

Difficulty, effort, and ability

Ian D. Dunkle¹

Received: 2 December 2024 / Accepted: 29 October 2025
© The Author(s) 2025

Abstract

This paper discusses two views of what makes an action difficult deriving from two very different approaches. On the first view, the difficulty of an action is determined by the (physical) effort involved in performing the action. On the second view, the difficulty of an action is determined by the level of ability required to perform the action. I develop and refine a version of each approach, including an original version of the ability approach drawing on recent work on agentive abilities. Then, I subject each, in turn, to a series of problem cases and consider how each view might be further refined to address these cases. I conclude that the ability approach is more promising than the effort approach because, among other reasons, it more aptly accounts for cases where difficulty seems to arise from factors other than effort (including counterproductive habits, lack of artistic imagination, and presence of pain).

Keywords Effort · Abilities · Difficulty · Force · Action

1 Introduction

What makes an action difficult? What features of the world make it true that my action of making espresso just now was more difficult than my colleague's action of putting on a pot of coffee two offices down? The answer bears on a number of ongoing inquiries in philosophy, social science, and everyday life. For instance, achievements, and the welfare value they bring to one's life, are often measured by their

✉ Ian D. Dunkle
Ian.D.Dunkle@gmail.com

¹ Department of Philosophy & Religious Studies, University of Tennessee at Chattanooga, Chattanooga, TN, USA

difficulty.¹ A notion of difficulty may help to clarify the parameters of a just distribution of goods in society. And specifications of difficulty bear on how we assess and compare athletic performance.

In this paper, I discuss two recent approaches to answering this question: what I call the *effort approach*² and the *ability approach to explaining difficulty*.³ The effort approach holds that the difficulty of any action is a function of the effort involved in that action. Thereby it connects the question of what difficulty means to burgeoning discourse on effort.⁴ The ability approach holds that an action is difficult insofar as it requires a high level of ability and difficult to the degree that the ability it requires is high. This approach connects the question of difficulty to expansive, ongoing work on abilities.⁵ My aim is to develop, compare, and evaluate these two approaches. I conclude that the ability approach has several advantages over the effort approach.

In § 2, I build on Massin's (2024) proposal in order to develop a robust effort-based account of difficulty according to which an action's difficulty is determined, roughly, by the extent to which it exhausts the agent's exertable effort. In the next and longest section, § 3, I present a series of problem cases for this account and discuss several routes for elaborating the account to address these cases. I conclude that, even with several modifications, the effort approach struggles to account for assessments of difficulty in domains of action where effort is *not* a salient factor on success; in domains where *pain* is a salient factor; and where states of agency are salient factors. In § 4, I build on my own prior proposal (Dunkle *forthcoming*) and Jaster (2020) in order to develop a robust ability-based account of difficulty according to which an action's difficulty is determined, roughly, by the minimal ability level required for modally reliable performance of the action. In § 5, I return to the problem cases from § 3 and show, first, that the ability approach faces none of the same challenges as the effort approach and, second, that the challenges it does face are easily and elegantly met. I conclude that the ability approach holds more promise as an account of difficulty than the effort approach, though I hope to have illuminated the path for those who wish to develop the effort approach further, as well as the obstacles that lie along it.

2 The effort approach

Massin (2024) endorses and develops the first effort-based account of difficulty in the literature.⁶ The account of effort he uses to develop it is rich and represents several advantages over competitor views in the literature on effort.

¹ Keller (2004), Bradford (2015), von Kriegstein (2017, 2019), Hirji (2019), Dunkle (2019).

² Massin (2024).

³ Dunkle (*forthcoming*).

⁴ Bermúdez and Massin (2023), Massin (2024), Bermúdez (*forthcoming*).

⁵ Whittle (2010), Maier (2013, 2018), Kittle (2015), Mandelkern et al. (2017), Vetter (2019), Jaster (2020), Clarke (2020), Schwartz (2020), Kikkert (2022), Mayr and Vetter (2023).

⁶ I should note that Bradford (2015) develops an influential definition of difficulty based on the phenomenal experience of effort, but as we will see this is quite different to the notion of effort Massin employs. For criticisms of Bradford's account of difficulty, see von Kriegstein (2017, 2019), Dunkle (*forthcoming*).

The general effort approach, as I am defining it, centers on the following claim.

Effort approach:

(E-Difficulty) The degree to which A's *øing* in C is difficult is equal to the degree to which the effort(s) involved in A's *øing* in C are difficult.

An action is an effort insofar as it is directed toward some change in the present state of affairs distinct from, but caused by, the accomplishment of the effort. The action of stretching out my arm is not an effort because, if I accomplish that action, I have thereby succeeded in my overall endeavor. Similarly, when a cyclist soft-pedals on a bicycle, they aim at nothing other than that soft-pedaling. So, soft-pedaling, too, is not an effort. A clear example of an effort is stretching out my arm *in order to reach my water bottle*. Here my accomplishing the action of stretching out my arm may or may not succeed in reaching my bottle. Similarly, pushing harder on the cranks on a bicycle may or may not succeed in causing acceleration. Pushing on the cranks in order to accelerate is, thus, also an effort. These examples are deliberately of *physical* effort because, while mental efforts also occur, they are more controversial to analyze.

In order to provide a perspicuous definition of the features of the world that make difficulty attributions and measurements true and accurate, the effort approach requires an account of the difficulty of effort. Massin expresses this as an approximate ratio between the degree of “intensity” of the effort and the maximally intense expression of effort to which the agent is capable in her circumstances. To unpack this, let's first consider Massin's account of effort. Massin defends the following account of physical effort:

(E-Magnitude) The magnitude of an effort is equal to the magnitude of the force exerted directly or indirectly by the agent on a body in order to accelerate it or keep it at rest.

The forces in question are real physical relations between bodies as required for a physical, causal explanation of changes in bodily motions. The purpose of including “indirect” exertions of forces is to capture exertions of effort at a distance, as through use of a tool.

The magnitude of an effort, however, is not plausibly the measure of an effort's difficulty. The resulting account of difficult actions would entail that a complex, temporally extended action comprising a series of intuitively easy actions could be (far) more difficult than a single, onerous action. For instance, gathering firewood one piece at a time would be more difficult (due to total effort) than trying to gather and carry all the wood in one trip. Moreover, indirect applications of force (e.g. through leverage) can be more or less difficult depending upon the tool or method employed. Massin's solution is to propose that difficulty is a complex function of effort defined in terms of two further measures. The first is:

(E-Intensity) The intensity of an effort is equal to the force of the opposing, resistive force(s) that is counteracted by the effort.

When I raise a piece of firewood off the forest floor, the mass of the wood resists my lifting it. As I succeed, I counteract or overcome that resistive force. Hence the weight of the wood measures the intensity of my effort. If I try to lift a piece of wood too heavy for me, the intensity of my effort is equal to that part of the resistance I counteracted. If I misjudge how heavy the wood will be and lift it up so vigorously as to toss it in the air, the intensity of my effort remains equivalent to the first case even though the *magnitude* of the effort exceeds that intensity.

Massin is less precise about the second measure needed for defining difficulty: “Actions—and efforts in particular—are difficult in virtue of [...] the intensity of the effort; [and] the capacities of the agent (strength, skill...) and some states of the agent (fatigue, health, repletion...) affecting those capacities” (2024: 17). The central idea is to capture the slogan in sports science according to which difficulty is “the ratio of the exerted force to the agent’s maximal exertable force” (17). The capacity of the agent corresponds to the agent’s “maximal exertable force.” The rough measure here is the force the agent is able to exert in this particular effort.

I reconstruct Massin’s measure of capacity and resulting measure of difficulty this way:

Ratio of Exertable Force Account of Difficulty (REF):

(E-Difficulty) The degree to which A’s *qing* in C is difficult is equal to the degree to which the effort(s) involved in A’s *qing* in C are difficult.

(E-Intensity) The intensity of an effort is equal to the force of the opposing, resistive force(s) that is counteracted by the effort.

(E-Capacity) A’s capacity with respect to the effort involved in *qing* in C is equal to the maximal magnitude of force A *can* exert in the effort in C.

(E-Degree) The degree to which an effort is difficult is represented by the ratio of the actual intensity of A’s effort over A’s capacity.

On REF, difficulty ultimately supervenes on properties of a person, of her performance, and of her environment explaining both her causing a body to accelerate or stay at rest in the face of resistive force(s) and her ability to cause the body to accelerate or stay at rest. How difficult it is for me to gather firewood depends, on this view, on how fully I utilize my current capacities to lift, hold, and carry wood from one place to another in my actual effort to do so. How difficult it is for a given cyclist to accelerate from speed S to speed S’ depends on, among other factors, how much resistive force there is to the cyclist’s acceleration (wind- and rolling-resistance, etc.) and on how much (more) force the cyclist is able to exert on the pedals in this moment.

Because E-Degree measures difficulty as a function of the properties of the individual agent’s performance and capacity, REF most readily captures what the litera-

ture refers to as *agent-relative ascriptions of difficulty*, as when I say it was hard to get up this morning or to complete a fairly easy crossword puzzle. Difficulty ascriptions are also commonly made in a different, *agent-neutral* or *cross-agential* sense, as for instance in calling the crossword puzzle that stumped me an *easy* one or in comparisons of performances in athletic competitions. Thus, we can already anticipate that REF will have to be supplemented by another (derivative) measure of difficulty to capture these cross-agential assessments. I propose such a supplement in the next section in response to specific problem cases.

3 Problem cases

In this section I consider several apparent problem cases for REF and discuss possible elaborations and modifications of REF to address these cases. While these cases are chosen to highlight the limitations of the effort approach, they will also be useful for assessing the ability approach (see § 5). This section is ordered by the component of REF to which the cases most directly pose problems. But as we will see, assessing the ability of REF to handle these cases often requires considering REF as a whole.

3.1 Objections to E-Difficulty

There are several sorts of case that put pressure on the core idea behind the effort approach, namely, that the difficulty of an action is determined by the effort involved in the agent's performance (i.e. E-Difficulty). The first set of cases concern effort expended by an agent which fails to contribute to the success of the action. The second set of cases concern whether effort is sufficient to account for the difficulty of an action.

3.1.1 Cases of irrelevant effort

The effort exerted by agents in carrying out actions is often causally irrelevant to their success. In some cases, this irrelevant effort does intuitively make their action more difficult; in others, it doesn't. The first challenge for the effort approach is to address these intuitions. Begin with a simple case:

Counterproductive effort. Calhoun is assembling a piece of Ikea furniture. However, Calhoun repeatedly crosstreads the bolts and strips their heads, as a result of which they have to unfasten and refasten the bolts with increasing effort.

Calhoun exerts far more intensity of effort in assembling the furniture than is required to assemble it. It seems natural to say that Calhoun made the action of assembling the furniture harder for themselves than it needed have been. So, this causally irrelevant effort seems relevant to difficulty-assessment. To capture this, the effort approach needs criteria for determining which causally irrelevant effort counts as relevant to difficulty. A simple proposal would be that effort exerted by an agent in the course

of intentionally endeavoring upon an action is relevant to the difficulty of the performance of that action. Call this the *principle of intentional effort*. So, because Calhoun's mistakes and corrections were all taken up by them in the course of intending to build the furniture, the effort these mistakes and corrections involved is relevant to determining the difficulty of their building.

In some cases, however, this principle seems too inclusive. Consider, first:

Wasted effort. Wayne has lost his glasses. He spends an hour searching the house, moving furniture etc., only to find the glasses upon his head.

Here Wayne exerts some intensity of effort in the actions his search comprises. According to the principle just proposed, this effort is relevant to assessing the difficulty of his action of finding his glasses. But it is not clear that Wayne's action of finding his glasses was as difficult as implied by the effort involved in the series of actions leading up to it. A possible solution is to accept that Wayne's search was difficult for him (i.e. in an agent-relative sense) but not difficult in a cross-agential sense. I discuss this proposed solution in § 3.3.

But now consider another case where the principle of intentional effort seems too inclusive:

Futile effort. Federica is trying to bend a spoon with her mind. Her concentration is visible in veins that pop on her temples and the redness that lights her face. She continues to try for hours.

Federica is exerting some kind of effort,⁷ and that effort is exerted in the course of intentionally endeavoring upon an action. Moreover, her endeavor is not merely effortful *for her* the way, perhaps, Wayne's search is; anyone would struggle just as much to bend a spoon with their mind. Federica's effort, though, is so wholly irrelevant to the success of her action that it does not seem accurate to describe this action as difficult for her or for any actual human agent. One solution would be to posit that only *successful* action can be difficult. But that would be too restrictive: even if Calhoun fails to build the furniture, their attempt still has a difficulty level. A better solution might be to restrict difficulty to apply only to *possible* actions (call this the *principle of possibility*).⁸ It is not possible to bend spoons with one's mind, so Federica's attempt doesn't have a difficulty status.

⁷ Federica's mental effort does not appear to involve the application of physical force, and so this example could also be used to bring out the issues discussed in § 3.2. The present line of objection, however, applies even to a version of the effort approach that incorporates mental effort into the account of difficulty.

⁸ While I lack the space for an adequate assessment of the principle of possibility, it is motivated by my sense that constructions like the following are inapt: "It is difficult to bend spoons with one's mind," and, "Drawing a square circle is difficult." An anonymous reviewer poses a potential counterexample to this principle: two groups of mathematicians are respectively trying to prove or disprove Goldbach's Conjecture. Given that one of them attempts the impossible, is the principle of possibility compatible with saying that both groups do something difficult, more difficult than, say, calculating my tip on a bar tab? Yes, it is compatible. Both groups of mathematicians endeavor upon a series of actions most of which, we can suppose, are both possible and more difficult than calculating a tip. The fact that one group has

The problem of determining the relevance of effort reveals a still deeper issue with the effort approach, however: namely, that by defining difficulty in terms of features of the performance, the effort approach fails to capture the fact that states of agency can also determine the difficulty of an action. To see this, consider one last case of irrelevant effort:

Inapt effort. Ina is trying to meditate. She consciously tries to extinguish distractions from her mind. But the more she tries, the farther she gets from her goal.

Ina's effort is, again, counterproductive to her (attainable) success. But unlike in Calhoun's case, it is the exertion of effort itself that is counterproductive. In cases like meditation (cf. trying to have fun, to feel love for one's partner) the difficulty for the agent seems to be determined by the *agent's disposition to exert effort* rather than by the exertion of effort itself. The feature of her performance (the effort she exerts) is not what makes the action difficult; rather the performance reveals a state of her agency which itself explains the difficulty of her action. This runs against E-Difficulty, according to which difficulty is determined directly by the actual effort exerted.

3.1.2 Cases of non-effortful achievement

Turn now to a second set of problem cases for E-Difficulty, those raising the question of whether effort is sufficient for determining difficulty. Each case involves an agent realizing an intuitively difficult achievement without exerting a great deal of effort. First is

Preparation. Peter creates an aesthetically excellent, historically influential, and artistically celebrated painting. He prepared well for this creation by keeping his studio organized, outlining his process ahead of time, stocking his materials, and so on. By virtue of these preparations, he exerts far less effort than he otherwise would have done creating this work.

E-Difficulty seems to imply that Peter's creation was far less difficult than it would have been were he less well prepared. This is highly counterintuitive. One argument in support of the view that Peter's creation was similarly difficult in both the actual and counterfactual cases goes as follows: achievements are measured by the difficulty involved; Peter's actual achievement is just as great as his counterfactual achievement (where he produces the same end without the preparation); therefore, the difficulty of both actions are equivalent.

Two responses are available to the defender of E-Difficulty. First, perhaps Peter's creation is highly difficult in a cross-agential sense but not particularly difficult in an agent-relative sense. E-Difficulty (and REF) capture the agent-relative sense. Again,

an ultimate goal that is impossible implies, per the possibility principle, that the action of attaining that goal is not difficult. But that in no way implies that the various actions making up the pursuit of that goal have no difficulty status.

I consider this line of response in § 3.3. On a second line of response, perhaps Peter's act of creation is highly difficult in the agent-relative sense because the relevant complex act encompasses not just the painterly ones but also the preparatory ones, which, it might be argued, aggregate to a great deal of effort in total. While it sounds plausible at first, I do not think the aggregative response will succeed. First, for the effort Peter exerted in his acts of preparation to count as relevant to the difficulty of his creation, those preparatory acts must have been done with the intention of creating a painting (per the principle of intentional effort). Surely, though, real agents of this sort engage in general acts of preparation without a clear sight of the acts they are preparing for in view. Second, I am dubious that Peter's series of actions leading to his creation will count as particularly difficult on any plausible effort-based picture of how difficulty aggregates.⁹

Finally, consider a variation of the *Preparation* case where there is no clear series of prior actions whose difficulty could capture our intuition that the creation is difficult:

Inspiration. Spiro creates an aesthetically excellent, historically influential, and artistically celebrated painting with far less effort than he and others typically require to create such a work. The explanation of his lack of effort is that he experiences an episode of inspiration.

Spiro's success cannot be attributed solely to effort or preparedness. Perhaps it can be attributed to states of Spiro's agency. In any case the aggregative defense of E-Difficulty is irrelevant here. Of course, we still need to consider how a defender of REF might purport to capture Spiro's difficulty with a cross-agential sense of difficulty.

Summing up the critical discussion so far, the defender of E-Difficulty needs at least two additional features beyond those provided by REF. First, they need a theory of what effort in an agent's performance is relevant to the difficulty of their action (perhaps building on the two principles suggested above), and, second, they need an account of cross-agential difficulty. We have also seen evidence that some assessments of difficulty track states of agency rather than features of agential performance (like effort).

⁹ At issue is whether two similar actions of n -difficulty yield a series of $2n$ -difficulty, or whether the difficulty of the series better is represented by the normalized average difficulty of the component actions ($=n$). One reason to favor the latter is that the former would imply that a series of easy actions becomes difficult by virtue of being a series (recall the example of gathering firewood from above). A second reason is that the exact same action (say, typing a handwritten manuscript) is characteristically more difficult if completed during a shorter period of time. This suggests that difficulty is better treated as a rate than as a unit. Indeed, it is for reasons like these that Massin proposes to conceive of difficulty as a ratio of intensity over capacity. And on that view (REF), the difficulty of a series would presumably be measured by the *total* intensity divided by the *total* capacity. While the total intensity of two actions will be greater than the intensity of just one of those actions, the total capacity of the agent across both actions will also be, to some extent, greater. There are additional complexities to be considered, but the potential of the aggregating approach to vindicate the intuition that Peter's creation is particularly difficult seems dismal.

3.2 Objections to E-Intensity and E-Capacity

Now consider cases that challenge Massin's force-based account of effort specifically. According to E-Intensity, the effort determining the difficulty of an action is measured by the resistive force counteracted by the agent in performing the action. In each of the cases considered here, however, an agent performs an intuitively difficult and effortful action without exerting much physical effort.

Even in some physical actions, low intensity actions can be difficult for the agent, even more difficult than a higher intensity version of the same action type. Here's a specific example:

Low force. Logan is an avid cyclist out on a ride with friend at a lower fitness level. In order to ride together, Logan has to soft-pedal, which he finds far more difficult than pedaling at his normal pace.

Logan's soft-pedaling is apparently more difficult for him than cycling at a pace where he exerts far more force on his cranks. This poses a challenge to E-Intensity. And because Logan experiences the action as difficult, it does not seem plausible to argue that the difficulty of his action is attributable to a cross-agential, rather than agent-relative, sense. Logan's difficulty is explained, I suppose, by the bodily habits (muscle memory and so on) that dispose him to pedal much harder than required in this case. It's unclear that a force-based analysis of effort can capture that factor on difficulty. Notice a resemblance between this case and *Inapt Effort*: in both, the explanans of the agent's difficulty performing the action is the agent's diminished ability to *refrain* from exerting effort.

Some difficult actions involve no exertion of physical force whatsoever, as in the following:

No force. Noel is reading a philosophy article, an action she finds, in this instance, quite difficult despite being competent in the subfield.

Noel exerts no physical force at all. So, there is no possibility that her effort to comprehend the article is intense on E-Intensity. To address this, a defender of the effort approach will need to offer an account of non-physical effort. Perhaps there is some sense in which Noel exerts some magnitude of effort in concentrating on the content of the article. Perhaps, too, she has a limited capacity to concentrate such that this article is nearer her maximum than a simpler reading would have been. Such an account may be able to help with *Low Force* as well. Developing such an account, as Massin acknowledges, is no mean feat.

Finally, there are physical actions whose effort or difficulty cannot be measured by E-Intensity:

Arm-raising. Arthur's arthritis in his shoulder is acting up today. As a result, he has great difficulty raising his arm above his head.

Stipulate that Arthur can, in fact, raise his arm above his head in this instance. Intuitively, it is particularly difficult for Arthur to raise his arm above his head in this moment. It is also intuitive that Arthur exerts some effort in trying to raise his arm above his head. That effort cannot be measured by resistive force, however, since there is no external body resisting Arthur's raising of his arm. Neither is there a clear analogy to the power to concentrate in this case.¹⁰ Rather it seems that Arthur's difficulty is explained by the pain he feels while trying to raise his arm above his head. Moreover, it is not clear that overcoming pain functions like overcoming resistive force such that a painful action becomes less difficult for an agent insofar as they are capable of overcoming the pain. Were that the case, then an agent with a very high tolerance for pain would not do something particularly difficult by enduring intense pain in the performance of an action. Intuitively, the mere presence of the intense pain determines the action as difficult, even if the agent is unusually capable of overcoming that pain. In this way, *Arm-raising* presents a challenge both to E-Intensity and E-Capacity.

In summary, these cases show that E-Intensity and E-Capacity are, at best, incomplete accounts of the relevant forms of effort that appear in difficult actions. Resistance to concentrating and pain are two factors on effort beyond resistive force that also need to be accounted for if the effort approach is to cover even just effort-based difficulty. And it is not clear how to capture all of these factors in one view. Finally, we have also seen further evidence for the view that difficulty is sometimes explained by states of agency.

3.3 Objections to E-Degree

Consider one final problem case. According to E-Degree, the overall difficulty of an agent's performance of an action corresponds to the ratio of the intensity of their effort over their capacity to exert such effort in such circumstances. There are many cases where this ratio fails to correspond to what we intuitively mean by describing an action as difficult. Here is an example involving competition:

Winning. Winnie beats Louise in a foot race despite (and perhaps *because of*) the fact that Louise was at or near her maximal exertion of foot-race-effort while Winnie was not.

REF assesses Louise's loss as the more difficult action, but intuitively Winnie does the more difficult thing by running the same distance in less time, thereby winning. Indeed, we ordinarily regard winners of competitions as having realized the greater achievement. The sense in which Winnie's action was more difficult cannot be captured by REF while maintaining E-Degree. The natural response for the defender of REF is to develop a discrete, cross-agential sense of difficulty.

¹⁰ An anonymous reviewer suggests that perhaps *the (will)power to overcome pain* is analogous. Developing this suggestion might involve returning to elements of Bradford's (2015) account of the value of effort as lying in the development of willpower. There may be something to this suggestion, though notice the disanalogies discussed below regarding how to measure pain-resistance.

Several problem cases have led to the same question: how can REF be expanded so as to account for cross-agential difficulty? In *Winning*, Winnie's performance ends up being less difficult than Louise's not because Louise overcame greater force—that is, not because Louise's performance was more *intense*—but because Winnie's capacity for overcoming force was greater and, therefore, her ratio of intensity-over-capacity was lower. Accordingly, an initial proposal for a cross-agential sense of difficulty would be to fix the denominator, as it were, by calculating the difficulty of an agent's action not as a function of her particular capacity but as a function of the normalized agent's capacity. On this proposal (call it the *normalized capacity measure of difficulty*), the difficulty of Winnie's win is the ratio of the force she overcame in her performance over the normalized agent's capacity (something like the average comparable agent's capacity to exert such force in such circumstances). The difficulty of Louise's loss is the ratio of the resistance she overcame over the same. Since Winnie overcame more resistance than Louise, Winnie's performance was more difficult in the cross-agential sense identified by this measure.

The normalized capacity measure, however, is inadequate. This is easily seen by considering how it applies to the cases of *Preparation* and *Inspiration*. In these cases, the agent overcomes little resistive force in completing a difficult action (of artistic creation). Adjusting the denominator from the particular to the normalized agent's capacity will not have the effect of turning an effortless action into a difficult one.

A better approach to deriving a cross-agential sense of difficulty from REF is to adjust *both* the denominator and the numerator of the ratio to represent those of a normalized agent: specifically, I propose to define cross-agential difficulty as the ratio of the intensity of the normalized agent's counterfactual performance of the same action over the normalized agent's capacity (call this the *normalized agent measure*).¹¹ The rough idea is that, in assessing Spiro's inspired artistic creation, we imagine how intense the average comparable agent's effort would be were that agent to accomplish the same particular end and compare it to that average comparable agent's capacity to exert effort. So, Spiro's creation was difficult in this cross-agential sense because, we might suppose, such a great artistic creation typically involves a great deal of effort. Winnie's win will also be more difficult than Louise's loss in this sense since the typical agent would have to have exerted more of her exertable effort in duplicating Winnie's run than Louise's. This normalized agent measure can also account for the sense in which wasted effort does not contribute to the difficulty of an action: while Wayne's search of the house for the glasses on his head involves a high intensity of effort, it may not involve such for a typical agent.¹²

¹¹ This structurally resembles the proposal I offered in Dunkle (2019) to address a common challenge to Bradford's (2015) account of achievement-value.

¹² An apparent shortcoming of the normalized agent measure of cross-agential difficulty is that it requires appeal to the counterfactual performances of idealized agents. But this is not itself a major obstacle to utilizing the view to make sense out of our intuitive judgments of difficulty for a couple of reasons. First, the primary use of this sense of difficulty is for comparisons of performances, and in these cases employing this measure requires little more than abstracting away from idiosyncratic particulars of actual agents' performances or capacities (e.g. abstracting away from the difference between Louise's and Winnie's capacity to run at a certain rate or away from Wayne's idiosyncratic means of finding his glasses). Second, many contexts in which these comparisons arise are contexts where we have a more-or-less fixed set of agents in view (e.g. we might take the average actual runner of the foot-race as our normalized agent). Insofar as that

The normalized agent measure, then, provides a sense of cross-agential difficulty which allows REF to account for several problem cases: the defender of REF can argue that in some applications of the concept of difficulty we refer to how much of the agent's exertable effort the agent exerted while, in others, we abstract away from particulars of this empirical agent and consider how much exertable effort a normalized agent would exert to complete the same end. This expansion of REF significantly enhances its ability to capture our various intuitive judgments about difficulty. It may not, however, fully resolve the problem suggested by the *Preparation* and *Inspiration* cases. Specifically, I worry that the difficulty of artistic creation is not well-captured by any measure of any agent's effort. Artists do often toil at their work. But *Inspiration* may be more characteristic of success cases. In this way, artistic creation may resemble cases like meditation, where effort is an accidental feature of failed actions arising from states of agency that obstruct success. To the extent that that is so, even the normalized agent measure of the difficulty of such an action will entail that artistic achievement is *easy* (i.e. cross-agentially non-difficult), which would be problematic.

In this section, I have expanded REF by proposing two principles for restricting relevant effort and by developing a derivative theory of cross-agential difficulty. These suggestions help address several problem cases. But some problems remain for REF. First, neither the agent-relative nor the cross-agential sense of difficulty capture the full range of effortless achievements suggested by *Inspiration*. Second, without a theory of non-physical effort, REF is unable to account for non-physical forms of difficulty like that of comprehending a paper. Third, it is unclear how REF—with or without a theory of non-physical effort—will capture pain as a factor on difficulty. Fourth, by virtue of defining difficulty in terms of features of the (normalized) agent's performance (i.e. exerted effort), REF is ill-suited to capture state-based factors on difficulty as illustrated by *Inapt Effort* and *Low Force*. Further work may be able to address some of these remaining challenges, but I worry that the first and the fourth may be intractable. In the remainder of this paper, I argue that the ability approach fares better.

4 The ability approach

The ability approach to explaining difficulty holds that an action is difficult insofar as it requires a high level of ability and difficult to the degree that the ability level it requires is high. Stated more formally, the core of the approach is:

Ability approach:

(A-Difficulty) The degree to which A's φ ing in C is difficult is equal to the level of ability an agent must possess in order to be able to φ in C.

is the case, we can at least approximate an empirical measure of cross-agential difficulty by measuring the performances and capacities of those particular agents. In these ways, applying this cross-agential sense of difficulty does not require much more speculation than applying the agent-relative notion per REF.

An (agentive) ability to φ is a modal property of an agent, possession of which explains why it is true that A *can* φ even when A *doesn't actually* φ . My ability to ride a bike explains why I can ride a bike even when I am not riding a bike.

In order to develop the ability approach, I employ Jaster's (2020) analysis of ability and level of ability. Jaster defines (agentive) abilities in terms of the notion of a "modal success rate," that is the ratio of cases where the agent intends to φ ¹³ and succeeds in φ ing among the relevant possible situations in which the agent intends to φ . These relevant possible situations are complete determinations of a part of a relevant possible world in which the action is intended over some stretch of time. The rough idea is that an agent has an ability to φ if they φ in enough of the fully determined portions of the relevant possible worlds where they intend to do so. Here's Jaster's formal definition:

An agent S has an agentive ability to φ iff S φ s in a sufficient proportion of the relevant possible situations in which S intends to ψ , where ψ will typically be de dicto or de re identical to φ and in any case be such that φ ing in response to the intention to ψ counts as a success. (2020: 153)

Roughly speaking, Jill has the ability to ride a bicycle iff she does ride a bicycle in enough of the relevant possible situations in which she intends to ride a bicycle. The proportion of success cases among intention cases (i.e. the modal success rate) sufficient for possession of the ability is context sensitive. For instance, in some contexts Jill's merely occasional success at riding a bike might not be enough to warrant ascribing the ability to her. The point of distinguishing the character of the action intended from the character of the action possibly performed is to cover cases where someone might express an ability to do something (e.g. pace their effort cycling up a long climb) without having the explicit intention to do precisely that thing (e.g. they may only intend to ride at their maximal sustained effort). I mean for the ability approach to inherit this last complexity though, for simplicity, I don't repeat it in the formal components.

Jaster defines the *level* of one's ability to φ also in terms of the modal success rate.¹⁴ The level of Steve's ability to wheelie is equal to the breadth of the range of possible situations in which he successfully wheelies when intending to do so. In some contexts, the relevant possible situations might include variations in weather, tire composition, etc. In other contexts, the relevant situations are those where what varies are only Steve's mental states. What changes across these contexts are the

¹³ Jaster (2020: 100-3) specifies an intention as "an action-initiating propositional attitude in the sense that it is part of its causal role that it will typically initiate behavioral episodes corresponding to its content." And she argues that *possessing an intention to φ* should be the relevant condition rather than *trying to φ* because the latter is an instance of action itself and would therefore lead the account into a regress problem. A similar objection applies to using *exerting an effort to φ* to define an ability.

¹⁴ Cf. Jaster's ability-level to what Kittle (2015: 3029-30) calls the hypothetical generality of the ability's definitional conditions. Cf., too, Kikkert's (2022: 352-3) distinction between robustness of local control and global availability.

relevant possible situations. In each context, however, what determines the level of ability is simply the raw *modal success rate* itself.¹⁵ Hence:

(A-Level) The level of A's ability to φ is equal to the ratio of situations where A intends to φ and succeeds in φ ing among the relevant possible situations within a finite set¹⁶ of contextually relevant possible situations in which A intends to φ .

A-Level measures a property of an agent, specifically the degree to which the agent possesses an ability. A-Difficulty defines the difficulty of an action by the properties *required* of an agent to perform an action in a particular circumstance. So, completing the ability approach requires an account of what it means for an action to place requirements on an agent's ability. My approach here begins with the following intuitive idea: agents with a higher level of ability will usually succeed not only in some range of cases where agents with a lower ability fail (per A-Level) *but also where agents with a lower ability succeed*. So, we expect the cyclist with greater climbing ability both to succeed in scaling some climbs the less able cyclist cannot but also to succeed in scaling most or all of the climbs the less able cyclist *can*. We expect a philosophy professor to be able to analyze some readings their students can't, but we also expect them to be able to analyze the readings their students can. There will of course be exceptions—possible situations where agents with a low level unusually succeed or where agents with a high level unusually fail—but it would be surprising if, in usual cases, agents with high level of ability wouldn't be successful in most or all of the possible situations where less able agents succeed.

If this supposition is empirically born out, the explanation, presumably, would be that facts about agents determining their range of modal successes (i.e. their ability level) *also* determine their success or failure in particular possible situations. The more able climber is able to climb across a wider range of possible situations in part *because* they are so constituted as to be able to sustainably transmit greater power

¹⁵ Jaster (2020: 23–8, 103–8) argues for a second dimension of level of ability as well: we might say Steve's ability to wheelie is higher if his successful wheelie performances are (always, usually, sometimes) of a higher quality (e.g. involving fewer microcorrections). She proposes to define the quality of the performance this way: “The qualitative dimension... can be modeled quantitatively by giving certain situations a higher value the closer the performance in those cases come to some (contextually determined) ideal” (104). In the case of wheelieing, then, the reliability of Steve's ability to wheelie is directly measured by his modal success rate, and we measure the qualitative factor on his degree of ability by weighting those of his modal successes more when they exhibit greater quality of performance and less when they exhibit lower quality. Jaster further proposes to combine this qualitative factor together with the reliability factor discussed above into a single measure of degree of ability. The proposal, quite simply, is that we add both measures together, weighting, as necessary, each factor by its relative importance to assessing degree of ability in the context in question. While I have no objections to this proposal, as such, I prefer a simpler calculus, at least for presentation purposes. So, I will speak of different actions and corresponding abilities when the quality of the performance is at stake, and I will measure degree of ability by reliability alone. When applying this account to difficulty, my approach has the advantage of more neatly distinguishing between the difficulty of, say, singing a song and singing a song well.

¹⁶ As an anonymous reviewer helpfully observed, the limitation to a finite set of possible situations is required for this ratio to yield a rational number. Given that the range of relevant possible situations is already admitted to be contextually determined in uses of “difficulty,” I do not believe it is problematically ad hoc to stipulate that these contextually determined situations be finitely extended.

through the cranks than the less able climber. That same ability to produce more power, moreover, predicts success in those climbs the less able cyclist can succeed in. If this pattern generalizes, then the intuitive idea behind my approach holds.¹⁷

Here is how I intend to use this intuitive idea to define the level of ability required by an action under a given circumstance (to φ in C). Take the (contextually relevant) range of possible situations in which the contextually relevant class of agents of different ability levels intend to φ . Order these possible situations according to the proportion of these agents who succeed in φ ing: call those possible situations where the most agents succeed the “least demanding” and those where the least succeed the “most demanding.” Determine the level of ability required to φ in C at that level possessed by the agent of lowest ability who intends to φ and succeeds in φ ing in C *and in less demanding possible situations*. Stated more formally,

(A-Requirement) The level of ability required to φ in C is equal to the minimal level of ability possessed by members of the contextually relevant class of agents who φ in C and who also φ in (most¹⁸) less demanding possible situations where they intend to φ where their ability is not masked.

I suggest that we take the class of all actual past, present, and future agents as the default class of agents, since something like “difficulty for actual agents” seems to me the most generic use of the concept and the use most pertinent to judgments of achievement. There are contexts, though, where determinations of difficulty to a restricted class (“difficult for someone like Joe”) or even of a counterfactual class (“difficult for a superhero”) might be relevant. And so, I allow for contextual variance to accommodate these uses. Where there are normative stakes to determinations of difficulty (as in assessing achievement-value or in questions of just distribution of

¹⁷ Several clarifications of this picture may be worthy of note. First, the ability to climb in cycling, like most abilities relevant to difficulty-determinations, is complex. My explanation of it in terms of power-production is a deliberate oversimplification in order to make the broader picture clear; in fact, there are many other features of a cyclist that go in to explaining their ability-level to climb. Second, that degree of complexity implies a similar degree of non-overlap between the distribution of modal success rates for agents even of like ability: two cyclists of equal ability to climb may exhibit different specific strengths and so best one another in competitions that play to those different strengths (e.g. how the incline of the ascent does or doesn’t vary, weather, altitude). It’s unlikely that all agents of higher ability will succeed in every modal situation where the less able agents does, and it’s increasingly unlikely as the ability in question increases in complexity (or the differences in ability-level across agents being compared decreases). Third, comparatively less able agents sometimes have lucky or fluke successes where we would expect only agents of much higher ability to succeed. A given cyclist might dramatically outperform reasonable expectations on a particular climb. I take this to be compatible with what I have said so far. Presumably, the complexity of the ability in question is a large part of what makes fluke successes possible: a cyclist may have a high level of some component ability of climbing even though a lower level of other component abilities, and the fluke climb might simply be one that unusually plays to their strengths. (Athletic ability is also dynamic, varying from day to day, thus creating further noise for this picture. But hopefully the example serves the purpose of making these general clarifications.)

¹⁸ An anonymous reviewer notes the need for qualification here since fluky failures exist alongside fluky successes. If I restrict the class of agents to those who φ in *all* less demanding situations, then I might exclude some agents who intuitively have the ability required to perform the activity reliably. Indeed, if the relevant possible situations are expanded widely enough, there may be cases where the class of reliable agents would be empty. “Most” signals yet another need for a contextually determined threshold.

goods), the class of agents invoked in A-Requirement will have to be justified, just as the range of possible situations in A-Level will have to be. Again, I suggest the class of all actual agents as a starting point, though I can't pursue the matter thoroughly here.¹⁹

This definition of A-Requirement might appear more complex than necessary. Why is it not sufficient to set the level of ability required to φ in C at the minimal level of those relevant agents who succeed? The reason is that, as noted above, less capacious agents will sometimes get lucky or have a fluke success. Those flukes would falsely imply, on the proposed simplified view, that such actions are easier than they are in fact (i.e. that they are not actually flukes!).

Putting my proposed account of difficulty together, then, we have:

Minimal Requisite Ability Account of Difficulty (MRA):

(A-Difficulty) The degree to which A's φ ing in C is difficult is equal to the level of ability an agent must possess in order to be able to φ in C.

(A-Requirement) The level of ability required to φ in C is equal to the minimal level of ability possessed by members of the contextually relevant class of agents who φ in C and who also φ in (most) less demanding possible situations where they intend to φ .

(A-Level) The level of A's ability to φ is equal to the ratio of situations where A intends to φ and succeeds in φ ing among the relevant possible situations within a finite set of contextually relevant possible situations in which A intends to φ .

On this view, difficulty supervenes on features of the (actual or counterfactual) world and their relation to the properties of agents which, together, explain why someone is able to perform a given action in that world and to do so reliably across some range of possible worlds.²⁰ I turn to assessing this view in terms of the problem cases raised to REF. In doing so, I highlight several advantages of MRA over REF.

5 Advantages and problem cases

5.1 MRA encompasses role of physical effort in determining difficulty

One major advantage of MRA over REF is that the factors on difficulty it captures include, but are not limited to, those referenced by REF. Factors beyond physical

¹⁹ For a brief discussion of one such normative context, see Dunkle (2024).

²⁰ This point responds to a second worry about over-complexity: why not, one might object to me, define difficulty directly in terms of the demandingness-order described above, as in: to φ in C is difficult inversely to the proportion of relevant agents who succeed in φ ing in C among those who intend to φ ? While this proposal might provide a (correct) relative ranking of the difficulty of an action across a range of possible situations, it wouldn't clearly identify the determinants of difficulty.

effort—indeed, factors beyond *effort* on any foreseeable analysis—can impact the difficulty of an action on this view.

To illustrate how physical effort remains relevant, consider again the climbing cyclists from above. The level of ability of a cyclist to scale climbs will be explained in large part by their capacity to produce and transmit power through the bicycle cranks. So, too, the demandingness of a particular climb will be in large part explained by the power required for a given cyclist-and-equipment pair to scale that climb (in those particular circumstances). So, the difficulty of scaling a particular climb will, in large part, be explained by the ability to produce and transmit the power or force required by that particular climb (in those particular circumstances). Even on MRA, then, the physical effort involved in an action like a climb remains largely explanatory of difficulty.

But as the repetition of “in large part” in the last paragraph signals, and as I argued above with other cases, physical effort is far from the only determining factor on difficulty in fact or according to the MRA. Recall the case (*No Force*) of Noel’s difficulty reading a particular article. In the action of comprehending this article, Noel exerts no physical force to speak of. But she does perform an action requiring a high level of ability. So, MRA easily captures the sense in which Noel’s reading is difficult. The case of *Low Force* (the cyclist who struggles to ride slowly) is more complex but the analogous conclusions hold: the difficulty of soft-pedaling for the cyclist is, I suppose, not explained by the exertion of physical force but rather by the disposition to pedal harder, a disposition that is, as it were, hard to turn off. The overall modal success rate of all agents is higher in possible situations where that disposition is absent than in the actual circumstance and so, per A-Requirement, the level of ability required by riding slowly in the actual circumstance is higher than in those others. MRA handles *Arm-raising* in a similar way: the level of ability required to raise one’s arm in the presence of pain of a given magnitude will be, I suppose, higher according to A-Requirement than in the presence of less pain or in the absence of pain altogether. In these ways, MRA captures the many factors on difficulty beyond physical effort. This is one advantage over REF.

Of course, this advantage over REF may not be an advantage over a version of the effort approach built on a broader theory of effort, if such a theory proves viable. It is intuitive, for example, that Noel exhibits a high degree of (mental) effort in comprehending the article. Perhaps there is a notion of effort that captures the other cases, too. It is thus a significant advantage of MRA that it also fits cases where assessments of effort, even in a broader sense, and difficulty come apart. Discussing these cases will, however, draw out some challenges for MRA.

5.2 The problem of agent-relative difficulty

In *Counterproductive Effort* and *Wasted Effort*, there is a palpable sense in which the agents exert great effort to accomplish easy actions. This is a problem for the effort approach but not for the ability approach or MRA. That Calhoun was inept in building their furniture does not affect the level of ability required to build that furniture, and the latter is what determines the difficulty of the action on MRA. Similar things can be said of Wayne’s search for his glasses.

This response is incomplete, however. While Calhoun's construction was intuitively easy (despite the effort they exerted), there remains a sense in which Calhoun made their action more difficult for themselves than it needed to be. In § 3, I suggested that the defender of the effort approach can try to account for both senses by distinguishing agent-relative difficulty from cross-agential difficulty. MRA clearly captures the (cross-agential) sense in which the action is easy, but can it capture the (agent-relative) sense in which it's difficult?

Yes, and it can do so without invoking two discrete measures of difficult (as required by REF). Quite simply, Calhoun made their action more difficult than it needed to be by taking on that action in the form of difficult means—comprising a series of actions of overtightening, unfastening, and rebuilding—rather than the more efficient means available to them. The particular means Calhoun endeavored upon require a greater level of ability than the more efficient means available. This same distinction can be drawn whenever we speak of an agent realizing an end through one of multiple available means. Oftentimes the ability-level required for successfully accomplishing the means will differ from that required to realize the goal without restriction to a specific means.²¹ In these cases, agents might well be said to make their (particular) action harder than it (i.e. the action of attaining the goal) needed to be. Again, this solution does not require invoking a second, distinct measure of difficulty.

Now recall *Inapt Effort* where Ina tries so hard to meditate that she fails. Here, I argued, it is the disposition to exert conscious effort, rather than the effort itself, that obstructs success. Without further information about Ina's situation, the level of ability possessed by agents who can meditate in Ina's situation seems to be whatever level of ability is required to resist or overcome that disposition reliably. So, Ina's meditation is difficult, on MRA, just as much as meditation generally is.

This case invites another variation of the agent-relativity challenge to MRA, however. Imagine that Ina's disposition to exert conscious effort when trying to meditate is unusually high. In that case, there is a sense in which it is *unusually* difficult for Ina to meditate. Can MRA capture Ina's unusual difficulty meditating, analogously to Calhoun's unusual difficulty building furniture, by distinguishing between the goal and the means of the action? Yes, though the result is, admittedly, not as elegant or intuitive as in Calhoun's case. Assume that Ina's meditation is *possible* for her, that she *can* meditate even though her ability is low. We can then build a description of the unusual obstacle to her success into our description of her action: Ina meditates through overcoming a strong disposition to exert conscious effort when trying to meditate. Finally, we can apply MRA to *that* description of her action, which will result in a higher difficulty assessment than in the ordinary case.

A similar distinction can be used to account for the distinct senses in which both Winnie and Louise do the more difficult thing in *Winning*. On the one hand, Win-

²¹ I refer here to particular means and the action of reaching a goal rather than specific versus general actions and abilities because the latter distinction is used to mean different things by different authors in the abilities literature. For readers familiar with that literature, my distinction corresponds to Kittle's (2015: 3030) axis of comparative generality in an ability's definitional conditions. Important for our purposes, the degree of generality of an action, in the sense of pursuing a goal, is separable from the level of an agent's ability to perform the action (in Jaster's sense). For this reason, it is possible for actions of different specificity to have different difficulty levels according to MRA.

nie's performance in *Winning* is the most difficult of the runners according to a natural application of the MRA, at least insofar as the competition succeeds in creating parameters of competition that measure the contestants' level of ability to run a foot race (and, thus, her win is not a fluke). Winnie ran the fastest, and, if the race is well constructed, running faster should require a higher level of running ability than running slower. But on the other hand, we can assess the difficulty level of Louise's performance as an action of *exerting herself* (i.e. exerting such-and-such proportion of her total capacity to exert physical force). Louise exerted more of her total capacity than Winnie, and presumably that requires a higher level of ability to exert oneself than Winnie's exertion did.

The cases that remain are ones where it is more difficult to put one's finger on the explainers of difficulty.

5.3 Abstruse factors on difficulty

Recall the case (*Futile Effort*) of Federica trying to bend a spoon with her mind. Here is an action an agent tries hard to accomplish but which is impossible and, for that reason, perhaps neither easy nor difficult. As stated, MRA does not clearly capture the *principle of possibility* needed to reach this conclusion because A-Requirement defines the relevant level of ability to difficulty assessments in terms of the lowest ability level exhibited by a set of agents who would succeed in the particular action in question. In the case of an impossible action, that set is empty, and this would imply that *any* minimal ability level is required of the action.²² If I am right to invoke the principle of possibility, A-Requirement needs refining. A simple proposal would be to add the condition: *there is at least one agent within that contextually relevant class who intends to φ and does φ in C*.

Turn now to *Preparation* and *Inspiration*, where agents realize artistic achievements without the exertion of great effort. At the end of § 3, I raised the worry that, while many artists may toil over their creations, artists who achieve great works may well characteristically do so with less effort. This poses a deep problem for the effort approach if it hopes to vindicate our judgment that these remain great and difficult achievements. How does MRA assess cases like these?

The matter comes down to whether artists who would reliably create such work (i.e. who would counterfactually create that work across the same and less demanding possible situations) would also be able to create such work over a comparatively broad or comparatively narrow range of relevant possible situations. If the ability level required for creating this particular work predicts broad modal success, then the creation was difficult irrespective of the effort involved. We can speculate on the agential factors associated with breadth of modal success: these might include the artist's imaginativeness, technical finesse, originality, art-historical knowledge, and so on. It seems plausible that features like these explain an agent's comparative ability to create the work in question. If so, the creation of the work in question is difficult because it requires those features. This speculative explanation seems much more plausible than one that traces the difficulty of the creation to some sort of effort.

²² My thanks to an anonymous reviewer for drawing my attention to this implication.

6 Conclusion

I have presented, developed, and compared two approaches to defining difficulty: an effort approach according to which the difficulty of an action is a function of the effort involved in that action and an ability approach according to which it's measured by the level of ability required of the action. I have developed each view more carefully than has previously been done. I have highlighted, for each, where there is need for further refinement and offered proposals for how those refinements might be developed. Finally, I have raised a series of problem cases, specifically for the effort approach, which highlight what I conclude are significant advantages of the ability approach. I close by summarizing the main findings I have reached for each view.

Defenders of the effort approach will need to develop or modify REF in order to account for difficulty-assessments of actions involving non-physical effort. They will also need to provide a clear account of what effort is relevant to assessing an action's difficulty and what effort isn't. I suggested two principles as starting points for such an account. Finally, they will need to develop and defend a notion of cross-agential difficulty in order to account for a range of ordinary uses of difficulty, perhaps building on my suggested normalized agent measure. Even if the above work is successful, the effort approach and REF specifically will likely struggle to capture assessments of difficulty in domains of action where effort is *not* a salient factor on success (e.g. in artistic creation); in domains where *pain* is a salient factor (as in *Arm-raising*); and where states of agency are salient factors (e.g. meditation, trying to have fun).

By contrast, the path for defending the ability approach appears much clearer. Cases of irrelevant effort, pain, and counterproductive dispositions are not inherently problematic for MRA. Moreover, MRA is able to capture effort as a factor on difficulty as well since the capacity to exert (physical) effort is one among many likely factors on ability level. In this way, MRA retains but adds to the explanatory power of REF. Related, insofar as the phenomenal experience of effort or strain is characteristic of actions performed at the limit of one's abilities—as it seems to be at least in cases of physical effort—MRA might be seen to provide a deeper explanation for the very correlation inspiring the effort approach.²³ A full defense of the ability approach requires developing a clear account of how to handle cases where agent-relative difficulty intuitively departs from cross-agential difficulty, but I have suggested that distinguishing among particular actions, ability to perform *which* is relevant to the difficulty assessment, can handle those cases. If my suggestion bears out, MRA would have the advantage over REF of accounting for both senses of difficulty with a single measure. A fuller defense of MRA will also want to assess my suggestions that the class of all past, present, and future agents is appropriate for specifying (the default reading of) A-Requirement and that we modify A-Requirement to accord with the principle of possibility. An important, final limitation of my discussion

²³ Though, to be clear, cases like *Inspiration* suggest this correlation is not universal to all modes of activity.

is that, analogously to REF's reliance upon a limited model of effort, MRA is built on a specific theory of ability and ability-level. Accordingly, the MRA may require revision if a different theory proves preferable.

While both my critical discussion of the effort approach and my defense of the ability approach are provisional in light of developing work on effort and ability, I hope these analyses and arguments prove useful for further work on difficulty in light of those developments.

Acknowledgements I am greatly indebted to two exceptionally insightful, thorough, and constructive anonymous reviewers. I would also like to thank Malte Hendrickx and Olivier Massin whose thoughtful comments (personal communication) on my earlier proposal of the ability approach (Dunkle *forthcoming*) inspired this paper.

Declarations

Conflicts of interest Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

Bermúdez, J. P. (forthcoming) What is the feeling of effort about? *Australasian Journal of Philosophy*.

Bermúdez, J. P., & Massin, O. (2023). Effort and their feelings. *Philosophy Compass*, 18(1).

Bradford, G. (2015). *Achievement*. Oxford University Press.

Clarke, R. (2020). It's up to you. *The Monist*, 103.

Dunkle, I. D. (2019). The competition account of achievement-value. *Pacific Philosophical Quarterly*, 100(4), 1018–1046.

Dunkle, I. D. (2024). Disability and achievement. *Journal of Medicine and Philosophy*, 49(5), 481–487.

Dunkle, I. D. (forthcoming) Can an action be difficult beyond compare? *Analysis*.

Hirji, S. (2019). Not always worth the effort. *Pacific Philosophical Quarterly*, 100(2).

Jaster, R. (2020). *Agents' abilities*. DeGruyter.

Keller, S. (2004). Welfare and the achievement of goals. *Philosophical Studies*, 121(1).

Kikkert, S. (2022). Ability's two dimensions of robustness. *Proceedings of the Aristotelian Society*, 122(3), 348–357.

Kittle, S. (2015). Abilities to do otherwise. *Philosophical Studies*, 172(11), 3017–3035.

Maier, J. (2013). The agentive modalities. *Philosophy and Phenomenological Research*, 87(3).

Maier, J. (2018). Ability, modality, and genericity. *Philosophical Studies*, 175(2).

Mandelkern, M., Schultheis, G., & Boylan, D. (2017). Agentive modals. *Philosophical Review*, 126(3), 301–343.

Massin, O. (2024). The nature and difficulty of physical effort. *Synthese*, 203, 177.

Mayr, E., & Vetter, B. (2023). Adaptive abilities. *Philosophical Issues*, 33(1).

Schwartz, W. (2020). Ability and possibility. *Philosophers' Imprint*, 20(6).

Vetter, B. (2019). Are abilities dispositions? *Synthese*, 196:201.

von Kriegstein, H. (2017). Effort and achievement. *Utilitas*, 29(1).

von Kriegstein, H. (2019). On being difficult. *Philosophical Studies*, 176, 45–64.

Whittle, A. (2010). Dispositional abilities. *Philosophers' Imprint*, 10(12), 1–23.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.