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Abstract
We develop a quaternion-based model of atomic structure in which orbitals (s, p, d, f) are linear
combinations of fundamental vectors. This approach provides a unified explanation for the
distribution of electrons, the stability of noble gases, the structure of lanthanides and actinides,
and the natural limit of elements in the periodic table. We use geometric reasoning (unit-circle
integrals), combinatorial logic (minimum spanning tree), and linear algebra to justify the model,
yielding insight into both observed chemical patterns and theoretical constraints.

1. Introduction
Traditional quantum mechanics treats orbitals as static, spatially localized regions. Here, we
adopt a quaternionic perspective, where orbitals are dynamic vectors in a 4D quaternion space.
Each orbital (s, p, d, f) is a linear combination of four fundamental vectors, which rotate and
combine according to quaternionic multiplication rules. Phase information is encoded by
complex exponentials (eiπ = −1), providing a natural representation of "nobility" in elements.
Viewing orbitals as vector combinations allows modeling interactions, rotations, and phase
relationships naturally and resolves the abstract problem of empty orbital nodes in high-order
elements while aligning with observed electron configurations.

2. Orbital Structure as Quanterionic Linear Combinations
2.1 Defining spdf in Quaternionic Terms
Each orbital subspace is defined as follows. The s orbital has a maximum of 1 vector
representing spherical isotropy. The p orbitals consist of 3 vectors along orthogonal axes, with
quaternionic rotation capturing their relative phases. The d orbitals have 5 vectors with fourfold
symmetry and nodal structures. The f orbitals require 7 highly nodal vectors forming complex
patterns. Using quaternions allows rotation without distortion and captures spatial orientation
naturally. Linear combinations correspond to electron delocalization, consistent with modern
quantum theory.

2.2 Noble Gas Saturation
Noble gases exhibit full vector saturation in the outermost shell. For helium (He), the s
subspace is completely filled, giving a fraction filled of 1. Neon (Ne) fills s and p, both fractions
equal to 1. Argon (Ar) also fills s and p with fractions of 1. Krypton (Kr) fills s, d, and p with



fractions of 1 each. Xenon (Xe) fills s, d, and p similarly, and radon (Rn) fills s, f, d, and p, each
with fraction 1. Each vector subspace is fully occupied, and additional electrons cannot enter
without violating Pauli-like constraints. Fraction equal to 1 implies stability, explaining why noble
gases are chemically inert. Vector saturation ensures phase and spatial coverage of the entire
orbital space, preventing additional electrons from finding available low-energy states.

3. Maximum Elemental Limit via π and Vector Doubling
3.1 Cauchy Integral over the Unit Circle
Integrating over the unit circle, ∮

|z|=1
dz = 2π, corresponds to the total rotational phase in

quaternionic space.

3.2 Doubling of Vectors
Each orbital vector is effectively counted twice to account for phase symmetry from 0 to 2π. The
maximum number of vectors required to cover all orbital spaces is 59. Doubling yields
59 × 2 = 118, which provides the natural limit of elements. Beyond 118, there is insufficient
quaternionic space to maintain linear independence and phase coverage. Element 119 would
require extra vectors not present in the fundamental 4-vector basis, resulting in a structural
break. Integrating over the unit circle ensures rotational invariance, and doubling captures full
phase evolution of each orbital vector, aligning with the observed periodic table limit.

4. Lanthanides and Actinides as MST Coverage
4.1 Lanthanides (4f)
The 4f vectors fill previously unexamined orbital nodes. An analogy is a minimum spanning tree
(MST), where nodes represent orbital positions and edges represent vectors connecting nodes
in the linear combination. Filling 4f covers all nodes with minimal edges, ensuring all previously
empty states are represented in the vector space and preserving linear independence of
quaternionic vectors.

4.2 Actinides (5f)
Similarly, the 5f vectors perform coverage of orbital nodes. The MST ensures connectivity of
orbital states while maintaining phase integrity. This provides a geometric and combinatorial
explanation for observed electronic configurations in lanthanides and actinides and explains
why these series show filling of complex subspaces without destabilizing outer s and p orbitals.

5. Linear Combination Properties and Momentum



Linear combinations of quaternionic orbital vectors can exhibit interesting properties. If a
combination sums to zero, i ii = , the vectors are linearly dependent, and the total momentum of
the state is zero. Physically, this corresponds to a nodal or neutral state where phase effects
cancel and there is no net motion. Conversely, if two linear combinations are equal, i ii = i ii,
they represent different coefficient sets covering the same orbital vector space. In this case, the
momentum of both states is identical, and the orbitals effectively coincide. This occurs naturally
because the vectors are pairwise linearly independent, and linear combinations occur within the
same vector space. Such properties highlight symmetry, momentum equivalence, and possible
energy conservation features in the quaternionic orbital framework.

6. Discussion and Conceptual Implications
Orbitals are not static regions but linear combinations of quaternionic vectors, capturing
rotation, phase, and spatial coverage. Noble gas stability arises naturally from full saturation of
quaternionic subspaces. Lanthanides and actinides fill hidden nodes, completing MST-like
structures in orbital graphs. Maximum 118 elements are derived from the fundamental
quaternionic structure and unit-circle integrals. Linear combinations that sum to zero or coincide
provide additional insight into momentum conservation and orbital equivalence, highlighting the
symmetry and geometric properties of the model. Conceptually, this framework unifies orbital
geometry and periodic trends, provides geometric rationale for inertness and reactivity, explains
the structure of rare earths and actinides, and offers a natural theoretical limit for the number of
stable elements.

7. Conclusion
This quanterionic model presents dynamic orbitals as linear combinations of four fundamental
vectors, vector saturation and noble gas stability, phase doubling via unit-circle integration
explaining the 118-element limit, MST interpretation of lanthanide and actinide coverage, and
momentum-based insights from linear combination properties. The framework merges
geometry, algebra, and combinatorics, providing a coherent, unified, and predictive model for
atomic structure.


