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1 Introduction

Linear algebra underpins modern mathematics, data science, and quantum technology. Yet the
choice of basis—too often treated as a mere convenience—critically influences numerical stability,
physical interpretation, and information flow. Classical bases (orthonormal, Fourier, wavelet,. . . )
excel in specialised contexts but struggle to encode relativistic, operator-coupled, and curvature-aware
phenomena now encountered in quantum information, gravitational modelling, and high-performance
simulation.

This paper introduces a unified Cauchy–Schwarz–Lorentz (CSL) framework that extends the
inner-product geometry of Hilbert spaces by weighting each basis direction with a Lorentz factor.
Combined with three further mechanisms—

• Operator alignment: bases that simultaneously diagonalise pairs of Hilbert–Schmidt opera-
tors;

• Modal closure: phase quantisation ensuring time-loop consistency and Floquet invariance;

• Curvature adaptation: Ricci-parallel transport of frames along curved backgrounds,

we obtain a dynamical basis synthesis (DBS) pipeline that tailors linear-algebraic structures to
relativistic, spectral, and geometric constraints in situ.

Motivation

• Relativistic quantum information: high-speed qubit transport demands bases that encode veloc-
ity and Lorentz contraction at the algebraic level.

• Quantum-gravity toy models: discrete bases must remain well behaved under spacetime curvature
while respecting modal (periodic) boundary conditions.

• Numerical linear algebra: weighted inner products yield condition-number reductions and pre-
conditioners attuned to anisotropic or operator-coupled data.

Contributions

1. Lorentz-weighted inner products. We generalise the Cauchy–Schwarz inequality to a two-sector
Hilbert space, revealing a basis–velocity duality that captures relativistic kinematics purely al-
gebraically.
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2. Operator-aligned bases. A paired-SVD construction yields bases that diagonalise S∗S and
T∗T simultaneously, optimising spectral compression and entanglement metrics.

3. Modal and curvature extensions. We formalise phase-quantised (“modal-closed”) frames
and Ricci-parallel frames, providing existence theorems and synthesis algorithms.

4. Dynamical Basis Triple (DBT). We bundle weights, operator data, and phases into a cate-
gorical triple B = (λ,O, ϕ) and prove that every such triple admits a realisation via an iterated
weighted Gram–Schmidt process.

Paper Outline

Sec. 2 formalises Lorentz-weighted bases and derives the CSL inequality.

Sec. 3 develops operator-aligned decomposition and its spectral properties.

Sec. 4 introduces the alignment metric and the minimal-velocity criterion.

Sec. 5 shows how modal closure enforces temporal consistency.

Sec. 6 extends bases to curved manifolds via Ricci transport.

Secs. 7–8 unify these ingredients into the DBS algorithm and survey linear-algebraic pay-offs.

All results apply to separable Hilbert spaces; finite-dimensional corollaries are highlighted for
numerical practice.

LorentzWeighting OperatorAlignment ModalClosure CurvatureAdaptationbasis joint SVD Floquet Ricci

Step A Step B Step C Step D

Figure 1: DBS processing pipeline: from Lorentz-weighted seeds to curvature-adapted frames.

Standing conventions

Inner-product and norm symbols

• ⟨·, ·⟩ — ambient Hilbert inner product on H.

• ⟨·, ·⟩λ — Lorentz-weighted inner product
(
Definition 4.1

)
.⟨⟨A,B⟩⟩ = tr(A∗B) —

Hilbert–Schmidt inner product on HS(H); corresponding norm ∥A∥HS =
√
⟨⟨A,A⟩⟩.

Throughout, ∥ · ∥ denotes the norm attached to the inner product currently in effect.

1.1 Lorentz-Weighted Basis Vectors

Core innovation. Basis vectors equipped with intrinsic Lorentz-scaling factors.
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Mathematical formulation. For a Hilbert space H, define the family of basis vectors

bλk :=
√
λk ek ⊕ i

√
1− λk fk,

where {ek} and {fk} are orthogonal bases in (possibly distinct) subspaces of H, and the Lorentz
weights satisfy λk ∈ (0, 1].

Key properties.

•1. Norm relation. ∥∥bλk∥∥2 = λk Pk + (1− λk)Qk.

(For orthonormal seeds one has Pk = Qk = 1, so every bλk is unit-norm.)

2. Norm relation (direct form).

∥bλk∥2 = λk ∥ek∥2 + (1− λk) ∥fk∥2.

In the common orthonormal-seed case ∥ek∥ = ∥fk∥ = 1, this reduces to ∥bλk∥2 = 1 for every k.

3. Phase duality.

arg
〈
bλj , b

λ
k

〉
= tan−1

√
(1− λj)(1− λk)

λjλk
.

4. Velocity encoding.

vk = c

√
1− λmin

λk
.

Remark 1.1 (Velocity bounds). Let λmin := infk λk > 0. Because λk ∈ (0, 1], the expression
vk = c

√
1− λmin/λk satisfies 0 ≤ vk < c. Hence the Lorentz-weighted basis encodes sub-luminal

velocities algebraically; as λk → λmin we have vk → 0, while λk → 1 pushes vk arbitrarily close to c.

Applications. Rapid quantum-state transitions, relativistic information transfer, and geometric
encoding of dynamical constraints.

1.2 Operator-Aligned Basis Decomposition

Core innovation. Construction of bases directly aligned with a pair of Hilbert–Schmidt (HS)
operators.

Theorem 1.2 (Operator-aligned decomposition). Let S, T : H → H be Hilbert–Schmidt operators.
There exists a basis {ωk} of (a suitable subspace of) H such that

ωk =
∥Sek∥√

P
δk ⊕

∥Tek∥√
Q

γk,

where {δk} and {γk} are auxiliary orthonormal systems and P =
∑

k∥Sek∥2, Q =
∑

k∥Tek∥2.
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Decomposition properties.

1. Norm preservation. ∑
k

∥ωk∥2 =
∥S∥ 2HS
P

+
∥T∥ 2HS
Q

= 2.

2. Spectral alignment. Each ωk simultaneously diagonalizes the CSL bilinear form induced by
(S, T ).

3. Quantum-compass compatibility. The decomposition optimizes phase-space orientation for
quantum-control protocols.

1.3 Alignment Metric & Minimal-Velocity Basis

Key metrics.

1. Alignment metric. ∣∣⟨ωj , ωk⟩∣∣ =
∥Sej∥ ∥Tej∥+ ∥Sek∥ ∥Tek∥√

PQ
.

2. Minimal-velocity basis.
min
k
∥ωk∥ ←→ vmax.

Remark 1.3 (Off-diagonal overlap control). Write pk := ∥Sek∥2, qk := ∥Tek∥2, P :=
∑

ℓ pℓ, Q :=∑
ℓ qℓ and set the normalised weights sk :=

√
pk/P , tk :=

√
qk/Q. For the operator-aligned vectors

ωk = skδk ⊕ tkγk one has, for distinct indices j ̸= k,

0 ≤
∣∣⟨ωj , ωk⟩∣∣ = sjsk

〈
δj , δk

〉
+ tjtk

〈
γj , γk

〉
≤ sjsk + tjtk < 1. (1)

The final strict inequality uses s2k + t2k = 1 together with (sj , tj) ̸= (sk, tk) for j ̸= k. Hence
*off-diagonal overlaps generally do not vanish*; they are suppressed by the geometric mean of the
individual operator norms and become zero **only** when the singular-value ratios coincide, i.e.

pj
qj

=
pk
qk
, j ̸= k,

so that ωj and ωk align in both δ- and γ-sectors simultaneously. In generic spectra this resonance
occurs rarely, and the overlap magnitude is governed by the bound (1).

Applications. Quantum-error correction and holographic duality.

1.4 Modal-Closure Basis

Core innovation. Bases enforcing time-loop consistency.

Axiomatic construction.

1. Start with the standard basis {ek}.

2. Apply the quantum-compass operator Q(ek) = eiϕkek.

3. Impose modal closure: ϕk = 2πnk, nk ∈ Z.

4. Redefine the basis: mk = ei
√
2πnk ek.
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Key features.

• Temporal periodicity : exp
(
i⟨mj ,mk⟩

)
= 1 whenever nj = nk.

• Norm quantisation: ∥mk∥2 = 2πnk.

• Geometric constraint :
∑

k nk =
dimH
2π

.

• Phase-Stable Krylov Methods. . . .

Remark 1.4 (Why the phase 2πnk is natural). The phase factor in modal closure represents the
quasi-energy of a periodic (Floquet) system whose evolution over one cycle (period T = 1 in our
normalisation) is the unitary U = e−iHFT . Eigenphases of U are defined only modulo 2π; choosing
ϕk = 2πnk, nk ∈ Z, therefore guarantees:
(a) Exact T -periodicity. Umk = mk for every integer nk, so the basis vectors return to themselves

after a single period—crucial for stroboscopic (Floquet) analysis.

(b) Unambiguous branch. The square-root choice exp
(
i
√
2πnk

)
introduces a double-valued

branch cut (
√
· changes sign under nk 7→ nk + 1), yielding physically identical states that

differ by an overall −1. Using 2πnk removes that redundancy.

(c) Consistent Berry phase. The modal-closure integral
∮
⟨mk, dmk⟩ = 2πnk now coincides

exactly with the accumulated Berry phase over one driving cycle, matching the standard Floquet
picture where Berry phases are integers (Chern numbers) in periodically driven systems.

In short, the integer-multiple phase aligns modal closure with the spectral structure of periodic
Hamiltonians, yielding a physically transparent and mathematically single-valued basis.

Applications. Quantum-gravity toy models and temporal-circuit design.

1.5 Curvature-Adapted Basis

Core innovation. Incorporating spacetime curvature.

Einstein–Alignon transport.
∇µbκk =

κR
M2

Pl

Rµν γ
ν bλk ,

where γν are Dirac matrices.

Characteristics.

1. Ricci parallel transport : Rµνb
µ
j b
ν
k = δjk.

2. Torsion-free: bj ∧ dbk = 0 for λj = λk.

3. Geodesic basis: ⟨bj ,∇kbk⟩ = 0.

Basis transformations.

Conventional basis Curvature-adapted basis
⟨ej , ek⟩ = δjk ⟨bj , bk⟩ = gµνb

µ
j b
ν
k

d(ej ⊗ ek) = 0 ∇(bj ⊗ bk) = Γmjkbm

Orthogonal decomposition Ricci-curvature decomposition
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Applications. Quantum-spacetime engineering and graviton detection.

1.6 Quantum-Compass Frame

Core innovation. Operational basis for velocity measurement.

Fundamental operators (revised). Define the spectral-weight operator

λ̂ :=
∑
k

λk |ωk⟩⟨ωk|, 0 ≤ λk ≤ 1.

Because 0 ≤ λ̂ ≤ I in the operator sense, the functional calculus guarantees that the square root in

v̂ = c

√
I − λ̂

is well defined and v̂ is self-adjoint.

Remark 1.5 (Self-adjointness criterion). For a bounded self-adjoint operator A,
√
A exists and is

self-adjoint if and only if the spectrum of A lies in [0,∞). Here A = I − λ̂ satisfies this requirement
precisely when 0 ≤ λ̂ ≤ I, i.e. all weights obey 0 ≤ λk ≤ 1.

Measurement protocol.

1. Prepare test states {ψn} ⊂ H.

2. Evaluate norms Pn = ∥Sψn∥2, Qn = ∥Tψn∥2.

3. Compute overlaps Cn =
∑

m∥Sψm∥∥Tψm∥.

4. Construct basis ωn =
Sψn√
Pn
⊗ Tψn√

Qn
.

Completeness relation. ∑
n

|ωn⟩⟨ωn| = Q†Q+ T †T ,

with Q the quantum-compass operator.

1.7 Alignon-Density Basis

Core innovation. Bases parameterised by an alignon-field density.

Field-theoretic construction.

bAk =

∫
A(x)

[ δ

δϕk(x)
⊕ δ

δψk(x)

]
d4x,

where A(x) denotes the alignon-field density.

Applications. Non-linear quantum-field models, density-driven symmetry breaking.
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1.8 Alignon-Density Basis (supplement)

Field-theoretic construction.

bAk =

∫
A(x)

[ δ

δϕk(x)
⊕ δ

δψk(x)

]
d4x,

where A(x) denotes the alignon-field density.

Key commutation relations.

1. [ bAj , b
A
k ] = iℏLjk ∂µA dxµ

2. { bAj , bAk } = 2gµν ∂µA ∂νA δjk

3. ⟨bAj | bAk ⟩ = δjk exp
(
−
∫
A2 d4x

)
Domain and test-function spaces. Throughout we work with the canonical Gel’fand triple

S
(
R1,3

)
⊂ L2

(
R1,3; d4x

)
⊂ S′(R1,3

)
, (2)

where S is the Schwartz space of rapidly decreasing C∞ functions and S′ its tempered-distribution
dual. Field configurations φk : R1,3→R are assumed to lie in S′; test variations δφk and all smearing
functions f ∈ S belong to S. Functional derivatives such as δ/δφk(x) are therefore understood in
the sense of Hida white-noise calculus on the **rigged Fock space**

F+(S) ⊂ F ≡
∞⊕
n=0

L2
sym(R4n) ⊂ F+(S

′),

ensuring that all operator-valued distributions act on a common dense domain.

Commutation-relation coefficients Ljk. In Commutation Relation 1 the symbols Ljk are the
alignon Lie coefficients

Ljk :=
∂λj
∂φk

− ∂λk
∂φj

, (3)

which generate infinitesimal flavour rotations in the {λj} multiplet. They are antisymmetric (Ljk =
−Lkj) and close under the graded Jacobi identity Ljk,ℓ + Lkℓ,j + Lℓj,k = 0, making the full algebra
isomorphic to so(N) when N alignon species are present. In the one–species case Ljk vanishes
identically, recovering the Abelian limit.

Summary of operator domains.

• Fields φk, alignon densities λj act as multiplication operators on F+(S).

• Functional derivatives δ/δφk(x) map F+(S) to F+(S
′) and admit closures that are essentially

self-adjoint on the nuclear domain F+(S).

• The bilinear combinations Ljk and the Hamiltonian density H leave F+(S) invariant, so all
equal-time commutators are well-defined without additional renormalisation.

Applications. Quantum-field tomography; conformal bootstrap.
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1.9 Transformative Insights

1. Basis–velocity duality. Every basis choice induces a velocity field:

vjk = c

√
1− |⟨bj , bk⟩|

2

∥bj∥2∥bk∥2
.

2. Temporal basis periodicity. Modal closure requires∮
⟨bk, dbk⟩ = 2πnk, nk ∈ Z.

3. Curvature-basis decomposition. The Riemann tensor decomposes as

Rµνρσ =
∑
j,k

λj(1− λk)
[
bµj b

ν
kb
ρ
j b
σ
k − (µ↔ ν)

]
.

4. Operator-basis entanglement. For Hilbert–Schmidt operators S, T ,

ent(S, T ) = 1−max
{bk}

∑
k

∥Sbk∥ ∥Tbk∥
∥S∥HS ∥T∥HS

.

2 Generalized Methodology for Dynamical Basis Synthesis (DBS)

2.1 Prerequisites

• A complex, separable Hilbert space (H, ⟨− , −⟩).

• A Lorentz-weight profile λ : N→ (0, 1] with λmin := infk λk.

• (Optional) A pair of Hilbert–Schmidt operators (S, T ) ∈ HS(H)2.

• (Optional) A curvature datum (M, g,∇, Rµνρσ) and an Einstein–Alignon coupling constant κR.

• (Optional) Modal integers (nk)k∈N ⊂ Z enforcing time-loop closure.

• (Optional) An alignon-density field A ∈ C∞
c (M).

2.2 Step A: Lorentz-Weighted Synthesis

Definition 2.1. Fix two orthonormal sets {ek}, {fk} ⊂ H. Define the Lorentz-weighted basis

bλk :=
√
λk ek ⊕ i

√
1− λk fk.

Verification. Check∥∥bλk∥∥2HS = λkPk + (1− λk)Qk, arg⟨bλj , bλk⟩ = tan−1
(√

(1−λj)(1−λk)
λjλk

)
,

and extract kinematic data vk = c
√

1− λmin/λk.
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2.3 Step B: Operator Alignment (if S, T are given)

Theorem 2.2 (Operator-Aligned Decomposition). There exists a basis {ωk} ⊂ H ⊕H such that

ωk =
∥Sek∥√

P
δk ⊕

∥Tek∥√
Q

γk,
∑
k

∥ωk∥2 = 2.

Full proof. Let P := S∗S and Q := T∗T . Both P and Q are positive, compact, self-adjoint operators
on H (because S and T are Hilbert–Schmidt). We impose the commutativity hypothesis

PQ = QP. (4)

(Without (4) simultaneous diagonalisation need not exist; see Remark 2.3 below.)

Step 1: Simultaneous spectral decomposition. Because P and Q are commuting bounded
self-adjoint operators, the spectral theorem for commuting families yields a single projection-valued
measure E( · ) on R2 such that

P =

∫
R2

x dE(x, y), Q =

∫
R2

y dE(x, y).

Select an orthonormal basis {ui}i∈I ⊂ H of joint eigenvectors; i.e.

Pui = piui, Qui = qiui, pi, qi ≥ 0, i ∈ I.

Write U : ℓ2(I)→H for the unitary operator that sends the standard basis ei to ui. Then, in matrix
form,

U∗P U = diag(pi), U∗QU = diag(qi).

Step 2: Constructing the raw aligned basis. Set

ωi := Uei = ui, i ∈ I.

For i, j ∈ I we have
⟨Sωi, Sωj⟩ = ⟨ωi,P ωj⟩ = ⟨ui, pjuj⟩ = piδij ,

and analogously ⟨Tωi, Tωj⟩ = qiδij . Thus {ωi} *diagonalises* both Gram matrices simultaneously.

Step 3: Scaling to match the theorem’s statement. Define the global Hilbert–Schmidt norms

P := ∥S∥2HS =
∑
i∈I

pi, Q := ∥T∥2HS =
∑
i∈I

qi, P,Q > 0.

For each i write
δi :=

ωi
∥ωi∥

= ωi (since ∥ωi∥ = 1), γi := δi.

Set
ω̃i :=

√
pi√
P
δi ⊕

√
qi√
Q
γi ∈ H ⊕H.

Then

⟨ω̃i, ω̃j⟩ =
(√

pi√
P

√
pj√
P

+
√
qi√
Q

√
qj√
Q

)
δij ,∑

i∈I
∥ω̃i∥2 =

∑
i∈I

(
pi
P + qi

Q

)
= 1

P

∑
i

pi +
1
Q

∑
i

qi = 2.
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Hence {ω̃i} satisfies exactly the norm statements in the theorem.
Finally, projecting back to the first component gives the vectors

ωi :=

√
pi√
P
δi ⊕ 0,

which live in the desired subspace of H⊕H and fulfil the announced properties.

Step 4: Completeness. Because U is unitary, {ωi} is an orthonormal basis for H (or for the
closure of ranS ∪ ranT if S or T has non-trivial kernel), so the construction is exhaustive.

Remark on non-commuting pairs. If P and Q fail to commute, no non-trivial simultaneous
diagonalisation may exist. In that case one can still block-diagonalise with respect to the spectral
projections of P and subsequently perform an SVD inside each finite-rank block, but the resulting
basis will diagonalise only one of the two Gram matrices at a time. The commuting hypothesis is
therefore both necessary and sufficient for the full operator-aligned decomposition proved above.

[Perturbative joint–diagonalisation bound] Let P = S∗S and Q = T∗T be n × n Hermi-
tian, positive-semidefinite matrices with eigen-decompositions P = V diag(p1, . . . , pn)V

∗ and Q =
V diag(q1, . . . , qn)V

∗ sharing the same unitary V . Assume that, in floating-point arithmetic, a
perturbed pair P̂ , Q̂ is available with

∥ P̂ Q̂− Q̂P̂ ∥2 = ε (ε≪ 1).

Define the minimal joint spectral gap

∆ := min
i ̸=j

(
|pi − pj |+ |qi − qj |

)
.

Then there exists a unitary Uε ∈ U(n) such that∥∥offdiag(U∗
εP̂ Uε

)∥∥
2
+

∥∥offdiag(U∗
εQ̂ Uε

)∥∥
2
≤ 2 ε

∆
+ O(ε2).

Consequently, the basis {ω(ε)
k := Uεek}nk=1 is “

2ε

∆
–almost diagonal” for both Gram matrices, and

converges to the exact (S, T )-aligned basis as ε→ 0.

Sketch. Write C := [P̂ , Q̂] so that ∥C∥2 = ε. Employ the first-order Jacobi-type iteration U ←
U exp(−τK) with K := offdiag(U∗CU) and stepsize τ = ∥K∥−2

2 ; this is the same scheme analysed
in [1, 2]. At each step the nondiagonal energy Φ(U) := ∥ offdiag(U∗P̂ U)∥2F + ∥ offdiag(U∗Q̂ U)∥2F
decreases by at least 2τ∥K∥2F = 2∥K∥2F /∥K∥22 ≥ 2∥K∥22. Because the eigen-value separation is
bounded below by ∆, standard Davis–Kahan-type estimates give ∥K∥2 ≤ ε/∆ after the first sweep,
yielding the advertised bound. Full details follow the proofs in the cited references.

Remark 2.3 (Practical takeaway). In finite-precision computations one rarely has P̂ Q̂ = Q̂P̂ exactly;
the commutator norm ε is typically of order u ∥P∥2∥Q∥2 where u is machine epsilon. Provided the
spectra of P and Q are not clustered (∆≫ u), Proposition 2.3 guarantees that the numerical basis
remains close to the ideal simultaneous eigen-basis.

Construct (δk, γk) via polar/SVD factorisations of S and T . Alignment metric and velocity bounds
follow from Cauchy–Schwarz.
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2.4 Step C: Modal Closure Enforcement (optional)

mk := ei
√
2πnk ek,

∮
⟨mk, dmk⟩ = 2πnk, ∥mk∥2 = 2πnk.

2.5 Step D: Curvature Adaptation (optional)

Solve the Ricci-parallel-transport equation

∇µbκk =
κR
M2

Pl

Rµν γ
ν bλk ,

subject to torsion-free and geodesic constraints Rµνb
µ
j b
ν
k = δjk, bj ∧ dbk = 0.

2.6 Step E: Quantum Compass Frame

Define
ϕ̂ =

∑
k

ϕk |ωk⟩⟨ωk|, v̂ = c

√
I − λ̂,

and build the measurement basis
ωn =

Sψn√
Pn
⊗ Tψn√

Qn
,

ensuring the completeness relation ∑
n

|ωn⟩⟨ωn| = Q†Q+ T †T .

2.7 Step F: Alignon-Density Extension (optional)

bAk =

∫
M
A(x)

[
δ

δϕk(x)
⊕ δ

δψk(x)

]
d4x,

with commutation and anticommutation relations

[bAj , b
A
k ] = iℏLjk ∂µA dxµ, {bAj , bAk } = 2gµν ∂µA ∂νA δjk.

2.8 Step G: Global Consistency Checks

G1. Norm & Completeness. Verify
∑
k

|bk⟩⟨bk| = IH (within chosen cut-offs).

G2. Basis–Velocity Duality. Evaluate

vjk = c

√
1− |⟨bj , bk⟩|

2

∥bj∥2∥bk∥2
.

G3. Entanglement Metric.

ent(S, T ) = 1−max
{bk}

∑
k

∥Sbk∥ ∥Tbk∥
∥S∥HS ∥T∥HS

.

G4. Curvature Decomposition.

Rµνρσ =
∑
j,k

λj(1− λk)
[
bµj b

ν
kb
ρ
j b
σ
k − (µ↔ν)

]
.
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2.9 Algorithmic Skeleton

Require: Data (λ, S, T, nk, Rµνρσ,A)
1: Compute {bλk} (Step A)
2: if (S, T ) ̸= ∅ then
3: Solve for {ωk} (Step B)
4: end if
5: if (nk) ̸= ∅ then
6: Phase-quantise {mk} (Step C)
7: end if
8: if Rµνρσ ̸= 0 then
9: Integrate transport equation (Step D)

10: end if
11: Assemble Quantum-Compass operators (Step E)
12: if A ≠ 0 then
13: Build bAk (Step F)
14: end if
15: Run consistency checks (Step G); iterate weights if violated
16: return final dynamical basis Bdyn

Lemma 2.4 (Existence of Ricci-parallel frames). Let (M, g) be a smooth d-dimensional Lorentzian
or Riemannian manifold and let G be a geodesic congruence γk : Ik → M , k = 1, . . . ,m, covering
an open set U ⊆M . Assume:

(a) Parallel Ricci tensor along G: ∇γ̇kRµν = 0 for all k and all t ∈ Ik;

(b) Initial orthonormal seed frame: there exists {bk(0)}mk=1 in Tγk(0)M with ⟨bj(0), bℓ(0)⟩ = gµνb
µ
j (0)b

ν
ℓ (0) =

δjℓ.

Then for each geodesic γk there exists a unique C∞ vector field bk(t) along γk solving

∇γ̇kbk =
κR
M2

Pl

Rµν(γk(t)) γ
νbµk , bk(0) given,

and the collection
{
bk(t)

}
is orthonormal for all t ∈ Ik.

Proof. Because Rµν is parallel along each γk, the right-hand side depends smoothly on t and bk(t)
itself. The equation is a linear ordinary differential system along the one-dimensional curve γk, hence
possesses a unique C∞ solution by the Picard–Lindelöf theorem. Define Njℓ(t) := ⟨bj(t), bℓ(t)⟩.
Differentiating and using metric compatibility together with antisymmetry of the connection terms
gives Ṅjℓ(t) = 0. Thus Njℓ(t) = δjℓ for all t, preserving orthonormality. Smooth dependence on the
initial data follows from standard ODE theory, so the frame exists on U .

Example 2.5 (Maximally symmetric spaces). Lemma 2.4 is non-empty on any maximally symmetric
manifold, i.e. a space whose Riemann tensor satisfies Rµνρσ = K

(
gµρgνσ − gµσgνρ

)
for constant

sectional curvature K.

(a) Euclidean spheres Sd (K > 0). The Ricci tensor Rµν = (d− 1)K gµν is covariantly constant
(∇λRµν = 0), so the geodesics of Sd satisfy hypothesis (a) of the lemma. The great-circle congru-
ence therefore admits a Ricci-parallel frame obtained by parallel-transporting any orthonormal
seed frame on the equator.
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(b) Minkowski space R1,d−1 (K = 0). Here Rµν = 0 everywhere, so the lemma’s transport
equation reduces to ordinary Levi-Civita parallel transport. Any inertial frame along a timelike
geodesic is trivially Ricci-parallel.

(c) de Sitter and anti-de Sitter spaces (K ̸= 0). Both are maximally symmetric with constant
positive or negative curvature. Choosing the timelike geodesic congruence generated by the
cosmological Killing field again yields ∇γ̇R = 0, so a Ricci-parallel orthonormal frame exists and
can be written in closed form using static coordinates.

Thus the lemma covers physically important backdrops ranging from flat spacetime to expanding
cosmologies and constant-curvature vacua.

2.10 Deployment Domains

• Relativistic Quantum Information: high-speed qubit transport with intrinsic velocity track-
ing.

• Quantum Gravity Architectures: curvature-adapted bases for graviton coupling and detec-
tor frames.

• Temporal Circuit Design: modal-closed bases guaranteeing time-loop consistency.

• Field Tomography: alignon-density bases for conformal bootstrap reconstructions.

3 Preliminaries

Notation

• K ∈ {R,C}; (V, ⟨·, ·⟩) a finite- or infinite-dimensional inner-product space.

• GL(V ) — invertible linear maps, HS(V ) — Hilbert–Schmidt operators (when V is Hilbert).

• λ = (λi)i∈I ⊂ (0, 1] — weight profile indexed by a finite or countable set I.

4 Lorentz-Weighted Inner Products

Definition 4.1 (Lorentz-weighted inner product). Let {ei}i∈I , {fi}i∈I ⊂ H be two orthogonal (pos-
sibly distinct) orthonormal systems, and let λ = (λi)i∈I ⊂ (0, 1]. Every vector u ∈ H decomposes
as u =

∑
i∈I(uiei + u′ifi) with coefficients ui = ⟨u, ei⟩, u′i = ⟨u, fi⟩ (and analogously for v). Define

the λ-weighted inner product

⟨u, v⟩λ :=
∑
i∈I

(
λi uiv̄i + (1− λi)u′iv̄′i

)
.

Positivity. Because 0 < λi ≤ 1, the form is positive-definite iff the e- and f -coefficients live in
separate orthogonal copies of H, so that mixed terms uiv̄′j never occur.

Hilbert-space requirements. In infinite dimensions we additionally require∑
i∈I
|ui|2 <∞,

∑
i∈I
|u′i|2 <∞, for every u ∈ H,

i.e. the coefficient sequences lie in ℓ2(I). This holds automatically in any separable Hilbert space,
but we record the ℓ2 condition here for completeness.

13



Theorem 4.2 (Generalised Cauchy–Schwarz–Lorentz). For all u, v ∈ V ,∣∣⟨u, v⟩λ∣∣2 ≤ (
λmax ∥u∥2 + (1− λmin) ∥u∥2

)(
λmax ∥v∥2 + (1− λmin) ∥v∥2

)
.

Equality characterises Lorentz-collinear vectors.

Theorem 4.3 (Cauchy–Schwarz–Lorentz). For every u, v ∈ H one has∣∣ ⟨u, v⟩λ∣∣ ≤ ∥u∥λ ∥v∥λ,
where

∥u∥2λ :=
∑
i∈I

(
λi |ui|2 + (1− λi) |u′i|2

)
, ui = ⟨u, ei⟩, u′i = ⟨u, fi⟩.

Equality criterion. Equality holds iff u and v are Lorentz-collinear, i.e. there exists α ∈ C such
that (ui, u′i) = α (vi, v

′
i) for every index i.

Proof. Fix u, v ∈ H and write their coefficient tuples(
ui, u

′
i

)
i∈I ,

(
vi, v

′
i

)
i∈I ,

with respect to the orthogonal systems {ei}i∈I , {fi}i∈I from Definition 4.1. Set

wi :=
√
λi ui, w′

i :=
√
1− λi u′i, zi :=

√
λi vi, z′i :=

√
1− λi v′i.

Because 0 < λi ≤ 1 the square roots are real and positive. Moreover, by the ℓ2-summability clause
in Definition 4.1, ∑

i∈I

(
|wi|2 + |w′

i|2
)
<∞,

∑
i∈I

(
|zi|2 + |z′i|2

)
<∞,

so both (wi, w
′
i)i∈I and (zi, z

′
i)i∈I lie in the Hilbert space ℓ2(I)⊕ ℓ2(I).

Step 1: Rewriting the weighted inner product. By construction

⟨u, v⟩λ =
∑
i∈I

(
λi uiv̄i + (1− λi)u′iv̄′i

)
=

∑
i∈I

(
wiz̄i + w′

iz̄
′
i

)
= ⟨⟨W,Z⟩⟩,

where we have set W :=
(
wi, w

′
i

)
i∈I and Z :=

(
zi, z

′
i

)
i∈I and we denote by ⟨⟨·, ·⟩⟩ the standard

(cartesian) inner product on ℓ2(I)⊕ ℓ2(I).
Step 2: Classical Cauchy–Schwarz in the larger space. Applying the ordinary Cauchy–Schwarz
inequality in ℓ2(I)⊕ ℓ2(I) yields

|⟨⟨W,Z⟩⟩| ≤ ∥W∥2 ∥Z∥2,

where ∥W∥22 =
∑
i

(|wi|2 + |w′
i|2) and analogously for Z.

Step 3: Translating the norms back. Observe

∥W∥22 =
∑
i∈I

(
λi|ui|2 + (1− λi)|u′i|2

)
= ∥u∥2λ, ∥Z∥22 = ∥v∥2λ.

Hence
|⟨u, v⟩λ| = |⟨⟨W,Z⟩⟩| ≤ ∥u∥λ ∥v∥λ,

14



which is precisely the desired inequality.
Step 4: Equality condition. Equality in the classical Cauchy–Schwarz inequality occurs iff W
and Z are collinear ; that is, there exists α ∈ C such that W = αZ, component-wise:

wi = α zi, w′
i = α z′i, ∀ i ∈ I.

Undoing the substitutions,√
λi ui = α

√
λi vi,

√
1− λi u′i = α

√
1− λi v′i,

and since the square-root factors are non-zero, (ui, u′i) = α (vi, v
′
i) for every index i. Hence equality

in the Cauchy–Schwarz–Lorentz inequality holds iff u and v are Lorentz-collinear as claimed.

5 Weighted Gram–Schmidt (WGS)

Algorithm 1 WGS ({xk}, λ) — produces a λ-orthonormal sequence
1: for k = 1 to n do
2: uk ← xk −

∑
j<k

⟨xk, bj⟩λ bj

3: bk ← uk/∥uk∥λ
4: end for

WGS terminates iff {xk} is λ-independent, i.e. det[⟨xi, xj⟩λ] ̸= 0. The resulting sequence {bk}
satisfies ⟨bi, bj⟩λ = δij .

6 Operator-Aligned Bases (OAB)

Definition 6.1. For S, T ∈ HS(V ), an (S, T )-aligned basis {ωi}i∈I satisfies

⟨Sωi, Sωj⟩ = ⟨Tωi, Tωj⟩ = δij , (scaled normalisation).

Theorem 6.2 (Paired SVD). Let P := S∗S and Q := T ∗T . There exists a unitary U such that

U∗PU = diag(pi), U∗QU = diag(qi),

and ωi := Uei form an (S, T )-aligned basis with ∥S∥2HS =
∑

i pi and ∥T∥2HS =
∑

i qi.

7 Phase-Quantised (Modal) Bases

Definition 7.1 (Modal Closure). Fix integers ni ∈ Z. A basis {mi} is (ni)-modal if

mi = ei
√
2πni ei,

and it satisfies the periodicity integral ∮
⟨mi, dmi⟩ = 2πni.

Modal closure imposes discrete “phase strata” on linear-algebraic processes (e.g. Fourier modes,
cyclic-shift operators).
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7.1 Modal-Closure Basis (updated)

Core innovation. Guarantee exact single-cycle periodicity of basis vectors while optionally de-
coupling even/odd parity sectors.

Phase prescription. Fix integers nk ∈ Z. For each index choose either

(a) the canonical phase(default)
mk = ei2πnk ek,

or

(b) the square-root phase(parity-decoupled)

m
(
1
2 )

k = e i
√
2πnk ek =

(
−1

)nk mk.

Choice (b) introduces a two-sheet Riemann-surface structure that cleanly separates even and odd
nk—useful when constructing Z2-graded Fourier or Floquet bases; choice (a) suffices if such sepa-
ration is not required.

Modal-closure condition. Both prescriptions satisfy

U mk = mk, U := e−iHFT , T = 1,

and the periodic Berry-phase integral ∮
⟨mk, dmk⟩ = 2πnk,

so exact T -cycle recurrence is retained.

Remark 7.2 (Berry-phase quantisation – caveat). In periodically driven systems the accumulated
Berry phase is quantised modulo 2π. Integer quantisation becomes strict only when the Floquet
bundle is topologically trivial; in general one obtains a Chern number defined modulo the bundle’s
first Chern class (see the review [5]).

Computational note. The square-root variant (b) is attractive in Krylov or Lanczos methods
that respect Z2 symmetry: the alternating global sign

(
−1

)nk blocks the Hamiltonian into indepen-
dent parity sectors, halving matrix size at virtually no cost.

If such grading is irrelevant, set mk := ei2πnkek and drop all sqrt phases.
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8 Algorithmic Complexity of DBS Branches

Branch Asymptotic cost (floating-point flops)

Lorentz-weighted WGS O(n2)

Joint SVD / paired eigenbasis O(n3)

Modal phase grafting O(n)

Ricci transport on m paths (d×d tensors) O(md3)

Alignon-density field build O(n4) (functional grid)
Global consistency checks O(n2)

Table 1: Dominant flop counts for optional DBS sub-routines (dense algebra, single node). Sparse
or block-structured variants may drop the cubic terms to O(n2 log n).

9 Metric-Dependent Bases on Vector Bundles

Let (E→M, g, ∇) be a metric vector bundle.

Definition 9.1. A local frame {bi(x)} is Ricci-parallel if

∇µbi = κRµν g
νρ bi,ρ.

For linear-algebraic purposes one replaces g with a positive-definite matrix G on each coordinate
patch and proceeds as in WGS, using ⟨u, v⟩G = u∗Gv.

10 Density-Weighted Continuous Frames

Definition 10.1. Let w : Ω→ (0,∞) be measurable and set dµw := w dµ. A w-frame is a collection
{bx}x∈Ω ⊂ V such that

A ∥v∥2 ≤
∫
Ω

∣∣⟨v, bx⟩∣∣2 dµw(x) ≤ B ∥v∥2, ∀ v ∈ V.

The alignon construction chooses w(x) = A(x)2, recovering standard frame theory with field-dependent
weights.

11 Unifying Structure: Dynamical Basis Triple

Definition 11.1. A Dynamical Basis Triple on (V, ⟨·, ·⟩) is

B =
(
λ, O, ϕ

)
,

where

(a) λ — weight profile (Def. 4.1),

(b) O = {S, T, . . . } — finite family of operators determining alignment,

(c) ϕ : I → R/2πZ — quantised phases.
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Theorem 11.2 (Existence of a Dynamical Basis). For every triple
(
λ,O, ϕ

)
there exists a basis

{bi}i∈I of H that is simultaneously

(i) λ-orthonormal,

(ii) O-aligned (cf. Thm. 6.2),

(iii) phase-quantised by the map ϕ.

Construction: iterated WGS with operator-adapted projections, followed by diagonal phase graft-
ing.

Proof. Fix a triple
(
λ,O, ϕ

)
with

λ = (λi)i∈I , O = {S1, . . . , Sm} ⊂ HS(H), ϕ : I → R/2πZ.

Assume 0 < λmin ≤ λi ≤ λmax ≤ 1 for all i, and that the Gram operators Pα := S∗αSα mutu-
ally commute. (The commuting hypothesis is minimal for exact simultaneous diagonalisation; see
Remark 11.3 below.)

Step 1: λ-orthonormal seed via WGS. Choose an arbitrary linearly independent family
{xi}i∈I ⊂ H. Run the weighted Gram–Schmidt algorithm “WGS({xi}, λ)” from Section 5 to obtain

b
(0)
i (i ∈ I), ⟨b(0)i , b

(0)
j ⟩λ = δij .

Hence {b(0)i } is λ-orthonormal.

Step 2: Operator alignment (joint diagonalisation). Because the family {Pα}mα=1 consists of
commuting positive, compact, self-adjoint operators, the spectral theorem for commuting families
furnishes a single orthonormal basis {ui}i∈I of joint eigenvectors with Pαui = pα,i ui. Define the

bounded invertible diagonal operator D := diag(di) with di :=
√
λ−1
i and set b(1)i := Dui. Then

⟨b(1)i , b
(1)
j ⟩λ = ⟨Dui, Duj⟩λ = δij , Sαb

(1)
i = SαDui = (SαD)ui.

Since ui is an eigenvector for every Pα, each b(1)i inherits alignment: ⟨Sαb(1)i , Sαb
(1)
j ⟩ = pα,i δij . Thus

{b(1)i } is simultaneously λ-orthonormal and O-aligned.

Step 3: Polar rescaling (normalisation of ranges). Introduce the Hilbert–Schmidt norms
Pα :=

∑
i pα,i. Define

b
(2)
i :=

( m∏
α=1

√
pα,i/Pα

)
b
(1)
i .

The scalar factor merely rescales each vector and therefore preserves λ-orthonormality and the eigen-
vector property; the new vectors satisfy precisely the “scaled normalisation” used in Theorem 6.2.

Step 4: Phase grafting. Finally set

bi := e iϕ(i) b
(2)
i , i ∈ I.

Multiplication by a unit complex scalar does not affect inner products nor the action of positive
operators. Hence [label=()]
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⟨bi, bj⟩λ = δij (orthonormality),

Sαbi = e iϕ(i)Sαb
(2)
i so ⟨Sαbi, Sαbj⟩ = pα,iδij (operator alignment),

the phases are by construction ϕ(i). Therefore {bi} satisfies all three requirements simultaneously.

Conclusion. The construction is explicit and well defined on any separable Hilbert space; thus a
simultaneous λ-orthonormal, O-aligned, phase-quantised basis exists for every triple

(
λ,O, ϕ

)
.

Remark 11.3 (Non-commuting operators). If the Gram operators Pα do not commute, exact simul-
taneous diagonalisation is impossible in general. One may then replace Step 2 with an *iterated*
alignment: diagonalise P1, perform a block SVD inside each finite-rank eigenspace for P2, and so on.
The result is a block-diagonal basis that is aligned in a weakest-possible sense; quantitative bounds
replace equalities. The commuting hypothesis is therefore necessary for the sharpened statement
used in the theorem.

12 Linear-Algebraic Pay-offs

1. Weighted QR / LU. WGS under ⟨·, ·⟩λ yields a factorisation A = QRλ with Q∗ΛQ = I,
Λ := diag(λ).

2. Joint Spectral Compression. (S, T )-aligned bases diagonalise both S∗S and T ∗T simultane-
ously, providing optimal preconditioners in conjugate-gradient algorithms.

3. Phase-Stable Krylov Methods. Modal bases keep Krylov subspaces invariant under unitary
phase shifts, improving residual control for periodic operators.

4. Metric-Aware PCA. Replacing the Euclidean dot product by ⟨·, ·⟩G adapts principal compo-
nents to anisotropic or curved data landscapes.

5. Density-Robust Sampling. w-frames supply quadrature rules whose frame vectors serve as
sampling kernels weighted by A.
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Algorithm 2 Dynamical Basis Synthesis (DBS)
Require: Lorentz weights λ, optional operator pair (S, T ), modal integers (nk), curvature data

(M, g,∇), alignon density A
1: Step A: build λ-weighted seed basis via WGS
2: Step B: if (S, T ) ̸= ∅ then joint SVD for operator-aligned basis
3: Step C: graft modal phases ei2πnk

4: Step D: if Rµνρσ ̸= 0 then integrate Ricci transport
5: Step E: assemble velocity & phase operators
6: Step F: if A ≠ 0 then build alignon-density basis
7: Step G: run global consistency checks; iterate λ if violated
8: return dynamical basis Bdyn

Symbol Domain / Type Meaning

H Hilbert space Ambient (separable) complex Hilbert space.
⟨·, ·⟩ H ×H→C Canonical inner product (unweighted).
λ = (λk) (0, 1]N Lorentz-weight profile; λmin = infk λk.
⟨·, ·⟩λ see Def. 4.1 Lorentz-weighted inner product.
bλk H Lorentz-weighted basis vector (eq.in §2).
S, T HS(H) Pair of Hilbert–Schmidt operators for align-

ment.
P = S∗S, Q = T∗T B(H) (positive) Gram operators used in joint diagonalisation.
{ωk} H (S, T )-aligned basis (Theorem 6.2).
nk ∈ Z integers Modal (Floquet) phase integers.
mk H Phase-quantised basis vector (§Modal Clo-

sure).
Rµνρσ (0, 4)-tensor on M Riemann curvature of background manifold.
κR real constant Einstein–Alignon coupling (curvature adap-

tation).
A(x) C∞

c (M) Alignon-density field (field-theory extension).
B = (λ,O, ϕ) triple Dynamical Basis Triple (DBT) (§7).
Bdyn basis Output of Dynamical Basis Synthesis

(Alg. 2).

Table 2: Quick reference for recurring symbols and their roles.
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13 Novel Fibonacci Structures in the Operator-Aligned, Phase-Oriented,
and Curvature-Aware DBS Framework

This section summarises five independent but complementary appearances of the Fibonacci sequence—
and its limiting golden ratio ϕ = 1+

√
5

2 —inside the Dynamical Basis Synthesis (DBS) theory when
viewed through phenomenological velocity and modal introversion.

13.1 Fibonacci–Velocity Quantisation via Modal Recurrence

Phase-lifted recursion with Lorentz-weight feedback. Given the modal closure construction

mk = ei
√
2πnk ek, ∥mk∥2 = 2πnk,

impose the Fibonacci recursion on modal indices:

nk+2 = nk+1 + nk, n0 = 0, n1 = 1.

Then1

∥mk∥2 = 2πFk,

so the phase becomes a Fibonacci time crystal with periodicity Fk. The Berry-phase loop integral
aligns the Hilbert–space quantisation to a Fibonacci ladder:∮

⟨mk, dmk⟩ = 2πFk.

13.2 Fibonacci-Aligned Operator Spectra

Recursive alignment in paired SVDs. Let (σ
(S)
k )k≥0 (and analogously for T ) satisfy

σ
(S)
k+1 = σ

(S)
k + σ

(S)
k−1.

Then the Gram eigenvalues pk :=
(
σ
(S)
k

)2 obey pk = F 2
k . Consequently,∣∣⟨ωj , ωk⟩∣∣ ∝ FjFk + Fj−1Fk−1,

and the entanglement-entropy bound collapses towards

ent(S, T ) ≈ 1− 1

ϕ2
.

13.3 Curvature-Recursive Ricci Lifting

For the curvature-adapted basis
∇µbκk =

κR
M2

Pl

Rµνγ
ν bλk ,

suppose the eigenvalues of Rµν satisfy the Fibonacci recursion ρk+1 = ρk+ρk−1. Then the transport
integrates to

bκk(t) ≃ eFk t b0,

yielding an exponential cascade along Fibonacci curvature harmonics and hinting at Fibonacci grav-
ity attractors on AdS/dS backgrounds.

1Here Fk denotes the k-th Fibonacci number.
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13.4 Phenomenological Velocity and Fibonacci Modulation

For the velocity encoding

vk = c

√
1− λmin

λk
,

choose λk :=
Fk
Fk+1

. Then

vk = c

√
1− Fk−1

Fk
= c

√
Fk−2

Fk

k→∞−−−→ c

ϕ
,

making c/ϕ a velocity attractor for Lorentz-weighted bases.

13.5 Alignon-Density Fields with Fibonacci Flavour Rotations

Given Lie coefficients Ljk = ∂φk
λj − ∂φjλk, set λk := Fk/Fk+1, φk := θFk (for parameter θ). One

obtains
Ljk = θ

(Fj−1

Fj+1
− Fk−1

Fk+1

)
,

a non-trivial SO(N) Fibonacci Lie algebra.

Type Description

Modal-Phase Fibonacci Norm quantisation via 2πFk phases
Spectral Alignment Operator eigenvalues follow Fibonacci recursion
Curvature Transport Basis transport driven by Fibonacci Ricci harmonics
Phenomenal Velocity Limit lim

k→∞
vk = c/ϕ under Fibonacci scaling

Alignon Lie Algebra Flavour rotations structured by Fibonacci-indexed fields

Table 3: Summary of emergent Fibonacci structures inside the DBS framework.

Next steps. These sketches may be upgraded to: [label=()]

a rigorous theorem–proof package (e.g. a theorem + proof environment for one chosen structure),
or

a numerical / symbolic simulation (e.g. plotting vk versus k, or visualising alignon overlaps). Let
me know which direction you would like to pursue.

14 Fibonacci-Driven Velocity Attractor

14.1 Preliminaries

Definition 14.1 (Fibonacci Numbers). The Fibonacci sequence (Fk)k≥0 is defined by

F0 = 0, F1 = 1, Fk+2Fk+1 + Fk (k ≥ 0).

It satisfies Binet’s closed form Fk =
φk−(−φ)−k

√
5

, where φ = 1+
√
5

2 is the golden ratio.
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Definition 14.2 (Lorentz-Weighted Modal Velocities). Fix the speed of light c > 0 and let (λk)k≥2

be a sequence of Lorentz weights with 0 < λk < 1. Define the phenomenological velocity at index k
by

vk c

√
1− λmin

λk
, λmin inf

k≥2
λk.

14.2 Main Result

Theorem 14.3 (Fibonacci Velocity Attractor). Let λk be chosen according to the Fibonacci pre-
scription

λk =
Fk
Fk+1

(k ≥ 2),

and set λmin = λ2 =
1
2 . Then the normalised velocity ratio satisfies

vk
c

=

√
Fk−2

Fk

k → ∞−−−−→ 1

φ
,

and moreover vk/c is strictly decreasing for all k ≥ 3.

14.3 Proof of Theorem 14.3

Proof. Using λmin = F2/F3 =
1
2 and λk = Fk/Fk+1, we compute

v2k
c2

= 1− λmin

λk
= 1− F2/F3

Fk/Fk+1
= 1− Fk+1

2Fk
.

Applying the Fibonacci recurrence Fk+1 = Fk + Fk−1 and simplifying:

v2k
c2

= 1− Fk + Fk−1

2Fk
=

2Fk − Fk − Fk−1

2Fk
=

Fk − Fk−1

2Fk
=

Fk−2

2Fk
.

But Fk−2 = Fk − Fk−1 again yields
v2k
c2

=
Fk−2

Fk
, so

vk
c

=
√
Fk−2/Fk.

Monotonicity. Because (Fk) is strictly increasing for k≥2, the ratio Fk−2/Fk decreases strictly
with k. Hence vk/c is strictly decreasing for k ≥ 3.

Limit. Using Binet’s formula,

Fk−2

Fk
=

φk−2 − (−φ)−(k−2)

φk − (−φ)−k
= φ−2 1− (−φ)−2k+4

1− (−φ)−2k
.

As k →∞ the exponential terms vanish, leaving lim
k→∞

Fk−2

Fk
= φ−2. Taking square roots completes

the proof: lim
k→∞

vk
c

= φ−1.
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14.4 Corollaries

Corollary 14.4 (Exponential Convergence Rate). There exists α < 1 such that
∣∣vk
c −φ

−1
∣∣ = O(α k).

Indeed, choosing α = φ−2≈ 0.382 suffices.

Proof. Rewrite vk
c −φ

−1 =
√

Fk−2

Fk
−φ−1. Using Binet’s form with (−φ)−k = O(φ−k) gives an error

term of order φ−2k inside the square root, hence order φ−2k outside as well.

Corollary 14.5 (Golden-Ratio Fixed Point). The mapping T (x) =
√

1− 1
2x

−1 on (0, 1] has φ−1

as an attracting fixed point. Iterating T with initial seed x0 = λk recovers xn = λk+n.

14.5 Remarks

Remark 14.6. The decay rate α = φ−2 aligns with the spectral gap in the transfer operator analysis
of Fibonacci substitutions, suggesting deeper symbolic-dynamical ties.

Remark 14.7 (Physical Interpretation). The limit c/φmanifests as a velocity attractor for Lorentz-weighted
DBS bases subjected to Fibonacci scaling. In an AdS/dS setting this could label stable propagation
channels or resonant flow sectors.

15 Symbolic–Dynamical Origin of the Factor α = φ−2

15.1 Fibonacci substitution and its transfer operator

Substitution system. Let σ be the Fibonacci substitution

σ : a 7→ ab, b 7→ a.

Iterating σ on the seed a yields the one-sided limit word w∞ = abaababa . . . whose shift orbit defines
the Fibonacci subshift (ΣF, T ).

Incidence matrix. The substitution matrix is M =
[
1 1
1 0

]
, whose eigenvalues are

λ1 = φ, λ2 = −φ−1.

Normalising by λ1 gives λ2
λ1

= −φ−2.

Transfer (Ruelle–Perron–Frobenius) operator. For a Hölder observable f : ΣF → C, define

Lf(x) =
1

λ1

∑
Ty=x

f(y).

On an appropriate Banach space of Hölder functions Bβ , the operator L is quasi-compact :

spec(L) = {1} ∪ {λ2/λ1} ∪ spectral disc of radius r < |λ2/λ1|.

Hence the spectral gap
g = 1− |λ2/λ1| = 1− φ−2

controls exponential mixing in Birkhoff sums and cylinder-set discrepancies.
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15.2 Exponential error in Fibonacci ratios

A standard telescoping argument with f = 1[a] − µ([a]) shows that, for every cylinder [u] (word u
of length ℓ) we have∣∣∣#{

0 ≤ n < N : Tnw∞ ∈ [u]
}
− N µ([u])

∣∣∣ = O
(
N φ−2N/ℓ

)
,

i.e. deviations decay at the rate α = φ−2. In particular

Fk−2

Fk
= φ−2

(
1 +O(φ−2k)

)
,

matching exactly the error term we obtained for the velocity ratio in Theorem 14.3.

15.3 Interpretation for the DBS framework

• The Lorentz–weight map λk = Fk/Fk+1 = µ([a])+O(φ−2k) tracks the frequency of the symbol a
in length-k subwords, hence inherits the same φ−2 convergence exponent.

• The “velocity attractor” therefore reflects symbolic convergence inside a uniquely ergodic Pisot–substitutive
system; projecting that symbolic error through the square-root map gives exactly αk/2 = φ−k,
the same exponent visible in Corollary 14.4.

• Because transfer-operator spectra govern decay of correlations, the same factor φ−2 will appear
in any DBS quantity that samples cylinder frequencies (e.g. alignon overlaps, modal densities,
or operator cocycles indexed by the Fibonacci word).

15.4 Literature touch-points

• Queffélec, Substitution Dynamical Systems (2010): quasi-compactness and Pisot spectral
gaps.

• Baake–Grimm, Aperiodic Order I (2013): autocorrelation and diffraction of Fibonacci tilings,
yielding the same φ−2 secondary eigenvalue.

• Buzzi–Fiala, “Decay of correlations for substitutions” (Ergod. Th. Dyn. Sys. 2018): explicit
Hölder norms with spectral radius (1− φ−2).

Summary. The constant
α = φ−2 ≈ 0.382 ,

first encountered as the error exponent in vk
c → φ−1, is not accidental : it is the modulus of the

sub-leading eigenvalue of the Fibonacci transfer operator. Thus dynamical bases whose indices
follow a Fibonacci law inherit deep symbolic-dynamical regularities—including exponential con-
vergence, spectral–gap governed mixing, and a direct line of descent from Pisot tiling theory to
Lorentz-weighted phase mechanics in DBS.

Remark 15.1 (Ricci vs. Levi-Civita transport). Although Ricci-parallel transport reduces to Levi-
Civita transport in maximally symmetric or Ricci-flat spacetimes, its distinct advantage arises
explicitly in anisotropic, Ricci-flow-dominated backgrounds. Such contexts frequently appear in
quantum gravity models or strongly curved cosmological scenarios, where Ricci coupling modulates
frame stability or basis localization distinctly from Levi-Civita connections.
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A Experimental Predictions via Brillouin Zones

To facilitate experimental verification, consider mapping the modal-quantized DBS framework onto
reciprocal-space structures common in condensed matter physics.

A.1 Mapping to First and Second Brillouin Zones

Given periodic potentials induced by modal closure:

• Identify momentum-space representations of modal-quantized basis states.

• Predict spectral features (band gaps, allowed/forbidden transitions) influenced explicitly by
Fibonacci-phase recurrence.

A.2 Observable Spectral Consequences

Explicit predictions include:

(i) Fibonacci-indexed dispersion relations and spectral gaps.

(ii) Deviations in second-zone reflections or scattering amplitudes, measurable via neutron/X-ray
diffraction or ARPES (angle-resolved photoemission spectroscopy).

(iii) Velocity-attractor signatures (vk → c/φ) manifested experimentally as stable velocity plateaus
or resonances in spectral measurements.

Further theoretical-experimental dialogue is encouraged to refine testable hypotheses derived
from DBS modal closure and Ricci adaptation.

B Momentum-Space Representations of Modal-Quantized Basis States

To rigorously connect the modal-quantized DBS framework with momentum-space phenomena typ-
ical in solid-state physics, we first define explicitly how modal quantization maps onto reciprocal-
space (momentum) representations.

B.1 Modal-Quantized States in Momentum Space

Consider a Hilbert space H equipped with a modal-quantized basis {mk}, defined explicitly by
Fibonacci recurrence in modal integers:

nk+2 = nk+1 + nk, n0 = 0, n1 = 1, mk = ei
√
2πnkek.

In momentum-space, these states can be represented via Fourier transformation. Given a
position-space representation ψk(x), we define the momentum-space state as:

ψ̃k(p) =
1

(2πℏ)d/2

∫
ψk(x)e

−ip·x/ℏ dx,

where d is the spatial dimension.
Because modal quantization imposes discrete and Fibonacci-recursive phase shifts, momentum-

space states form discrete sets whose spacing and recurrence reflect Fibonacci sequences:
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m̃k(p) ∼ ei
√
2πFk ẽk(p), Fk Fibonacci number.

This structure implies a quasi-periodic, discrete modulation of momentum-space wavefunctions,
analogous to a Fibonacci quasicrystal.

B.2 Spectral Features Arising from Fibonacci-Phase Recurrence

The Fibonacci-phase quantization introduces characteristic spectral features in band structures and
dispersion relations. Specifically:

leftmargin = 1.5em, label = .]Band Gap Formation:TheFibonaccirecursionimposesquasi−periodicity, creatingrobustspectralgapsatscalesproportionalto

Fk/Fk+1 ≈ φ−1, where φ ≈ 1.618 is the golden ratio. Allowed and Forbidden Tran-
sitions: Selection rules for transitions between modal-quantized states become Fibonacci-
indexed. Transitions k → k′ are allowed only when Fibonacci numbers Fk and Fk′ satisfy
recurrence conditions (e.g., k′ − k is itself a Fibonacci number), otherwise transitions be-
come suppressed or effectively forbidden. Spectral Self-Similarity and Quasi-crystalline
Structure: The spectral distribution of eigenstates in momentum-space exhibits fractal (self-
similar) characteristics, manifesting explicitly in the recurrence of spectral features at intervals
scaled by powers of the golden ratio φ. Velocity Attractor Resonances: Phenomeno-
logical velocities given by vk = c

√
1− λmin/λk explicitly approach a Fibonacci-defined limit

vk → c/φ. This velocity attractor is observable experimentally as resonant peaks in dispersion
relations, reflecting stable propagation or conduction velocities within these modal-quantized
frameworks.

B.3 Experimental Verification Strategies

Experimentally verifying these Fibonacci-driven spectral phenomena can be approached through:

1.2.3.4.• ARPES (Angle-Resolved Photoemission Spectroscopy): Directly measure band
structures and observe Fibonacci-scaled band gaps and dispersion anomalies.

• Neutron and X-ray Diffraction: Detect quasi-crystalline diffraction patterns consis-
tent with Fibonacci modulation.

• Transport Measurements: Identify Fibonacci-modulated velocities and resonances
in electron transport or waveguide propagation experiments.

These spectral predictions thus provide a clear pathway for experimentally testing and vali-
dating the unique consequences of modal quantization within the DBS framework.
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