and which “may relate (a) observable properties or quantities to each other; or (b) 
theoretical constructs to observables; or (c) different theoretical constructs to one another” (290). On this picture, 
establishing the construct validity of a psychological instrument involves identifying a relevant network and showing that 
the instrument behaves as expected with respect to it. For instance, scores on an assessment of social anxiety should correlate 
positively with measures of general anxiety and negatively with measures of social confidence, should predict behavioral 
outcomes like speaking performance in social situations, and should be distinguishable from measures of non-social anxiety. 
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independent empirical work.5 (Beghetto et al. report surprise at GPT-4’s “particularly insightful” 
analysis here (3).) The LLM also generated a number of novel items. The authors found that the 
best-performing modified version of the scale used nine human-produced and three GPT-created 
items, furnishing “promising evidence that partnering with LLMs can support and strengthen scale 
development and validation efforts” (4). 
 
Schlegel, Sommer, and Mortillaro (2025) used GPT-4 to generate new items for tests of emotional 
intelligence. They found that the GPT-generated items were highly correlated with the established 
items (r = 0.46) and were largely similar in their psychometric properties (clarity, difficulty, realism, 
diversity, internal consistency). Interestingly, when they asked six widely-used LLMs to complete 
established tests of emotional intelligence, all models scored considerably higher than humans on 
average (81% versus 56% mean accuracy). Thus, simply administering candidate items to these LLMs, 
without additional prompt engineering, would not yield results that reflect typical human 
performance. Indeed, GPT’s superior ability here may be part of why it was successful in creating new 
items. 
 
The negative results of Abdurahman et al. (2024) provide a partial contrast, however. Here the authors 
took up Dillion et al.’s suggestion about using LLMs to construct nomological nets, prompting 
GPT-3.5 to produce judgments in six moral domains and comparing these results to human data. The 
correlations among domains in the two datasets differed considerably (e.g., purity and loyalty 
judgments were correlated positively in the human sample but negatively in GPT’s responses), 
“indicating that GPT struggles to [re]produce previously established nomological networks” (4). 
 
Some elements of item piloting and instrument development draw primarily on language models’ 
general-purpose writing and text analysis skills. These applications raise few issues beyond those 
associated with typical uses of generative AI. In other instances, however, additional care is warranted, 
and it’s unclear to what extent AI systems can offer a viable alternative to human subjects. For example, 
as Harding et al. (2023) point out, a key goal of cognitive interviewing and other piloting techniques is 
to assess the reception of test items by subjects with widely varying prior knowledge, linguistic 
backgrounds, reading abilities, attentional strategies and other cognitive characteristics. These 
techniques often include prompts such as “How easy or difficult was it for you to remember this? How 
sure are you of your answer? How easy or difficult was it for you to come up with your answer? How 

5 An item is said to be cross-loaded when it measures more than one psychological factor to a significant degree. For 
example, in a Big Five personality trait assessment, the item “I enjoy meeting new people at parties” might load on both 
Extraversion and Openness to Experience. Cross-loading is undesirable because it complicates the scoring and 
interpretation of test items (among other reasons). 
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easy or difficult is it for you to talk about this issue?” (Hibben and de Jong 2016). The extent to which 
LLMs can simulate such subjects in answering such questions (or can be finetuned to do so more 
successfully) is unclear at present. (See §3.4 below for related discussion.) 

2.3​ Novel experimental paradigms 

If an AI system can be trained to successfully mimic human behaviour in a task of interest, it can 
provide essentially infinite human-like behavioural data. Such a behavioural clone can be used in new 
research paradigms that would not be possible using exclusively human participants. Below we describe 
one such methodology, variants of which have been used successfully to discover novel strategies to 
positively influence human behaviour.  
 
The behavioural cloning pipeline begins by collecting large amounts of human data in a task of 
interest. Neural networks are then trained to mimic human behaviour in the task—these are the 
behavioural clones. Importantly, the clones are not trained to perform the task as well as possible; they 
are optimized to behave as humans do in the task. A separate deep reinforcement learning system then 
learns a policy to maximize some aspect of the clones’ behaviour. This generates a hypothesis about 
how to similarly influence human behaviour, which can be tested on a new cohort of human 
participants. This new human data can be incorporated into the training data for the behavioural 
clones in an iterative process that gradually refines the learned policy. Inspection of the learned policy 
ideally leads to an interpretable version that achieves the same effect. Variations of this method have 
been used successfully to encourage cooperation in a prisoner’s dilemma game (McKee et al. 2023) to 
encourage sustainable behaviour and find desirable social mechanisms in a common pool resource 
problem (Koster et al. 2022; 2025). 
 
Unlike some other forms of AI surrogacy we discuss, the behavioural clone is not replacing human 
participants in a setting where humans would normally be queried. Theoretically, one can imagine 
skipping the behavioural cloning step and having the deep reinforcement learning system interact 
directly with humans, but this would be intractable in practice. By contrast, the ability to “clone” 
human behaviour makes speedy optimization possible, opening up new data-driven approaches to 
discovery and hypothesis generation. An optimistic take might suggest that this presents an answer to 
the challenge posed by Allen Newell over 50 years ago in “You can’t play 20 questions with nature and 
win” (1973). Rather than coming up with theoretically-motivated hypotheses and designing 
experimental conditions to compare in human experiments, psychologists and social scientists, armed 
with powerful optimization algorithms, can directly read out the conditions that are optimal (at least 
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for the behavioural clones).  Thus, the primary benefit of this novel experimental paradigm may be the 
acceleration of scientific discovery. Gradient descent is a more efficient algorithm than binary search.  
 
Behavioural cloning experimental paradigms are similar in form to the practice of training language 
models with Reinforcement Learning with Human Feedback (RLHF), a common method for aligning 
language model outputs with human preferences. In RLHF, a reward model (or preference model) is 
trained on human preferences over prompt-response pairs. This reward model then stands in for 
human preferences, similar to how the behavioural clone stands in for human behaviour, in a 
finetuning process that leads to more human-preferred model outputs. RLHF was an essential 
ingredient in the recipe that brought the impressive success of modern large language models (Ziegler 
et al. 2020; Ouyang et al. 2022), so we might reasonably expect that similar approaches will be 
powerful in other domains as well.  
 
Behavioral scientists have long used models of human behaviour to build theories and make 
predictions. Sometimes these models consist of relatively simple assumptions about rational decision 
making under a specified utility function in constrained environments, enabling analytic treatment but 
often diverging considerably from real-world behaviour. The use of more realistic agent-based models 
to simulate human behaviour allows for more accurate predictions in more complicated scenarios 
where simple models fail (Farmer and Foley 2009). The use of modern deep reinforcement learning to 
train models of human behaviour and human preferences can be seen as the next step in this tradition 
(Tacchetti et al. 2025). Modeling human preferences is not just good for training language models. For 
example, in a paradigm similar to the behavioural cloning approach described above, recent work 
modeled human preferences over political opinions to find common ground in democratic 
deliberation (Bakker et al. 2022; Tessler et al. 2024). In these use cases, what matters most is that the 
clone or the preference model makes accurate predictions about human behaviour or preferences. That 
is what enables the downstream reinforcement learning to discover novel solutions. The clone or 
preference model need not in any way capture the underlying mechanisms of said behaviour.  

2.4​ General-purpose cognitive modeling 

A grand goal of some psychology and neuroscience researchers is to build a comprehensive model of 
human cognition, capable of predicting and explaining many phenomena from a unified set of 
principles (Newell 1990; Anderson and Lebiere 2003). In this vision’s traditional form, the model in 
question is the product of an integrated theory, emerging gradually from deep achievements of human 
understanding across the mind, brain and behavioral sciences. But the arrival of powerful AI tools 
offers a potential shortcut to this goal. Just as systems like AlphaFold have revolutionized protein 
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structure prediction and other difficult modeling problems in the natural sciences, so too might 
psychologists hope to develop models of the mind via black-box deep learning methods rather than 
painstaking human theory-building. 
 
A large recent effort in this direction is the Centaur model, built from Meta’s Llama 3.1-70B LLM 
finetuned with a large dataset of human choices from 160 psychology experiments (Binz, Akata, et al. 
2025). Centaur’s developers describe it as “the first real candidate for a unified model of human 
cognition”, establishing that “it is possible to discover domain-general models of human cognition in a 
data-driven manner” (4). 
 
The primary utility of Centaur is in predicting human choices in multi-option scenarios of various 
kinds (categorization tasks, probabilistic reasoning tests, gambling scenarios, multi-armed bandits, 
etc.), such choice sequences having made up the majority of its finetuning data. On average, Centaur 
was found to moderately outperform the base Llama model at predicting held-out experimental data; 
Llama in turn typically outperforms task-specific models of human behavior from the cognitive science 
literature, by a slightly larger margin.  
 
Across all tasks, Centaur achieved an average pseudo-R2 value of 0.50, where R2 = 0 and R2 = 1 
respectively correspond to random guessing and perfect prediction. For novel behaviors outside the 
discrete-choice paradigm represented in its finetuning data, Centaur is often less successful: for 
instance, it achieves R2 = 0.18 at predicting human inferences on a logical reasoning task (7).  
 
It appears that, for some types of task, Centaur may owe its performance in part to “shortcut learning” 
(Geirhos et al. 2020), a common and often undesired training outcome in which “a model achieves 
high predictive performance by exploiting easily learnable features [of the training data], rather than 
capturing the underlying structure or intended rationale of the task” (Xie & Zhu 2025). For instance, 
Xie and Zhu found Centaur to outperform traditional cognitive models at predicting some types of 
human choices even when the descriptions of the relevant tasks were completely removed from its 
prompts. It appears likely in these cases that Centaur has learned to exploit temporal dependencies in 
the choice-sequence training data (e.g., the general tendency for subjects to repeat their own earlier 
choices) without attempting to model task-specific psychological processes. 
 
Understanding the basis on which models like Centaur makes behavioural predictions is critical for 
assessing their appropriateness for different use cases. For example, without this understanding, a 
researcher piloting a new version of an experiment on Centaur might wrongly infer that modifying the 
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task instructions would elicit no changes in participants’ behaviour, when in fact Centaur (unlike a 
typical human subject) was simply ignoring the instructions altogether. 
 
While we don’t wish to dwell exclusively on the details of any one project, Centaur illustrates some 
barriers that remain to be overcome for future exercises in AI-driven cognitive modeling, as well as 
some potentially intrinsic limitations of the genre.  
 
One lesson is that base LLMs are already quite good at predicting (some types of) human behavior, so 
large improvements over this starting point will likely require high-quality datasets of considerable size. 
(Centaur’s finetuning data comprised over ten million human choices from “many canonical studies” 
(3) but outperformed the base Llama model by a smaller margin than Llama’s outperformance of 
leading task-specific models. The gap between Centaur and a frontier closed-source model would 
presumably be narrower yet.) Second, developing a truly general-purpose cognitive model—with 
strong predictive abilities not just in one behavioral regime, but for a wide range of phenomena in 
abnormal, cognitive, developmental, organizational, perceptual, social, and personality 
psychology—will be a high hurdle to clear, especially in light of the previous point about the sizes of 
the necessary datasets. Third, while Binz, Akata, et al. invoke the Newellian aim of “understand[ing] 
the human mind in its entirety” (2) as motivation for their work, it’s often been noted that black-box 
machine learning methods leave much to be desired on this score (Räz and Beisbart 2024): a powerful 
AI model might tell us a great deal about what humans would do under various circumstances while 
leaving us none the wiser about how and why.6  
 
How troubled should psychologists be by this last point? Some, like Bowers et al. (2025), are 
pessimistic about the value of predictive power without mechanistic understanding: “Even if 
[Centaur] did behave like a human… it is unclear what theoretical insights would have been gained. 
Successful prediction does not imply successful explanation, and as cognitive scientists the 
development of explanatory theories is our main goal” (2). Similarly, Xie and Zhu worry that tools like 
Centaur “[risk] undermining  several  key qualities that theorists seek in a cognitive model—namely, 
explanatory insight into cognitive mechanisms, reliable generalization, and interpretable or trustworthy 
parameters” (5). 
 
A more moderate view might hold that accurate predictions are sometimes useful on their own, even 
when divorced from explanatory insight. But as Xie and Zhu show, how a model makes  predictions 

6 Though see Duede (2023) for an optimistic perspective on the prospect of gaining scientific understanding from opaque 
deep-learning models. 
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may determine its suitability for a particular use case. Accuracy in a circumscribed testing regime is no 
guarantee of accuracy under different deployment conditions, and the functional organization of a 
predictively successful model need not match that of a human mind. Perhaps future progress on 
interpretability techniques will shine light on the inner workings of complex models, allowing for more 
rigorous and systematic assessments in this domain  (Kästner and Crook 2024; Rai et al. 2024).  

2.5​ Replacing human subjects 

The most ambitious and controversial AI surrogacy proposal to feature in recent discussions involves 
the wholesale replacement of human experimental subjects by machine proxies. The motivation for 
replacement in this sense is the idea, colorfully expressed by Dillion et al., that “[t]he human mind is 
what researchers seek to understand… [and the] ‘minds’ of language models are trained on vast 
amounts of human expression, so their expressions can indirectly capture millions of human minds” 
(599, Box 2). As illustration, Dillion et al. report an impressive correlation of 0.95 between judgments 
made by GPT-3.5 and average human participants in five moral classification studies (598, Box 1). 
Though they aver that “human participants are safe for now” (598), Dillion et al. suggest that LLM 
outputs can usefully supplement human experimental data, and could perhaps come to play a larger 
role in research once the statistical relationship between LLM and human behavior is better 
understood. 
 
Other authors have countenanced stronger conclusions. Byun et al. (2023) suggests that “replacing 
humans with LLMs [in qualitative human-computer interaction research] may not be an unreasonable 
possibility. These models are able to generate logical and convincing themes and discussions... They are 
able to generate interesting research ideas, synthetic participant data, and reasonable questions for 
research artifacts” (8). Likewise, according to Grossman et al. (2023), “[w]ith the advent of advanced 
AI systems, the landscape of data collection in social sciences may shift. …LLMs may supplant human 
participants for data collection” (1108).  
 
Unlike the other surrogacy proposals considered here, the prospect of legitimizing experimental 
research based solely on AI-generated data would require a sea change in scientific cultures and 
practices. We’re not aware that any such study has yet been published in a mainstream psychology 
journal—at least, none which presents its findings as psychology per se, rather than an exploration of 
AI behavior and capabilities. Similarly, we’re not aware that any mainstream journal has expressed 
openness to such work.7  

7 Perhaps the new Taylor & Francis journal AI & Psychology will be among the first. The journal has published no articles at 
the time of this writing, but according to its website it will cover “everything that can be included under robopsychology, 
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Whether such methods will or should gain wide acceptance depends on a number of factors. The 
specific research question at issue may be relevant in various ways, for one. Since AI systems are better 
at simulating some types of human behavior than others, artificial participant data will be more 
credible when it fits squarely into a well-understood regime of close correspondence. Conversely, some 
research setups might be inherently more tolerant of a certain amount of error in simulated data—say 
when the existence or directionality of an effect is more important than its precise size, when a study’s 
purposes are exploratory or corroborative, or when a correction can be applied to counteract a known 
type of model bias. 
 
On a different note, Agnew et al. (2024) argues that the embrace of machine-generated data stands in 
tension with certain humanistic aims of psychological research: notably, “the representation of 
participants’ interests; participants’ inclusion and empowerment in the development process; and the 
understanding that researchers otherwise develop through intersubjective engagement with 
participants” (1). We take it that the concerns here are partly ethical and partly epistemic. On the 
epistemic side, Agnew et al. maintain for instance that “the basis of psychological research and insight 
is not objective measurement, but intersubjective corroboration” (8), and on their view it’s unclear 
whether human researchers will ever be able to access the relevant kind of shared perspective with AI 
partners. In the absence of such intersubjective scaffolding, AI outputs may be more on par as evidence 
with the behaviors of a poorly understood alien species than with the choices of human subjects. 
 
This form of AI surrogacy raises many further methodological questions: about the psychological 
characteristics of AI models, model choice and reproducibility, the feasibility of simulating diverse 
groups and more. We discuss a number of these issues in section 3 below. 
 
It’s worth noting, finally, that a proliferation of cheap and fast research on silicon samples might 
require a rethinking of standard processes for disseminating knowledge. Even a fivefold increase (say) in 
the average researcher’s productivity would put tremendous pressure on editors, reviewers, meeting 
organizers and other traditional gatekeepers8, as well as on the ability of fellow scientists to keep up 
with new developments. Perhaps these new pressures could be managed only by further automation. 
At the end of this road, it would seem, lies a world of AI-generated papers assessed and summarized by 

8 See Mollaki (2024) for discussion of the use of LLMs in peer review. 

defined as the psychology of, for, and by robots, robotics, and AI” 
(https://www.tandfonline.com/journals/tpai20/about-this-journal).  
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AI for the benefit of any remaining human researchers. The behavioral sciences may soon have to 
consider whether to embrace this vision, and how to avoid it if not.9 

3​ The peril: AI surrogacy’s methodological minefield 

In this second half of the chapter we move away from specific proposals to examine general issues raised 
by a variety of AI surrogacy methods. We consider streetlight effects, the distinctive psychology of 
LLMs, issues surrounding model choice, the prospects for simulating diverse human groups, and 
questions of explanation and understanding. 

3.1​ Streetlight effects and the shape of the research landscape 

As noted above, AI surrogacy methods may offer significant advantages in speed, cost and ease over 
their traditional counterparts. These advantages will be appealing to many scientists, especially the 
large proportion who face pressure to maintain active research programs under binding resource 
constraints.10 As AI-based work becomes more widely accepted, then, we should expect an increasing 
number of research programs, methods and outputs to shape themselves around the affordances of the 
available technology.  
 
These dynamics raise the prospect of an encroaching AI “streetlight effect”, wherein the character of a 
growing share of psychological research is determined not by a method-neutral commitment to the 
best ideas and techniques, but in large part by the capabilities, proclivities and biases of the AI systems 
driving research activity. This effect might manifest in various ways. If automated hypothesis 
generation becomes widespread, then new research will disproportionately target the kinds of ideas 
which AI tools are (perceived to be) best at generating.  If specialized psychological models like 
Centaur (§2.4) gain ground as tools for testing or corroborating hypotheses, researchers will gain an 
incentive to favor questions in these models’ wheelhouses. If the use of LLMs to simulate participant 
data is normalized, then LLM-friendly experiment designs will offer time-pressed scientists the path of 
least resistance. And so on. 
 

10 E.g., see Lilienfeld (2017) and Almeida (2023) for observations about the deleterious effects of grant culture on the 
quality and diversity of psychological research, especially outside elite US and UK universities. 

9 Bender et al. warn that, even if AI systems can greatly increase the rate at which research is produced and published, 
“[s]cience is not a factory, churning out widgets or statistical analyses wrapped in text. …[W]e cannot equate papers and 
progress. Papers are but messages that we send one another to coordinate our collective quest for scientific understanding” 
(Binz et al. 2025, 8). 
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The streetlight worry is distinct from concerns about AI accuracy or reliability. Even if all 
machine-generated hypotheses were true, all ML models’ predictions correct, and all silicon samples 
statistically identical to their human counterparts, overreliance on such tools might still bring about an 
objectionable distortion of the research landscape. For instance, it might turn out that applied 
psychology is more automation-friendly than basic theoretical research, or that behaviors closely 
related to language use are more amenable to study with LLM assistance. It would be regrettable if 
basic research and non-linguistic cognition were deprioritized for these reasons alone. 
 
Of course, the current status quo is hardly free of streetlight influences. Scientists must always design 
research around the available tools, and it’s no surprise that bad results can ensue when new technology 
is adopted with more enthusiasm than care. (Bennett et al. (2009) illustrates how, in the heady early 
days of the functional neuroimaging gold rush, many fMRI studies committed a basic statistical error 
which called their interpretation of scan data into question.) Even among alluring technological 
novelties, however, AI tools may pose particular risks as hammers that promise to effortlessly pound in 
many stubborn types of nail. Large apparent upsides and an appearance of all-purpose competence 
make limitations easier to ignore, especially when the boundaries of the latter are poorly understood 
and blame for oversights is easily deflected. 
 
We can also compare AI streetlight effects to the blind spots associated with human minds, since our 
own contingent capabilities, proclivities and biases shape research in important ways. While both types 
of streetlight require vigilance, the human status quo may be more manageable in several respects.  
First, current AI systems may be strictly narrower in relevant knowledge and capabilities than typical 
human researchers (and are certainly narrower than all human researchers collectively). To the extent 
that this is true, we should expect AI-sourced research to span fewer domains with less depth than 
comparable human work. (AI’s speed, cost and volume advantages offer some compensation here, but 
only some.) Second, many human foibles are well enough understood that researchers can anticipate 
and to some extent correct for them: say, by constructing funnel plots to check for publication bias, or 
administering sugar pills to control groups to account for placebo effects. We’re comparatively ignorant 
about the quirks of AI systems and hence less prepared to notice and counteract the epistemic 
distortions they might introduce. Third, human researchers can incorporate new information into 
their knowledge bases almost immediately, whereas the costly training runs needed to update large AI 
models are often few and far between. So streetlights associated with AI knowledge and capabilities 
may be fixed in place for relatively long stretches. Fourth, human cognitive idiosyncrasies are stable over 
long timescales, while the proliferation of models and open-ended possibilities of finetuning make it 
difficult to establish general rules of AI psychology. The reader can likely think of further 
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considerations to add to ours. Continued progress on AI systems will presumably narrow some of 
these gaps, but others may be with us for the foreseeable future. 
 
Peterson (2025) offers an interesting formal model of a related streetlight effect. Starting from the 
observation that LLMs and similar models tend to generate outputs close to the statistical center of 
their training data, Peterson considers how overreliance on AI as an information source may gradually 
bring about “knowledge collapse”, “neglecting the long tails of knowledge and creating a degenerately 
narrow perspective over generations” (2). The paper models the decay of public knowledge in the 
presence of a cheap yet epistemically truncated AI information source. The model predicts that 
decreasing the cost of AI-generated content relative to the human baseline dramatically widens the 
distance between public knowledge and the truth: under a 50% discount, for instance, the public’s 
beliefs end up 3.2 times further from the truth than in the no-discount condition after nine simulated 
generations. While Peterson’s model is meant to apply to society as a whole, it’s plausible that 
widespread reliance on cheap AI data might induce a similar knowledge-collapse effect in individual 
scientific communities. 

3.2​ The psychology of AI models 

Some research applications of AI seek to take advantage of deep learning models’ distinctive 
capabilities and elevated performance. Meanwhile, other surrogacy methods are motivated by the 
perception that LLMs and other AI systems are—or can be made to deliver—good approximations of 
a psychologically ordinary, average, representative, or otherwise statistically and normatively 
appropriate human subject. This conviction is most clearly on display in proposals to replace human 
participants by silicon samples (§2.5). But it’s also operative, for example, in some uses of AI for item 
piloting and instrument development (§2.2), where models are meant to simulate how typical subjects 
might engage with these materials. 
 
These proposals raise a number of methodological questions. Just how well can AI models serve as 
human proxies? Where do their strengths and weaknesses lie? What notion of normality or averageness 
best captures the relationship between model outputs and human behavior, and what sort of epistemic 
work can this notion do for us?  
 
One line of research has examined LLMs’ ability to simulate specific individuals, given appropriately 
customized prompting or finetuning. (Such models are sometimes known as digital doppelgängers or 
twins; D’Alessandro et al. (2025) proposes a typology of these systems.) Results to date here have been 
mixed. Petrov et al. (2024) found that GPT-4 generally “produced skewed distributions in the 
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direction of a ‘desirable’ [Big Five Inventory] trait” (10) and was therefore “less capable of representing 
individuals who tend to be more disagreeable, unconscientious, introverted, emotionally stable, and 
not open to experience” (16). More recently, using transcriptions of long-form audio interviews as 
GPT-4o prompts, Park et al. (2024) obtained normalized correlations of 85%, 80% and 66% with 
human respondents’ own replications of their General Social Survey responses, Big Five personality 
scores and behavioral-economics game choices, respectively. 
 
Of course, researchers are more often interested in the statistics of human populations than in data on 
specific individuals. So a more pressing question is how AI outputs compare to people in aggregate.11  
 
One often encounters claims in the literature about the averageness of LLM behavior. Zhicheng Lin 
writes, for instance, that “[i]n many perceptual, linguistic, cognitive, and moral reasoning tasks, LLMs 
generate responses that closely capture what average people perceive, say, think, or do” (2024, 3). Since 
average carries many possible meanings, it’s important to be clear about what claims of this sort can be 
justifiably made. On the one hand, researchers comparing human and LLM behavior have found 
strong correlations or similar mean values in some instances. But the distributions of these datasets 
may nevertheless differ strikingly. So it would be a mistake for researchers (or public consumers of 
research) to assume or suggest without specific evidence that the statistics of human and LLM 
responses are generally similar.  
 
It’s often observed, for instance, that LLM outputs in a given domain follow a sharply peaked, 
short-tailed unimodal or bimodal distribution, while human responses exhibit much greater variability. 
Abdurahman et al. (2024) demonstrates the potentially far-reaching nature of this effect, comparing 
GPT-3.5 to human responses on six major personality, cognition and emotion scales. “Across these 
psychological constructs, we consistently found that ChatGPT responses generally showed 
significantly less variance across all measures”; in particular, “GPT-3.5’s variance [on the Moral 
Foundations Questionnaire-2] was 43–121 times smaller than human data… even when using 
parameter settings for maximum variability in the generated responses” (3).  
 
Similarly, in an investigation of GPT-3.5’s ability to replicate fourteen studies from the Many Labs 2 
project, P. S. Park, Schoenegger, and Zhu (2024) were unable to analyze almost half the target studies 

11 In principle, one can imagine the first of these issues bearing on the second—researchers could, for instance, develop 
digital-twin simulations of large numbers of individual humans, and then experiment directly on these simulations and do 
statistics on the resulting data. Given the effort required to train a decent twin, however, it would seem more efficient 
simply to work with human participants from the start. Perhaps these economics will change once a critical mass of 
high-quality digital twins becomes available to researchers. 
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because “different runs of GPT-3.5 in our sample responded with zero or near-zero variation for either 
a dependent variable or condition variable question, in stark contrast to the significant variation shown 
by the corresponding human subjects” (5757).12 Meanwhile, Aher et al. (2023) documented a 
“hyper-accuracy distortion effect” whereby larger LLMs (including GPT-4) asked to simulate human 
subjects are more likely to give identical and inhumanly accurate answers to general-knowledge 
questions.  
 
In some cases, notable distributional differences coexist with large correlation coefficients or similar 
means. Dillion et al. (2023) calls GPT-3.5 “extremely well aligned with human moral judgments” 
(597), reporting a correlation of  = 0.95. Nevertheless, GPT-3.5 delivered extreme ratings (between 𝑟
3.75 and 4, or between -3.75 and -4) in around 25% of 464 moral evaluation scenarios, while the mean 
human rating never reached either extreme.13 P. Wang et al. (2024)’s study of personality in LLMs 
furnishes another example. In this case, the authors found that “the mean values in the descriptive 
statistics were the only dimension where the [human and LLM] datasets were similar. Other than that, 
both the standard deviation in the descriptive statistics and the psychometric performance, such as 
model fit and structural validity, were unsatisfactory” (41). Bisbee et al. (2024) observed a similar 
pattern with respect to GPT-3.5’s answers to American National Election Study questions. Claims 
about the averageness of LLM behavior may therefore be misleading, and deserve to be carefully 
qualified. The precise nature of the statistical relationship between human and AI outputs will matter 
greatly to the appropriateness of many surrogacy methods. 
 
Issues of averageness aside, what do we know about the psychological profiles of LLMs? Both 
similarities and dissimilarities to human baselines have been noted. One line of research has examined 
the extent to which language models reproduce classic findings in psychology and behavioral science. 
Here, Shaki et al. (2023) found evidence for priming and several other effects in GPT-3, while Park et 
al. (2024) successfully replicated only three out of eight well-confirmed phenomena from Many Labs 2 
studies with GPT-3.5. Cui et al. (2024) undertook a much larger study, testing GPT-4 on 154 
psychological experiments. The model was found to replicate 76% of main effects and 47% of 
interaction effects documented in the original experiments. Notably, however, “only 19.44% of 
GPT-4’s replicated confidence intervals contain the original effect sizes, with the majority of replicated 
effect sizes exceeding the 95% confidence interval of the original studies and showing a 71.6% rate of 
unexpected significant results where the original studies reported null findings” (2).  
 

13 Data available at https://nikett.github.io/gpt-as-participant/.  

12 In this work, P. S. Park, Schoenegger, and Zhu used GPT-3.5’s default intermediate temperature setting, described by 
OpenAI as eliciting answers with significant randomness. 
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Other work has looked directly at the psychometrics of AI models. As Lin (2024) notes, one should 
expect to find significant discrepancies with the typical human case here, since frontier LLMs are 
exceptionally skilled and versatile language users by nature. Thus it’s no great surprise that models like 
GPT-4 outdo average humans in “detecting and interpreting irony, recognizing indirect requests or 
hints in conversation, analogical reasoning tasks, and probabilistic reasoning tasks like the Linda/Bill 
problems and the bat-and-ball problem” (Lin 2024, 8), as well as in assessing and providing guidance 
about social situations (Mittelstädt et al. 2024). It’s often been observed, moreover, that LLM 
personalities and values reflect the idiosyncratic WEIRD14 perspectives overrepresented in internet 
training data (Abdurahman et al. 2024; Crockett and Messeri 2023). 
 
LLM psychology exhibits other notable features which can’t be straightforwardly explained by the 
above factors. For instance, LLMs are in general more agreeable and conscientious, and substantially 
less neurotic, than the average American (Li et al. 2024). This profile is likely due in part to RLHF 
finetuning for helpfulness and other desirable traits. Indeed, Huang et al. (2024) tested a jailbroken 
version of GPT-4 in order to probe its “intrinsic characteristics” (15), finding significant psychometric 
differences including much lower agreeableness and conscientiousness, higher psychoticism and lower 
empathy compared to the default model. (For more on finetuning and its implications for model 
choice, see §3.3 below.) 
 
Researchers have also found considerable psychometric variation between models, and even among 
versions of a given model from a single developer: for instance, Llama 3-8b and Llama 3-70b score 3.56 
and 4.89 respectively on agreeableness (the human average is 3.78). Variation has likewise been found 
in the stability of LLM personality traits. Some models (such as Llama 3-8b) display humanlike levels 
of stability, while others (such as GPT-4) are notably unstable on both Big Five and Dark Triad traits. 
Finally, on the EmoBench tests of emotion understanding and application, Li et al. found LLM 
performance generally “not satisfactory, with all accuracies below 65%” (7). This is perhaps a surprising 
contrast with findings like that of Mittelstädt et al. on LLMs’ superhuman social competence and 
Huang et al. (2024) on GPT-4’s high emotional intelligence. 
 
There’s more to say about each of these topics. Broadly speaking, however, results like the above make 
it clear that researchers must think carefully, and perhaps test extensively, before putting language 
models to work in human roles. The fluency, intelligence, apparent humanlikeness and alleged 
averageness of current models may disguise many psychometric oddities. Moreover, the differences 

14 That is, western, educated, industrialized, rich and democratic. 

18 

https://www.zotero.org/google-docs/?rSTns5
https://www.zotero.org/google-docs/?5JA90O
https://www.zotero.org/google-docs/?qyDXq6
https://www.zotero.org/google-docs/?5WILWM
https://www.zotero.org/google-docs/?bXXMTt


Forthcoming in The Role of Artificial Intelligence in Science: Methodological and Epistemological Studies 
(Darrell P. Rowbottom, Andre Curtis-Trudel & David L. Barack, eds.), Routledge. 

 
among models themselves and between models and humans need not pattern together in intuitive 
ways.  

3.3​ Choosing, comparing and customizing models 

Individual LLMs (e.g., GPT-4, Claude 3.5, Llama 3.1) are commonly thought of as singular, static 
entities. Behind the scenes, however, these models are made up of several machine learning systems 
trained on a variety of objectives and datasets.  
 
Language model pretraining usually involves training a transformer-based architecture on objectives 
like next-word or masked-word prediction using massive text datasets. This base LLM may undergo 
supervised finetuning on human datasets collected expressly to capture what makes a good AI chatbot 
virtual assistant. These datasets may take the form of human demonstrations of appropriate 
prompt-response pairs, or human judgements related to the harmlessness, helpfulness, and honesty of 
responses (Bai et al. 2022).  
 
The next step is to train a preference model (or reward model) that takes in a prompt-response pair and 
outputs a scalar value that captures how highly a human would rank the response. This requires an 
additional dataset of human preferences, which is typically collected by presenting crowdworkers with 
pairs of candidate responses generated by the supervised finetuned (SFT) model and asking them to 
choose the best of the two. Combining several of these pairwise comparisons (via methods like Elo 
rating) produces a ranking over candidate responses that can be used to train the preference model. 
The preference model may be a version of the base LLM that is finetuned in a supervised manner on 
the human preference rankings.  
 
Finally, the SFT model can be further finetuned, now with a reinforcement learning algorithm like 
proximal policy optimization (PPO), to produce responses that the reward model scores highly.  
Alternative recipes skip training a preference model and finetune directly on the human preference 
datasets (Rafailov et al. 2023). This final finetuned model is what psychological researchers will often 
have readiest access to, often without knowing exactly which datasets were used for training and 
finetuning and typically without access to the preference model. This lack of transparency is a clear 
challenge to the usefulness of LLMs as surrogates and the interpretability of their outputs. 
 
The additional finetuning steps described above, which have been essential ingredients for producing 
the impressive capacities of modern large language models, steer language models towards particular 
kinds of language interaction that are deemed appropriate for an AI chatbot. The preference models 
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behind state-of-the-art models are typically not publicly available, and thus the values they encode 
cannot be easily audited. Recent work has found considerable heterogeneity in the values reflected in 
different preference models and systematic biases in their scores, some of which deviate significantly 
from human values as assessed with independent measures (Christian et al. MS).  
 
The objectives these models are trained on are not designed to make the outputs similar to those of an 
average human, since average humans wouldn't make ideal chatbots or search engines. In some ways, 
ideal LLM behavior may be better than that of an average human, in order to meet helpfulness 
objectives. In other ways they will be unlike the average human in their avoidance of certain topics for 
safety and harmlessness. How much this matters for instances of AI surrogacy in psychological research 
may depend on the use case.  
 
As noted in §3.2, some use cases of LLMs as surrogates in psychological research rely on the 
assumption that LLM behaviour is human-like, i.e., that LLM behaviour can be interpreted as an 
approximation of average,  normal or representative human behaviour. Even if the state-of-the-art, 
closed-source finetuned LLMs released by prominent AI companies display behaviour that is 
empirically humanlike in some ways, their behaviour has also been steered in unknown ways, the 
influence of which may be difficult to detect. An approach like that of Centaur (§2.4), where a 
pretrained model is finetuned on large datasets of human behaviour in psychology experiments, may in 
some respects be more appropriate (although we note again that, on average, Centaur’s finetuning only 
resulted in marginal prediction improvements relative to the LLama 3.1-70b base model).  
 
It may not be possible to develop a single model that can faithfully replicate any desired type of human 
behavior. Psychologists wishing to use LLMs in the relevant ways may need to be prepared to finetune 
their own models with their particular use case in mind. Still, of course, finetuning on targeted datasets 
is not guaranteed to produce accurate predictions of human behaviour. We may see an increase in 
research on prompt engineering to elicit human-like responses, or on transfer algorithms to adapt a 
general-purpose base LLM to a target domain of human behaviour. When performing a cost-benefit 
analysis to determine whether AI surrogacy is worthwhile, practitioners will need to consider what 
investment (e.g., the collection or aggregation of new datasets, computational resources, additional 
training time, upskilling) will be required to achieve the necessary degree of humanlikeness in their 
particular setting.  
 
Other use cases are less concerned with the verisimilitude of LLM behaviour. In fact, part of the benefit 
for uses like hypothesis generation and item development may be the superior ability of LLMs to 
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synthesize, summarize, and revise large bodies of text. However, which version of which LLM is used 
will still be of consequence in these settings. LLMs have been shown to display various kinds of 
linguistic erasure, systematically avoiding terminology related to topics found in negatively rated 
examples during finetuning (e.g., those related to human sexuality or racial, ethnic, and gender 
identity; Sap et al. 2019; Park et al. 2018; Dixon et al. 2018; Christian et al. MS). Were this linguistic 
erasure to infect the hypothesis generation process, it could limit the space of hypotheses considered in 
undesirable ways.  
 
On the other hand, using a pretrained LLM directly is likely to produce falsehoods and recreate the 
prejudices present in its training data, so not finetuning is not a viable option either. Finetuning an 
LLM with research users specifically in mind may offer some advantages, but attempts to date have not 
been notably successful—for instance, Meta’s Galactica model, trained on scientific texts and intended 
as a tool for students and researchers (Taylor et al. 2022),  had to be taken offline after only three days 
due to its biased and incorrect outputs. Galactica also displayed linguistic erasure, responding with 
“Sorry, your query didn’t pass our content filters. Try again and keep in mind this is a scientific 
language model” when queried about racism or AIDS (Heaven 2022). 

3.4​ Simulating diverse groups and specific traits 

In §3.2 we considered the extent to which AI systems can be viewed as proxies for average or normal 
human psychology. That issue is most salient for situations where AI outputs are meant to stand in for 
arbitrary individual humans, or to produce summary statistics similar to a typical human population. 
For other surrogacy purposes—in particular, for certain kinds of silicon sampling 
methods—researchers will instead wish to use AI to simulate specific (and perhaps highly non-average) 
groups or traits. This section discusses what’s known about current AI capabilities on this score and 
what challenges such simulation methods may face. 
 
To start with, there may be principled reasons for concern about the ability of LLMs to faithfully 
simulate members of particular identity groups. A. Wang, Morgenstern, and Dickerson (2025) 
suggests, for instance, that both misportrayal and flattening are likely. ‘Misportrayal’ refers to the 
conflation of facts about identity group characteristics with mistaken beliefs about these characteristics 
from outsider perspectives. Since the two types of information may be poorly distinguished in training 
data, the authors argue, it will be technically difficult to develop misportrayal-proof models. 
‘Flattening’, meanwhile, involves the inappropriate reduction of a group’s characteristics to those that 
are most common, salient or widely known. Since pretrained LLMs are designed to favor statistically 
likely outputs, their group simulations may gravitate too much toward typicality, underrepresenting 

21 

https://www.zotero.org/google-docs/?blpJQW
https://www.zotero.org/google-docs/?rYKeJv
https://www.zotero.org/google-docs/?q3im6e
https://www.zotero.org/google-docs/?CWdQjd
https://www.zotero.org/google-docs/?QkGpzT


Forthcoming in The Role of Artificial Intelligence in Science: Methodological and Epistemological Studies 
(Darrell P. Rowbottom, Andre Curtis-Trudel & David L. Barack, eds.), Routledge. 

 
in-group differences. A. Wang et al. and Cheng et al. (2023) present evidence for both phenomena. For 
instance, Cheng et al. find that identity group personas generated by GPT-4 contain many more 
stereotype-associated words than do similar self-descriptions written by humans from the same groups. 
 
Researchers interested in using LLMs as proxies for group members of any sort face choices about how 
to elicit the desired simulated behavior. The literature has explored a variety of paradigms, including 
prompting with keywords, demographic categories, more elaborate biographical data, numerical 
psychometric scores, survey responses, first- vs. second-person framings,  and so on. None of these 
methods seems to have yet emerged as clearly best, and no systematic theory yet exists about the 
relationship between prompt styles and simulation outcomes. It may therefore be unclear whether 
poor results from a given simulation study should be attributed to an inherent limitation of the models 
involved or merely a suboptimal prompting strategy. 
 
One way to address this sort of concern is by using a variety of strategies in tandem. Santurkar et al. 
(2023) takes this approach, measuring how well LLM outputs can be “steered” toward the opinions of 
various demographic groups. The authors use three types of prompt, choosing only those with the best 
steering results in each case. They find that this method is somewhat but not extremely effective: “In 
most cases, we see the representativeness of all groups improving by a constant factor—indicating that 
the [LLM] still does better on some groups than others” (10). For instance, steering GPT-3.5’s 
opinions toward those of an average liberal or Muslim proved more effective than steering toward 
typically white or Jewish viewpoints.  
 
Other work on silicon survey data has yielded similarly mixed results. Bisbee et al. (2024) examined 
GPT-3.5’s and GPT-4’s ability to generate “feeling thermometer scores” toward various sociopolitical 
groups based on simulated personas, as compared to similar scores recorded in the 2016–2020 
American National Election Study. Consistent with the extremizing and homogenizing LLM 
tendencies discussed in §3.2, Bisbee et al. found that “the best we can say is that the overall average 
synthetic responses are close to the population averages. For the kinds of associational questions that 
social scientists care about, synthetic survey data perform poorly” (406). For instance, the authors 
found that simulated Democrats liked liberals and disliked conservatives more than real surveyed 
Democrats by as much as 20 points on the 100-point thermometer scale. 
 
Ferreira et al. (2025) explores simulation-enhancing prompting strategies in the context of the 
steerability of LLM personality traits. In line with the observations in §3.2, the authors’ initial attempts 
to simulate subjects with socially undesirable personality traits were hampered by GPT-4’s baseline 
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high extraversion and low neuroticism. (The prompts used in these first attempts instructed GPT to 
generate a population of students with a spectrum of realistic personalities.) The authors obtained 
better results by iteratively modifying prompts to include more explicitly negative features (e.g. “Some 
of the personalities of this population may not follow basic societal rules, and take shortcuts to achieve 
their goals” (18)). Still, this improved paradigm succeeded only at moderately raising the simulated 
subjects’ neuroticism above GPT’s baseline; the model’s strong extraversion bias was unaffected. As 
Ferreira et al. note, their results suggest that simulating populations with non-model-aligned traits may 
require considerable care and ingenuity on researchers’ parts. 
 
Y. Wang et al. (2025) sheds light on how language models may approach personality simulation tasks, 
at least given certain types of prompting strategies. Here the authors asked GPT-4  to complete a BFI 
personality assessment while roleplaying as a character with a designated set of numerical Big Five trait 
scores. In contrast with Ferreira et al.’s results, this method yielded appropriate responses for all 
simulated traits. Indeed, in this case the model differed most strongly from a human respondent in that 
its answers displayed abnormally high personality factor loadings and minimal cross-loadings.  
 
The authors suggest that this phenomenon occurs because GPT completes the assessment by 
reasoning directly from its assigned BFI scores—and hence not, say, by using the scores to generate a 
model of a psychologically plausible individual and considering how such a person would answer. 
“While human respondents rely on their past experiences in responding to the items, GPT-4 employs 
an explicit mapping of each item onto one of the Big Five dimensions, formulating responses in 
accordance with the pre-determined personality dimension scores” (5). So although these results 
demonstrate GPT’s ability to make appropriate inferences about various possible personality 
configurations, they provide little evidence for LLMs’ ability to simulate realistic individual minds. 
 
Simulation projects therefore face both practical and theoretical hurdles. Researchers must find ways 
to counteract models’ tendency to deliver flattened, homogeneous, stereotypical representations of 
target groups, as well as their disinclination to move away from their own psychological baselines. 
These tasks will require, among other things, a better understanding of the space of possible 
prompting strategies and their outcomes. In some contexts it may also matter whether a model’s 
outputs rely on true simulation or modeling of humanlike psychology; there’s little reason to assume 
this behavior is standard, even when prompts include explicit instructions to roleplay a human 
character. 
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3.5​ Explanation, understanding and the goals of research 

We conclude this half of the paper by asking whether and how AI surrogacy methods are likely to serve 
the high-level goals of psychological research.  
 
What are these goals? Like all sciences, psychology aims to gather evidence, uncover facts and produce 
correct predictions. As we showed in §2, placing AI systems in some traditionally human roles may 
advance these goals considerably: by helping identify promising hypotheses, improving methods and 
materials, predicting (or perhaps creating) humanlike experimental data, and so on. 
 
In addition to knowing what is or may be the case, science seeks to understand how the facts hang 
together and why things are as they are. Indeed, some have argued that understanding and explanation 
are the primary goals of scientific inquiry (Potochnik 2015; de Regt 2020) or the fundamental measure 
of scientific progress (Dellsén 2021; McCoy 2022). It’s perhaps less clear whether AI surrogacy 
methods will provide a straightforward benefit here. 
 
Thinking clearly about this last question requires some precision about the concepts involved. 
Although scientific explanation and understanding are contested topics with large literatures, we can 
point to some notable recent trends.  
 
According to the influential view known as mechanism, for instance, the sciences most 
characteristically “explain a phenomenon by describing the mechanism underlying it, revealing its 
internal causal structure” (Craver et al. 2024). A mechanism in this sense is roughly a structured system 
of parts which interact to perform a function or produce an effect. An appropriate description of a 
mechanism, moreover, will be intelligible to its audience and will therefore serve as a source of 
explanatory understanding.15 The best-known work in the mechanist tradition has focused on 
explanation in biology and neuroscience, though many insist on the importance of mechanisms in 
psychology more broadly (Bechtel 2009; Piccinini and Craver 2011).16  
 

16 Whether psychology’s highly abstract, model-based functional explanations should be viewed as fundamentally 
mechanistic has been a subject of debate (Weiskopf 2011; Shapiro 2017). But most of our comments here should apply to 
both types of case. 

15 Explanatory understanding (as in “Jane understands why color vision works poorly in low light”) is often distinguished 
from objectual understanding (as in “Jane understands behavioral economics” or “Jane understands the neuron action 
potential”). The latter is sometimes thought of as the state of knowing many interconnected facts about a target topic  
(Kelp 2015); others have argued that psychological proficiencies (involving heuristics, intuition, schemas and the like) are 
further factors (D’Alessandro 2023; D’Alessandro and Stevens 2024; Inglis and Mejía-Ramos 2021). We focus on 
explanatory understanding here for simplicity. 
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If something like the mechanist account is correct, then merely documenting, predicting or modeling 
the observed phenomena doesn’t suffice for explanatory understanding. Indeed, as Thompson (2021) 
notes, it’s insufficient even to have an intelligible theory, to statistically explain all the variance in a 
dataset, or to identify a coarse-grained causal relationship. What’s required is knowledge of a specific 
kind: knowledge about the workings of the organized worldly structures from which the phenomena 
arise. On this view, explanatory progress in psychology will presumably be tied to continued 
high-quality experimentation within and across scales, from neuroscience to behavioral science, in 
search of mechanisms, their components, and the larger causal systems within which they function.  
 
The AI methods we’ve discussed may help advance this goal in some respects. Machine learning 
algorithms will plausibly be useful for identifying causal structure in neural data, and the novel 
experimental designs discussed in §2.3 may expedite the discovery of some fundamental facts about 
cognition. (As Duede (2023) points out, “deep learning models can be used quite effectively in science, 
not just for pragmatic ends but also for genuine discovery and deeper theoretical understanding. This 
can be accomplished when [these models] are used as guides for exploring promising avenues of pursuit 
in the context of discovery” (1097).) 
 
In other ways, however, increasing psychology’s reliance on AI surrogates need not promote 
explanatory progress. Black-box predictive models can be highly accurate while telling us little about 
underlying mechanisms. And silicon samples which are good enough for plausibility checks and rough 
summary statistics may not support the detailed experimental probing necessary for drawing causal 
inferences. From the viewpoint of advancing fundamental understanding, then, there’s as yet no clear 
technological substitute in sight for the rigorous study of human populations, behaviors and brains. 
 
It’s possible to imagine a future in which AI systems themselves gain whatever capacities are required 
to possess genuine scientific understanding in their own right. Botvinick and Gershman ask whether 
we should be content for such systems to autonomously carry forward the project of science, 
proposing questions and discovering explanations with minimal human involvement (except perhaps 
to reap the downstream benefits of AI findings). They suggest we should resist such an outcome: “We 
cannot cede understanding to artificial systems. We should insist on human understanding remaining a 
core goal of science”, at least insofar as possible given the complexity of the phenomena (Binz, Alaniz, 
et al. 2025, 7). Marelli et al. agree: “The impact of LLMs on the future practice of science cannot be 
fully predicted, but science is a humanistic and human enterprise and must remain so” (Binz, Alaniz,  
et al. 2025, 9).  
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We’re inclined to agree with these sentiments, but more philosophical work remains to be done. We 
can imagine a spectrum of scenarios between fully human-centered and fully AI-driven futures for 
psychology. Human scientists might propose research questions, for instance, while AI systems design 
appropriate mechanism-seeking experiments, interpret their results, and produce thoughtfully 
designed digests to maximize human understanding. Alternatively, machines may take a more assertive 
role in suggesting hypotheses and research directions aligned with actual or foreseeable human 
interests. Are either of these scenarios compatible with a humanistic vision of science in which our 
species’ understanding remains a core goal? If AI delivers on its most ambitious promises, answering 
these questions may require careful thought in the coming years, and implementing our chosen 
answers will demand community-wide coordination. We hope to see these tasks handled with the 
wisdom and skill they require.  

4​ Conclusion 

AI surrogates of any kind are only as good as the data used to train them. These data come ultimately 
from humans, whether in the form of text in LLM pretraining datasets, measurements of human 
preferences over prompt-response pairs, bespoke experimental datasets of human behaviour used to 
finetune models, or confirmatory human data collected to test predictions from silicon samples. In this 
sense, AI surrogacy merely shifts humans into new roles rather than eliminating psychology’s reliance 
on them. 

Why bother with AI surrogacy, then? Why not analyze the human text, preferences, judgements, and 
decisions directly? When do the benefits—the speed, versatility, low cost and impressive power of deep 
learning-based tools—outweigh the costs of substituting opaque and imperfect proxies for the real 
phenomena of interest?  

Throughout this chapter, we’ve raised several questions that practitioners should consider when 
wading through this cost-benefit analysis. Before beginning to use an AI surrogate, we urge researchers 
to define the criteria that would make an AI system suitable as a surrogate in their particular use case, 
and to select or build models accordingly rather than blindly using off-the-shelf models.  

For instance, does a given type of model output need to be human-like in specific ways? If so, is it 
enough for the AI and human samples to exhibit similar means or a large correlation coefficient, or 
must the underlying distributions agree in finer-grained ways? Does the model output need to capture 
behavioural patterns of particular subgroups? To what extent can specialized prompting overcome 
models’ tendency to misrepresent and flatten group characteristics? Does it matter for a particular 
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application whether a model’s outputs result from modeling relevant psychological mechanisms, or is 
mere prediction sufficient? Is the AI behaviour reproducible and transparent, or is it the product of 
proprietary training recipes that are outside of researchers’ control and may be changed at any time? 

Sometimes navigating this cost-benefit analysis may mean choosing a slightly weaker open-source 
model over the latest closed frontier model. Sometimes it may involve evaluating several models with 
an eye to specific performance desiderata prior to use. Sometimes it may involve finetuning a model on 
a task of interest or collecting large datasets to train a model from scratch. These activities may involve 
skills and facilities that are not common in psychology research labs. If AI surrogacy methods continue 
to gain popularity in psychological research (not to mention other uses of AI and computational 
models more broadly), research labs will need to invest in computational resources and training 
programs to equip researchers with relevant skills. Shortcuts here are likely to lead to lower-quality 
results.  

Many concerns about AI surrogacy are related to the accuracy, robustness, representativeness, and 
reproducibility of AI behaviour. Setting all those concerns aside, however, questions still remain. For 
example, even if an AI system can generate and evaluate hypotheses in some sense “better” than their 
human counterparts, is this a job that should be offloaded to an AI system? Are we willing to accept the 
epistemic consequences of letting non-human entities with whom we don’t share experiential 
perspectives or cultural sensibilities decide which research programs to prioritize?  

The diversity of human values and viewpoints, and their amenability to criticism and revision, are 
integral to scientific progress. Likewise for the hard-won explanatory insights gained through basic 
research of the highest standards. If we want a psychological science that continues to serve our deepest 
interests, we must be wary of the temptation to trade the difficult quest for humanistic understanding 
for an expedient facsimile which merely looks close enough, on average. 
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