

The Mind-Primordial Framework: From Energy to Consciousness

Abstract

This paper presents a conceptual framework integrating philosophical and neurophysiological perspectives on consciousness. Drawing on Schopenhauer's notion of *Will and Representation*, Bernardo Kastrup's idealist philosophy, and the physics of neuronal signaling, we propose a model where consciousness emerges as a process of energy transformation. ATP-driven ionic activity generates neural signals, which are processed as waveforms and decoded by a "receiver," producing the first representation of "not-wanting itself," the foundational form of will. This model provides a bridge between metaphysical idealism and measurable neural dynamics, offering a holistic view of consciousness as a distributed, energy-dependent phenomenon.

1. Introduction

The nature of consciousness has been a central question in philosophy and cognitive science. Schopenhauer proposed that the world is fundamentally *Will*, with our perceptions serving as representations of this underlying force. Kastrup extends this idealist perspective, arguing that the physical world is a manifestation of a universal mind. Integrating these ideas with neurophysiology, this paper explores how energy dynamics in neurons can instantiate conscious experience, framing consciousness as both a process and a representation of an underlying "will."

2. Energy as the Foundation of Consciousness

Consciousness requires energy to manifest. ATP serves as the fundamental energy currency of neural systems, powering ion pumps that maintain gradients for Na^+ , K^+ , and Ca^{2+} ions. These gradients generate the electrical potentials necessary for action potentials, producing the dynamic neural signals that form the substrate of perception. Without such energy, neural activity would cease, and the universe would effectively "freeze," unable to sustain experience. Energy, therefore, functions as an unavoidable, foundational element for consciousness.

3. Neural Signals and Fourier Decomposition

Neural activity can be represented as time-dependent signals, which can be decomposed into frequency components using Fourier analysis. Each frequency band corresponds to distinct neural dynamics and potential patterns of experience. In this sense, the brain operates like a processor decoding complex temporal signals, analogous to a television or telephone converting electrical energy into perceptual content. Fourier decomposition provides a conceptual framework for understanding how distributed, oscillatory neural activity contributes to the construction of conscious experience.

4. The Receiver and Perception

The “receiver” is the functional structure that translates neural energy into perceptual experience. This receiver is itself constructed from energy transformations; just as a television converts electrical input into an image, the neural receiver converts ATP-driven ionic fluctuations into the first perceptual representation. In this model, perception is not a static observation but a dynamic, energy-mediated instantiation of conscious awareness.

5. Will as the First Representation of “Not-Wanting Itself”

Following Schopenhauer, will is the metaphysical substratum of reality. We propose that the first representation of this will is a form of self-limitation: “not-wanting itself.” This foundational instance establishes the framework for subsequent conscious experience. It reflects the universe’s intrinsic potentiality prior to differentiation into specific perceptual forms. All subsequent conscious experiences are elaborations and manifestations of this initial “not-wanting” as it is instantiated through energetic neural processes.

6. Avoiding the Homunculus Fallacy

A common objection in consciousness studies is the “homunculus” problem: the notion of a small observer within the brain monitoring experience. Cantor’s theorem implies that no single entity can encompass all possible states of consciousness. Consequently, the brain does not require a centralized homunculus. Instead, consciousness is a distributed process: energy gradients generate waves, the receiver decodes these signals, and experience emerges without invoking a separate observer.

7. Integrating Philosophy and Neuroscience

This framework unites metaphysical idealism with empirical neuroscience:

- **Energy (ATP)** → provides the raw substrate for neural activity
- **Ionic gradients (Na⁺, K⁺, Ca²⁺)** → enable electrical signaling
- **Neural signals** → **Fourier decomposition** → produces waveforms
- **Receiver** → decodes signals into perceptual content
- **First representation (not-wanting itself)** → instantiates will and consciousness
- **Distributed experience** → avoids the homunculus problem

By linking energy, neural dynamics, and metaphysical representations, this model offers a coherent account of consciousness that is simultaneously compatible with Kastrup's idealism and Schopenhauer's philosophy of will.

8. Conclusion

Consciousness emerges as a dynamic, energy-dependent process in which ATP-driven neural activity generates signals decoded by a receiver into the first representation of will. This framework situates consciousness as both a physical and metaphysical phenomenon, reconciling neurophysiological mechanisms with idealist philosophical insights. The first representation of "not-wanting itself" establishes the foundation for all subsequent conscious experience, demonstrating that energy, neural processes, and distributed representation are inseparable elements of the conscious universe.

References

1. Schopenhauer, A. (1819). *The World as Will and Representation*.
2. Kastrup, B. (2019). *The Idea of the World: A Multi-Disciplinary Argument for the Mental Nature of Reality*.
3. Bear, M. F., Connors, B. W., & Paradiso, M. A. (2020). *Neuroscience: Exploring the Brain*.
4. Fourier, J. B. J. (1822). *The Analytical Theory of Heat*.
5. Cantor, G. (1891). *Beiträge zur Begründung der transfiniten Mengenlehre*.