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Abstract

This paper provides a new framework for formalizing conditional obligations in nat-
ural language: it pairs a unary deontic operator with trivalent semantics for the in-
dicative conditional and the assumption that the antecedents of conditionals restrict
the scope of modals in the consequent. Combining these three ideas, we obtain a
fully compositional theory of “if” and “ought” that validates plausible principles for
deontic reasoning. Moreover, it addresses classical challenges such as the “if A then
ought A” problem, the paradox of the miners, and the modeling of contrary-to-duty
obligations (viz. Chisholm’s quartet). All in all, our proposal provides a unified ac-
count of deontic modals and conditionals thatsquares well with general theories of
natural language reasoning.

Keywords: conditional obligations, deontic modals, deontic reasoning, trivalent
conditionals, Chisholms’ quartet, paradox of the miners

1 Introduction
In natural language we often express conditional obligations by means of con-
ditionals, as in

(1) If you help your neighbors, you should tell them.

Despite their surface form, conditional obligations are frequently formalized
via a dyadic operator O(B|A), which is then interpreted in a Kripke-style
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semantics, so that O(B|A) is true (at the world of evaluation) if B is obligatory
if we restrict attention to A-worlds [12,20,28,33]. Despite its widespread use,
this approach has significant methodological and linguistic limitations [5,35].

First, a theory of compositional meaning should be modular and parsimo-
nious: it should separate the contributions of “if” and “ought” and explain
their interaction compositionally, instead of introducing an ad hoc dyadic op-
erator [39].

Second, as argued by Kratzer [25,26,27], conditionals frequently restrict
the scope of modals that occur in the consequent. A reasonable working
hypothesis is therefore that there is a general mechanism whereby condi-
tionals restrict modals (including deontic ones), and that we can derive an
adequate account of conditional obligations from such a general mechanism.
This would also help us to analyze the meaning of complex conditional sen-
tences such as

(2) If John helps his neighbors, he will just show up, but actually, he
should tell them.

In this paper, we offer a fully compositional account of the interaction of
“if” and “ought” based on a trivalent semantics of indicative conditionals
[14,17,16], a Kratzerian restriction mechanism and the evaluation of deontic
modals relative to a context or informational state. For the rest, our semantics
of “ought” remains standard.

The paper is structured as follows. In Section 2, we explain the trivalent
semantics of conditionals and its interactions with deontic modals. Section
3 develops an account of logical consequence and observes some key re-
sults. Section 4 and 5 apply our account to the paradox of the miners and
to Chisholm’s puzzle about contrary-to-duty obligations. Section 6 draws
the balance and explains the advantages of our approach over competing
accounts.

All in all, combining trivalent, truth-functional semantics for conditionals
with a Kratzerian restriction mechanism for modals in the consequent, we
obtain a systematic, powerful and unified theory of conditional obligations
and deontic reasoning that connects well with established semantic theories
of conditionals and modals in natural language.

2 The Trivalent Theory of Conditionals
We work with a propositional language L, whose vocabulary includes finitely
many propositional variables (p0, p1, . . .), the Boolean connectives ¬, ∧, and
∨, and auxiliary symbols. L→ is the extension of L with a conditional con-
nective → representing the natural language indicative conditional “if . . .
then”.

It has been frequently observed that the terms “true” and “false” have
no clear ordinary sense when applied to indicative conditionals with false
antecedents [1]. For example, it is not clear what determines the truth value
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of

(3) If Mary goes to the party, John will go, too.

when Mary does not go the party. The trivalent account gives a principled
response to this question: the sentence is neither true nor false, but void—a
third semantic value symbolized by 1/2. Instead, if Mary goes to the party, the
sentence takes the semantic value of the consequent. Symbolically: A → B is
1/2 if A is 0, and takes the value of B otherwise.

In other words, we interpret conditionals as conditional assertions, akin to
conditional bets. Suppose that Alice and Bob bet on the conditional (3): will
John go to the party if Mary does? In order to be able to settle the bet, the
precondition that Mary goes to the party has to be satisfied. In that case, the
bet is on: Alice wins it John goes, and Bob wins otherwise. However, if Mary
does not attend the party, the bet is off, and no-one can claim victory.

This basic intuition can be developed into a truth-functional theory of
conditionals [10,13,30]. We use the trivalent truth tables proposed by Cooper
in [10] for the conditional and the Boolean connectives ¬ and ∧ as given in
Table 1, with disjunction defined in the standard way as A ∨ B := ¬(¬A ∧
¬B). 1

f→ 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1/2 1/2 1/2

f¬
1 0

1/2 1/2

0 1

f∧ 1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

Table 1

Cooper’s truth table for the indicative conditional, paired with Strong Kleene
negation and a modification of Strong Kleene conjunction (“quasi-conjunction”).

The “quasi-conjunction” we adopt modifies the more familiar strong
Kleene conjunction, by letting the conjunction of a classical and a non-
classical value always take the classical value. So, for instance, f∧(1, 1/2) = 1.
This feature is required if we want to make sentences such as

(4) If the sun shines tomorrow, John goes to the beach; and if it rains, he
goes to the museum.

true (in some possible worlds). We defer to previous publications for ex-
tensive philosophical defense of this semantics, and for its integration with
theories of probability and epistemic modals [15,16,17].

The above tables generate the following valuation functions for formulae
of L→:

1 Void antecedents are aligned with true rather than false antecedents for reasons discussed in
[16]. However, since the conditional is the only source of the third truth value (we assume atom-
classical valuations), this only affects expressions of the form (A → B) → C, which are outside
the scope of this paper.
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Definition 2.1 [Cooper valuations] A Cooper valuation is a valuation function
JK : L→ × W 7−→ {0, 1/2, 1} that respects the truth tables from Table 1 and
assigns classical truth values from the set {0, 1} to all atomic formulas of L
at a world w ∈ W.

Cooper valuations make convincing predictions for the evaluation of
non-modal conditionals and their compounds. Moreover, we have devel-
oped a general template for extending this account to modal operators and
their interaction with conditionals [17]. This extension agrees with Lewis’s
and Kratzer’s observations that “if” often serves to restrict modal operators
[26,27,29]. For example, in sentences such as

(5) If Richard is not in the office, then he will be at home.

(6) If Sarah leaves the party early, then she might be tired.

(7) If Teddy is not too busy, then he should help his neighbors.

the “will”, the “might” and the “should” seem to quantify over the set of
worlds specified by the antecedent. This is arguably the most natural way
of expressing conditional modality in natural language. In [17], we show for
epistemic modals how this restriction operation can be implemented while
treating “if” as a trivalent binary connective. That is, we analyze the previous
sentences as being of the form A → M(B), with M standing for the modal
operator. In this paper, we apply this template to deontic modals.

Let us introduce a unary operator O standing for “it is obligatory that”
or simply “ought”. The dual operator P(A) for “it is permissible that” is
defined as ¬O(¬A). To provide a semantics for a language containing O and
P, we need three semantic parameters:

(1) a set of possible worlds W;

(2) a context or information state s indicating the epistemically possible
worlds;

(3) a deontic selection function d : P(W) 7−→ P(W) that maps every context s
to a deontic context d(s) relevant for the evaluation of deontic modals at
s, with the constraint d(∅) = ∅.

While (1) is the basis of every modal semantics, (2) is standard in informa-
tional state semantics for epistemic modals and conditionals [19,44], and (3)
expresses the idea that deontic modals are evaluated uniformly in a given
context s. The idea is that your practical obligations depend on what you
know about the world, i.e., the context you are in, but not on the exact world
you happen to be in (unbeknownst to me). While not being completely un-
controversial, this approach has been defended by a number of prominent
authors under the name of Perspectivism [11,22,23,37]. It is also often as-
sumed, if implicitly, by the baseline theory of deontic modals in linguistics,
in particular by authors who have followed Kratzer [25,26].

We evaluate deontic modals for obligation and permission in a standard
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way as quantification over a set of possible worlds. For A ∈ L and context s,
an agent ought to A if A is true in the entire deontic context d(s) (i.e., in all
deontically acceptable worlds), and the agent may A at s if and only if A is
true in at least one deontically acceptable world. Since the deontic selection
function d is fixed for each model, we write JO(A)Ks,w rather than JO(A)Ks,w,d,
and similarly for other sentences:

JO(A)Ks,w =

{
1 if ∀w′ ∈ d(s) : JAKs,w′

= 1
0 otherwise.

(1)

JP(A)Ks,w =

{
1 if ∃w′ ∈ d(s) : JAKs,w′

= 1
0 otherwise.

(2)

When we let A ∈ L→, these conditions expand to three values in the follow-
ing way, mimicking a standard understanding of modal operators as express-
ing universal and existential quantification generalizing Cooper’s trivalent
semantics for conjunction and disjunction.

JO(A)Ks,w :=


1 if for all w′ ∈ d(s) : JAKs,w′ ≥ 1/2

and for at least one w′′ ∈ d(s) : JAKs,w′′
= 1

1/2 if for all w′ ∈ d(s) : JAKs,w′
= 1/2

0, if for a w′ ∈ d(s) : JAKs,w′
= 0.

(3)

JP(A)Ks,w :=


1 if for a w′ ∈ d(s) : JAKs,w′

= 1;
1/2 if for all w′ ∈ d(s) : JAKs,w′

= 1/2;
0 if for all w′ ∈ d(s) : JAKs,w′ ≤ 1/2 and

for at least one w′′ ∈ d(s) : JAKs,w′′
= 0.

(4)

Henceforth, L→
O denotes the language generated by formulae of L→ and

their Boolean and conditional compounds with expressions of the form O(A)
and P(A), for non-modal A ∈ L→. For the sake of simplicity we exclude
iterated deontic modals. 2

Next we describe how deontic modals and conditionals interact. Fol-
lowing the template from [17], we hard-wire the Kratzerian restric-
tion operation—antecedents of conditionals restrict the scope of modal
operators—into the truth conditions of modal-conditional sentences. For this,
we first need a definition of restricting and updating context:

Definition 2.2 [Restricted and Updated Contexts] Let s be a context and A ∈
L→

O . Then the restriction of s to A is defined as

s/A := {w ∈ s : JAKs,w ≥ 1/2} (5)

2 An extension to all formulae of the modal-conditional language can be done following the
general recipe in [17].
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and the update of s on A is defined as

s[A] :=

{
s/A if ∀w ∈ s/A : JAKs/A,w ≥ 1/2

∅ if ∃w ∈ s/A : JAKs/A,w = 0
(6)

The reason why update and restriction have to be defined separately is
that some modal sentences A may change their truth value after restricting
the context to s/A. This is because deontic modals which were true relative
to d(s) may turn out false in the shifted deontic context d(s/A). A mini-
mal example is A = p ∧ O(¬p) in a context s = {w1, w2} with JpKs,w1 = 1,
JpKs,w2 = 0 and d(s) = {w2}. In this case s/A = {w1}, but the restriction
may shift the deontic context, so if d(s/A) = s, then JO(¬p)Ks/A,w1 = 0, and
consequently, JAKs/A,w1 = 0. We handle such degenerate cases by letting the
updated context s[A] collapse.

We can now define the general valuation clauses for conditional sentences
with deontic operators (A, B ∈ L→

O ). We evaluate A → B as void if A is
false and as having the truth value of B if A is non-false. This is essentially
the truth table for the trivalent conditional from Table 1. However, in the
latter case, we evaluate B at the deontic context d(s[A]) that corresponds to the
original context s updated with the information that A is not false (=essentially,
restricted to the A-worlds). The distinction between these cases is made by
the condition w ∈ s[A], saying that w is an A-world and that the update on
A does not collapse. Formally:

JA → BKs,w =

{
JBKs[A],w if w ∈ s[A]
1/2 if w /∈ s[A]

(7)

With respect to proposals that model conditional obligations with dyadic
deontic operators, an advantage is that we can straightforwardly evaluate
sentences such as

(8) If John helps his neighbors, he just shows up, but actually, he should
tell them.

The logical form of (8) is H → (S∧O(T)). Such sentences are hard to evaluate
when conditional obligations are formalized with a dyadic operator, without
reanalyzing the sentence into the more complex form (H → S) ∧ O(T|H).
On our semantics, this sentence is evaluated as void if John does not help
his neighbors, and it takes the semantic value of S ∧ O(T) relative to the
updated context s[H] if John helps his neighbors. Similarly, by incorporating
the evaluation clauses for epistemic modals [17], we could evaluate sentences
mixing epistemic and deontic modals such as

(9) If John helps his neighbors, then he must have a lot of free time, but
he should tell them that he comes.

Even though our semantics is not dynamic, the evaluation clause for condi-
tionals mimics update operations that are typical of dynamic approaches to
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conditionals and modality. At the same time, it emulates the restricting func-
tion of Kratzer-style semantics without having to deny that “if” is a proper
sentential connective (and it avoids postulating a covert modal in bare condi-
tionals, as Kratzerian approaches do).

A classical problem of Kratzer-style semantics for conditionals and de-
ontic modals is that they seem to validate the is-ought inference “if A, then
ought A” [6]. This is because restricting the scope of the deontic modal in
the consequent to A-worlds makes O(A) come out true. But clearly we do
not want “if A, then ought A” to be a tautology of our semantics. (Consider
the sentence “if I drink three beers a day, then I ought to drink three beers
a day.”) This problem affects Kratzer’s baseline theory, and in principle any
theory where conditionals restrict a semantic parameter that is relevant for
evaluating a modal in the consequent [4,24,42,43].

A way out is to take the iffy ought in a sentence like A → O(B) to be
doubly modalized [27, pp. 106–107]: the antecedent A restricts the scope of a
covert epistemic modal, and this epistemic modal regulates the scope of the
deontic modal in the consequent. However, this solution does not explicate
the mechanism for restricting the deontic modal in the consequent, and it may
yield wrong predictions for a variety of sentences that express conditional
obligations [6]. Something more needs to be said on how the scope of deontic
modals depends on covert epistemic modals.

The above observations have two major consequences for our account.
First, we should not require that in general, d(s) ⊆ s: in this case, since s[A] |=
A and by assumption d(s[A]) ⊆ s[A], it would follow that d(s[A]) |= A, hence
O(A) would be true at any world in s[A] and the conditional A → O(A)
would never be false at any world. The requirement d(s) ⊆ s is therefore
too strong to square well with our trivalent restrictor semantics, for it would
impose an “is-ought” collapse.

Second, we should avoid that d(s) ∩ s = ∅: this would imply that sen-
tences of the form A → O(¬A) can be true at a world w ∈ s. But “if A then
ought ¬A” expresses a conditional obligation that is impossible to satisfy
given the supposition in the antecedent. Such sentences should not be true.
Obligations seem to depend at least partially on the epistemic context. If
there is no epistemically possible world where Jones can help his neighbors,
then he is apparently not obliged to help them. We should not allow obli-
gations to detach completely from knowledge and evidence, as in objectivist
theories of “ought” [41]. Deontic selection functions with these features will
be called regular.

Definition 2.3 [Regularity] A deontic selection function d : P(W) 7−→ P(W)
is regular if for any s ̸= ∅, d(s) ∩ s ̸= ∅.

Regularity implies in particular the seriality axiom schema D of deontic
logic: ¬(O(A) ∧ O(¬A)), barring obligation to contradictory actions. So in
any non-empty context, obligation does not trivialize. To see that A → O(A)
can indeed come out false when assuming regularity, let W = {w1, w2},
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where w1 is a p-world, and w2 a ¬p-world, with s = {w1} and d(s) =
{w1, w2}. Then d is regular and Jp → O(p)Ks,w1 = 0. We can thus avoid
the “if A, ought A” problem in a simple and elegant way, without increasing
the complexity of our approach. At the same time, regularity guarantees that
sentences of the form A → O(¬A) can never be true, barring any contrary-
to-possibility obligations.

This completes the exposition of our semantic framework. The models
that satisfy the valuation clauses introduced so far, and that are based on
regular deontic selection functions, are called deontic Cooper-Kratzer models.

Definition 2.4 [Deontic Cooper-Kratzer Models] An L→
O -model M is a

quadruple ⟨W, s, d, JK⟩ where W is a set of possible worlds, s ⊆ W a con-
text, d : P(W) 7−→ P(W) a regular deontic selection function and JK is a
valuation function that assigns classical truth values to atomic formulae of L
at any world, and is extended to L→

O by means of the compositional rules in
Table 1 and equations (3), (4) and (7).

3 Logical Consequence
How should logical consequence be defined when the underlying semantics
is non-classical, as in our case? A priori, there are no obvious answers since a
trivalent semantics allows for (strict) truth preservation, non-falsity preserva-
tion, or a mixture of both, and these logics may have different strengths and
weaknesses [9,14].

We adopt a view of logical consequence that is tailor-made for natural
language reasoning: whenever we accept all premises of an argument (i.e.,
we are certain of them or willing to assert them), we should also accept the
conclusion. This notion of logical consequence was introduced under the
label of “reasonable inference” by Robert Stalnaker:

an inference [. . . ] is reasonable just in case, in every context in which the premises
could appropriately be asserted or supposed, it is impossible for anyone to accept
the premises without committing himself to the conclusion ([38], p. 271)

Stalnalker’s notion of reasonable inference treats consequence in terms of ac-
ceptance preservation, rather than truth preservation. This pragmatic view of
logical consequence is now rather popular among semanticists and philoso-
phers of language working on conditionals, especially in accounts that eval-
uate conditionals relative to information states and tie the role of logic to the
preservation of structural features of information [3]. Santorio even claims
that defining logical consequence along these lines is “the obvious notion of
consequence for assessing consistency and validity for asserted claims in nat-
ural language” ([36], p. 81). In our trivalent framework, this idea corresponds
to preservation of non-falsity uniformly in a context. For every sentence A and
state s, let’s say that s satisfies A in a given model (in symbols: s |= A) if and
only if, for every w ∈ s, JAKs,w ≥ 1/2. Then we define logical consequence by

Definition 3.1 [Logical Consequence] For Γ ⊆ L→
O and B ∈ L→

O : Γ |= B if
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and only if in all deontic Cooper-Kratzer models M = ⟨W, s, d, JK⟩:

s |= A for every A ∈ Γ ⇒ s |= B. (8)

This semantic notion of consequence can also be given a purely prob-
abilistic presentation in terms of preserving probability 1, highlighting its
informational motivation and the link to acceptance preservation (for details,
see [17,16]). Furthermore, this consequence relation has the usual structural
properties, i.e. Reflexivity (A |= A), Monotonicity (if Γ |= B, then Γ, A |= B)
and Transitivity (if Γ |= A for all A ∈ Σ and Σ, ∆ |= B, then Γ, ∆ |= B). What
about its valid inferences?

Our first observation is that any non-modal, non-conditional A does not
imply O(A), but will imply P(A), i.e., it is not obligatory that ¬A. This is the
inferential analogue of our observations about the truth values of A → O(A)
and A → O(¬A) in the previous section. Note that the proposition may fail
when A is not Boolean, but a conditional. 3

Proposition 3.2 (No Is-Ought Inference) For Boolean A ∈ L:

A ̸|= O(A) and A |= P(A) (9)

Second, by and large, the deontic operators behave like in standard deon-
tic logic (SDL) [7,31]. 4 Tautologies are obligatory (O(⊤)) and no contradic-
tion is obligatory (¬O(⊥)). Crucially, obligations aggregate under conjunc-
tion. This implies that our logic does not permit conflicting obligations.

Fact 3.3 (Obligation Aggregation) For non-modal A, B ∈ L→:

O(A), O(B) |= O(A ∧ B) (10)

Third, deontic reasoning is closed under logical consequence, but not under
the conditional connective:

Proposition 3.4 (Closure under Consequence) For A, B ∈ L→
O :

If A |= B then O(A) |= O(B) (11)
O(A), A → B ̸|= O(B) (12)

Principle (11) also holds in SDL and is often called Monotonicity. It ex-
presses the idea that an agent should “take moral responsibility for the logical
consequences of what he/she has committed to do” [32]. By contrast, the in-
ference stated in (12) fails, and reasonably so. To use a well-known example

3 Suppose A = p → q, s = {w}, d(s) = {w, w′} with JpKs,w = 0, JpKs,w′
= 1 and JqKs,w′

= 0.
Then Jp → qKs,w = 1/2 and Jp → qKs,w′

= 0, and therefore JP(A)Ks,w = 0. While s |= A, it is not
the case that s |= P(A).
4 We do not have sufficient space to discuss the differences between our framework and SDL in
detail. They appear most notably when considering the full language, including the conditional
connective and iterated modals.
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[40], if you ought to save as many lives as possible, but doing so implies,
in the actual epistemic context, killing an innocent bystander, it does not follow
that you ought to kill an innocent bystander. Indeed, SDL too fails the version
of (12) with the material conditional, that is O(A), A ⊃ B ̸|= O(B).

Another important observation is that our logic validates Modus Ponens:

Fact 3.5 (Modus Ponens) For all A, B ∈ L→
O :

A → B, A |= B (Modus Ponens)

As an immediate consequence, we observe that |= also respects Factual and
Deontic Detachment, two principles that have an important role in the dis-
cussion of Chisholm’s puzzle about contrary-to-duty obligations [8]:

Corollary 3.6 (Factual and Deontic Detachment) For non-modal A, B ∈ L→:

A → O(B), A |= O(B) (Factual Detachment)
O(A → B), O(A) |= O(B) (Deontic Detachment)

This is a notable difference to Kratzer’s baseline semantics, which invali-
dates Factual Detachment.

However, not all classical propositional inferences are valid: for example,
Modus Tollens fails for conditional and modal consequents (for discussion,
see [17,16]).

Fact 3.7 (Limited Modus Tollens) For A, B ∈ L: A → B,¬B |= ¬A, but this
entailment fails conditional or modal A or B.

This fact deserves a brief justification. In the modal-free fragment, a coun-
terexample is the inference p → (q → r),¬(q → r) ̸|= ¬p (consider JpKs,w = 1
and JqKs,w = 0). Leaving aside iterated conditionals and turning to modals, it
has been observed by Yalcin [45] that Modus Tollens is a problematic infer-
ence pattern for the interaction of conditionals and modals. Adapting one of
his examples to the deontic setting, consider the following sentences:

(a) If Jones does not assist his neighbors, he ought to have a good reason.

(b) Jones does not need a good reason for not assisting his neighbors.

(c) Jones assists his neighbors.

It looks unwarranted to infer the factual conclusion (c) from accepting both
the conditional (a) and the deontic modal (b).

Our conditional-deontic logic thus validates a surprisingly high number
of plausible inferences and meta-inferences. We will now apply our theory
to two classical test cases for theories of conditional obligation: the paradox
of the miners and Chisholm’s quartet.

4 Application 1: The Paradox of the Miners
Following [24], the paradox of the miners, originally due to Parfit, can be
presented as follows:
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BA BB NB
A wA,BA wA,BB wA,NB
B wB,BA wB,BB wB,NB

Table 2

A minimal model of the paradox of the miners, which contains six possible worlds
(=W) corresponding to combinations of the location of the miners (A, B) and our
actions (BA, BB, NB). We assume s = W and the abbreviation NB := ¬BA ∧ ¬BB

denotes that neither shaft is blocked. For the deontic selection function d we assume
that d(s) = {wA,NB, wB,NB}, d(s[A]) = {wA,BA} and d(s[B]) = {wB,BB}

Ten miners are trapped either in shaft A or in shaft B, but we do not know which.
Flood waters threaten to flood the shafts. We have enough sandbags to block one
shaft, but not both. If we block one shaft, all the water will go into the other shaft,
killing any miners inside it. If we block neither shaft, both shafts will fill halfway
with water, and just one miner, the lowest in the shaft, will be killed.

Kolodny and MacFarlane assume that the following factual and deontic state-
ments hold in this situation:

(1) We ought to block neither shaft. (O(¬BA) ∧ O(¬BB)) 5

(2) If the miners are in shaft A, we ought to block shaft A. (A → O(BA))

(3) If the miners are in shaft B, we ought to block shaft B. (B → O(BB))

(4) The miners are in shaft A or shaft B. (A ∨ B)

They argue that as long as we have a context-insensitive ought-operator, (2)–
(4) entail (5), using the rules of Disjunction Introduction, Disjunction Elimi-
nation and Modus Ponens for the indicative conditional.

(5) We ought to block either shaft A or shaft B. (O(BA) ∨ O(BB))

But (5) contradicts (1), assuming our deontic logic is standard and does not
allow for conflicting obligations. According to Kolodny and MacFarlane,
rejecting Modus Ponens for the indicative conditional is the best way out of
the paradox. This conclusion has not garnered much support in the literature
(see, for example, [3,4,5]). And for us, it is not viable, since our conditional
operator satisfies Modus Ponens (see Fact 3.5).

Our semantics avoids the paradox because the modal in A → O(BA) is
evaluated “Kratzer-style”, i.e., with respect to the deontic context d(s[A]) gen-
erated by the restricted context s[A]. The minimal model in Table 2 demon-
strates the consistency of (1), (2), (3) and (4). The six possible worlds corre-
spond to combinations of the location of the miners (A, B) and our actions
(BA, BB, NB), and the subscripts indicate which sentences are true and which
are false at a world. The abbreviation NB := ¬BA∧¬BB denotes that neither
shaft is blocked.

5 We can conjoin these obligations if desired, since our logic satisfies the principle of aggregating
obligations.
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Assuming that s = W, the four premises can be explicated as follows:
(1) says that d(s) |= ¬BA ∧ ¬BB. (2) and (3) say that d(s[A]) |= BA and
d(s[B]) |= BB. Finally, (4) claims that s |= A∨ B. The above model satisfies (4)
by construction and it is easy to see that it also satisfies (1)—(3) if we choose
the deontic selection d such that d(s) = {wA,NB, wB,NB}, d(s[A]) = {wA,BA}
and d(s[B]) = {wB,BB}:

Proposition 4.1 (Consistency of the premises of the miners’ paradox) The
deontic Cooper-Kratzer model ⟨W, s, d, JK⟩ described in Table 2 and the above
paragraph satisfies (1)–(4) at any world in s = W. In particular:

O(¬BA), O(¬BB), A → O(BA), B → O(BB), A ∨ B ̸|= ⊥. (13)

One reason why we obtain consistency despite validating Factual De-
tachment (i.e., Modus Ponens for deontic consequents) is that we invalidate
Reasoning by Cases (i.e., Disjunction Elimination). 6 This is typical of any
“global” consequence relation that quantifies over contexts instead of worlds:
we cannot infer from s |= A ∨ B that either s |= A or s |= B, and so, from
A |= C and B |= C it does not follow that A ∨ B |= C. Applied to our ex-
ample: we can infer O(BA) ∨ O(BB) both from A and from B, but we cannot
infer that conclusion from A ∨ B. This means that we cannot infer (5) from
(2), (3) and (4) in the miners’ paradox, similar to [18].

By contrast, this split is possible for “local” consequence relations that
track truth at a single world of evaluation: JA ∨ BKw = 1 implies either
JAKw = 1 or JBKw = 1, and so Reasoning by Cases works.

Kolodny and MacFarlane reject this solution, because they argue that (1),
(2) and (3) alone suffice to derive a contradiction, using Modus Tollens. But in
our approach, Modus Tollens fails for modal consequents, as shown in Fact
3.7. 7 This failure can be motivated independently [17,45]. If we maintain the
conditional obligation to block shaft A if the miners are there, and somebody
tells us that we ought not to block shaft A, then this can be for two reasons:
either this person believes that the miners are in shaft B, or she has no clue
about their location and tells us not to block shaft A for this reason. But the
latter case is perfectly compatible with the miners being in shaft A. So Modus
Tollens should actually fail, as argued at the end of the preceding section. 8

Finally, Kolodny and MacFarlane object that a context-sensitive interpre-
tation of “ought” faces the following problem:

(1), (2), and (3) will naturally occur in a single episode of deliberation. Why should
it be that, in our paradoxical argument, (1) is used relative to the agent’s current
evidence, while (2) and (3) are used relative to a more informed body of evidence?

6 For a related strategy, see also [18].
7 Having unrestricted Modus Tollens would allow us to infer ¬A from (1) and (2), and ¬B from
(1) and (3), using D, thereby contradicting (4).
8 Moreover, we agree with Bledin ([4], p. 76) that “we must exercise caution when using proof
by cases in languages that contain informational modals and the indicative.”
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The contextualist owes an explanation of why in such cases there should always be
a shift in the contextually relevant evidence.

Our answer is that (1), (2) and (3) are actually evaluated with respect to
the same evidence. The truth conditions of the conditional imply that the
antecedent restricts the scope of modals in the consequent, but the deontic
conditional A → O(BA) is still evaluated at a specific world w in the original
context s. The context shifts for the purpose of evaluating the consequent,
but not for evaluating the entire conditional.

5 Application 2: Contrary-to-duty obligations
Chisholm’s quartet highlights a problem of adequately capturing contrary-to-
duty obligations in a standard semantics for deontic modals. It consists of the
following four sentences, which we provide with the standard formalizations
[8,34]:

(a) O(G): Jones ought to go to assist his neighbors.

(b) O(G → T): It ought to be that if he goes he tells them he is coming.

(c) ¬G → O(¬T): If he does not go, then he ought not to tell them he is
coming.

(d) ¬G: He does not go.

When interpreting A → B as the material conditional ¬A ∨ B, and sticking
to unary deontic operators obeying the SDL principles, either independence
or consistency of the four premises fails, regardless of whether the condi-
tional obligations in (b) and (c) are taking wide or narrow scope [31]. Since
our semantics for deontic operators and conditionals preserves SDL features
like Factual/Deontic Detachment and agglomeration of obligations, one may
wonder how it can handle the puzzle. Kratzer’s baseline semantics for con-
ditionals and modals avoids collapse because it invalidates Factual Detach-
ment (i.e., the inference from (a) and (b) to O(T)), but it has been argued that
Chisholm-style paradoxes can be produced without assigning a central role
to Factual Detachment [2,5].

In the standard analysis, independence and consistency are understood
in terms of truth values at a world. That is, either the four sentences are not
simultaneously satisfiable, or satisfying three of them enforces the truth of
the remaining sentence.

We proceed in two steps. First, we show that (a)–(d) can simultaneously
be true at a single world, and moreover, satisfying an arbitrary subset of
them at w does not fix the truth values of the remaining sentences at w. This
is arguably the original challenge posed by the paradox. Second, we consider
(a)–(d) from the point of view of our notion of logical consequence that tracks
acceptance in a context rather than truth at a world. We obtain that ¬G and
O(G) are inconsistent with each other, but we argue that this is a sensible
result.

For the first step, consider the regular deontic Cooper-Kratzer model with
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a context that contains exactly four worlds: s = {wGT , wG¬T , w¬GT , w¬G¬T},
corresponding to the four combinations of the truth values of G and T.

Proposition 5.1 (Joint satisfiability and independence) Assume that s =
W = {wGT , wG¬T , w¬GT , w¬G¬T}, corresponding to valuations of the atomic sen-
tences G and T. Then, there is a deontic selection function d : P(W) 7−→ P(W)
such that in the deontic Cooper-Kratzer model ⟨W, s, d, JK⟩, (a)–(d) are simultane-
ously true at any w ∈ {w¬GT , w¬G¬T}:

JO(G)Ks,w = JO(G → T)Ks,w = J¬G → O(¬T)Ks,w = J¬GKs,w = 1 (14)

Moreover, the constraints expressed on actual world, context and deontic selection
function by any subset of (a)–(d) are not sufficient to decide the semantic value of the
remaining sentences.

The proof of satisfiability is insightful and so we provide it here. (a)
imposes that d(s) |= G. (b) imposes that wG¬T /∈ d(s) (because JG →
TKs,wG¬T = 0). Since d(s) must be non-empty, we infer that d(s) = {wGT},
and this is sufficient to ensure the strict truth of (a) and (b). (c) imposes
that d(s[¬G]) |= ¬T and (d) imposes that the actual world of evaluation w@
is a ¬G-world: w@ = w¬GT or w@ = w¬G¬T . As a result, all sentences of
Chisholm’s quartet will be true at (s, w@). The reason why consistency can
be maintained is that (a) and (b) make claims about what ought to be the
case relative to the context s, (c) makes a claim about what ought to be the
case in a shifted context s[¬G], and (d) makes a claim about the actual world
in s. 9 , 10

By contrast, the second part of the proposition shows that the truth of
three sentences among (a)—(d) does not fix the truth value of the fourth
sentence. For example, we may assume that (a), (c) and (d) are true, which
means that d(s) |= G, d(s[¬G]) |= ¬T and w@ ∈ {w¬GT , w¬G¬T}. This is
compatible with JO(G → T)Ks,w = 1 (as by the above model), but also with
JO(G → T)Ks,w = 0. It suffices to assume that d(s) = {wG¬T}. This small
modification is sufficient to falsify (b) while maintaining the truth of the other
three premises. Similarly, the modification d(s) = {w¬G¬T , wGT} falsifies (a)
but maintains the truth of (b)–(d). Finally, d(s[¬G]) = {w¬G¬T , wGT} falsifies
(c) but maintains the truth of (a), (b) and (d) while w@ = wGT falsifies (d) but
maintains the truth of the deontic claims (a)–(c).

Summing up: there are deontic Cooper-Kratzer models where all four
premises are satisfied, at a world, but also models where only three premises

9 This diagnosis does not change if we interpret the deontic modal in (b) as having narrow
scope, e.g., because it might look unnatural to let a deontic modal scope over a conditional
[35,5]. In this case, (b) imposes the constraint d(s[G]) |= T, which is consistent with the other
three premises.
10 In general, wide and narrow scope deontic conditionals O(A → B) and A → O(B) do not
always take the same semantic value—even if A and B are factual sentences. To see this, suppose
that JAKs,w = 1. Then JO(A → B)Ks,w = JO(B)Ks,w, but JA → O(B)Ks,w = JO(B)Ks[A],w. However,
what is obligatory in s need not coincide with what is obligatory in s[A].
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are satisfied and the fourth is false. This is a reasonable sense in which the
premises are at the same time consistent and independent of each other.

However, we can also look at Chisholm’s quartet from the point of view of
valid inference (analyzed as uniform preservation of non-falsity at a context).
Then premise (a) and (d) are sufficient to produce a contradiction (equation
15): ¬G rules out O(G) because “ought” implies “can” (compare Proposition
3.2). On the other hand, the deontic and conditional-deontic claims in (a), (b)
and (c) are compatible with any factual decision that Jones makes—i.e., they
neither imply that Jones goes, nor that he does not go. We reproduce this
partial logical indepedence in equation (16) and (17) below.

Proposition 5.2 (Partial Logical Consistency and Independence) For factual
and non-contradictory G, T ∈ L:

¬G, O(G) |= ⊥ (15)
O(G), O(G → T),¬G → O(¬T) ̸|= G (16)
O(G), O(G → T),¬G → O(¬T) ̸|= ¬G (17)

Some readers may find (15) hard to swallow. To make it more palat-
able, note first that unlike in classical logic, O(G),¬G |= ⊥ does not imply
O(G) |= G. “Ought” implies “can”, but does not imply “is”. That we cannot
simultaneously accept ¬G and O(G) in an epistemic context does not imply
that we can reason from deontic to factual claims.

Second, equation (15) does not rule out that ¬G and O(G) are simulate-
nously true at a world w in a context s. I may not help my neighbors, but
have an obligation to do so. The consistency intuition in Chisholm’s quartet
arguably aims at joint satisfiability at a world, rather than at valid inference.

What equation (15) indeed rules out is that we jointly accept, in a context,
that something is the case and that we have an actual obligation to do the
contrary. Having an actual obligation presupposes the epistemic possibility
of satisfying it, in line with Perspectivism. Once it is settled that Jones does
not go, there is no meaningful (evidence-based) sense in which he should go.
Going has simply ceased to be an option. Our obligations may be contrary
to duty, but not contrary to possibility.

Finally, Proposition 5.2 implies that the contrary-to-duty obligation ex-
pressed by (c) does not clash with the unconditional obligations expressed
by (a) and (b), or vice versa. Thus, we obtain a meaningful and non-trivial
account of contrary-to-duty obligations. 11 In particular, we maintain central
principles of standard deontic logic, such as agglomeration of obligations or
Factual and Deontic Detachment. This is a notable difference to the major ac-
counts in the literature where one of them is typically given up [2,25,26,35].
All in all, we can model obligations as context-dependent, explain why some
conditional obligations depend on what is the case and assign a non-trivial
role to contrary-to-duty oughts.

11 We repeat that our logic is not conflict-tolerant: while we can reason from (a) and (b) to O(T)
and from (c) and (d) to O(¬T), already (a) and (d) are sufficient to produce a contradiction.
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6 Conclusion
Our account of conditional obligations draws its inspiration from various
sources: (i) Cooper’s trivalent semantics for indicative conditionals; (ii)
Lewis’s and Kratzer’s idea that “if”-sentences restrict the scope of modal
operators in the consequent; (iii) the evaluation of deontic modals relative to
a context rather than the precise world of evaluation; (iv) explicating logi-
cal consequence in terms of preserving acceptance at a context rather than
truth at a world. Putting these four ideas together, which can be moti-
vated independently, we obtain accurate and plausible predictions for two
classical paradoxes of conditional obligation (the paradox of the miners and
Chisholm’s quartet). Furthermore, the “if A then ought A” problem is re-
solved. Moreover we retain the standard principles for deontic reasoning
such as Factual Detachment / Modus Ponens, and the aggregation of obliga-
tions.

In other words, we offer an integrated logical theory of “iffy oughts” (i.e.,
conditional obligations, and the interaction of conditionals and modals) that
squares well with our linguistic practices and with established ideas about
the semantics of modals and conditionals in natural language. It is fully
modular and compositional: the truth conditions of conditionals with deon-
tic modals are derived from the truth conditions of conditionals and non-
embedded modals.

This means that our account has numerous attractive features compared
to rivaling approaches that model the natural language interaction of deontic
and conditional structures. It does not require dyadic conditional obligations,
but explains conditional obligation compositionally. The proposed mecha-
nism for the interaction of conditionals and modals applies to various kinds
of modals [17], while alternatives such as preference-based deontic logic do
not offer such an integration [12,20,21]. Finally, with respect to Kratzer’s
baseline theory, our account retains “if” as a sentential connective (faithful to
the linguistic form of conditionals), it preserves Factual Detachment (faithful
to entrenched ideas about valid inference), and it proceeds without covert
epistemic modals to give a smoother resolution of the classical deontic para-
doxes. Future work might aim at an axiomatization of our account, and this
would be helpful for detailed comparisons with alternative proposals, too.

Appendix
Proof [Proof of Proposition 3.2] Consider a context s where s |= A. Since d is
regular, d(s) ∩ s ̸= ∅ and so, there is a world w in d(s) where JAKs,w = 1. By
the truth conditions for P, it follows that s |= P(A). Assume now that A is
false anywhere outside s and that d(s) ̸⊆ s. In this case, d(s) ̸|= A and hence
the is-ought inference A |= O(A) fails. 2

Proof [Proof of Fact 3.3] Consider a context s with s |= O(A) and s |= O(B).
Then d(s) |= A and d(s) |= B. By the truth tables for conjunction, it follows
that d(s) |= A ∧ B. This is equivalent to s |= O(A ∧ B). 2
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Proof [Proof of Proposition 3.4] To see the validity of (11), consider a context
s and suppose that s |= O(A). Then d(s) |= A, and since A |= B, also
d(s) |= B. But this means that s |= O(B) and hence O(A) |= O(B). For the
failure of (12), consider W = {w1, w2}, s = {w1}, and d(s) = W with A := ⊤
and B := p, with JpKs,w1 = 1, JpKs,w2 = 0. Then s |= O(A) (because d(s) |= ⊤)
and s |= A → B, but clearly, s ̸|= O(B). 2

Proof [Proof of Fact 3.5] Suppose that we have a deontic Cooper-Kratzer
model ⟨W, s, d, JK⟩ with s |= A → B and s |= A. Then also s[A] = s and
1/2 ≤ JA → BKs,w = JBKs[A],w = JBKs,w for all w ∈ s. Therefore s |= B. 2

Proof [Proof of Corollary 3.6] Factual Detachment is an immediate conse-
quence of the validity of Modus Ponens. For Deontic Detachment, sup-
pose that s |= O(A) and s |= O(A → B). This means that d(s) |= A and
d(s) |= A → B. Therefore, by Modus Ponens also d(s) |= B, and s |= O(B),
as requested. 2

Proof [Proof of Fact 3.7] Take W = s = d(s) = {w1, w2} with JpKs,w1 = 1,
JpKs,w2 = 0 and d(s[p]) = s[p] = {w1}. In this case, s |= p → O(p) and
s |= ¬O(p), but s ̸|= ¬p. 2

Proof [Proof of Proposition 5.2] For ¬G, O(G) |= ⊥, note that d(s) ∩ s ̸=
∅ and therefore, if s |= ¬G, then O(G) will scope over some ¬G-worlds.
Therefore s ̸|= O(G).

For the two remaining claims, take the model from Proposition 5.1 and
note that s |= O(G), s |= O(G → T), and s |= ¬G → O(¬T). The first
two claims are purely deontic claims and therefore uniformly true at s, while
the third claim is void at G-worlds and true at ¬G-worlds (by construction,
d(s[¬G]) |= ¬T). But clearly, s contains both G- and ¬G-worlds and therefore
neither s |= G nor s |= ¬G. 2
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[16] Égré, P., L. Rossi and J. Sprenger, Certain and Uncertain Inference with Trivalent Conditionals,
Australasian Journal of Philosophy (2025).
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