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22.1 Introduct ion

Much climate change research aims to inform decision-
making in one way or another. A common vision of how 
science and ethics work together in this decision-making has 
science spelling out the (probable) consequences of different 
policy options, while ethical judgments determine which 
option’s consequences are most desirable. For example, cli-
mate projections and impact studies may s uggest the likely
consequences of different mitigation pathways, but ethical
judgments are required to evaluate how good or bad those
consequences are and how preferable one possible future is
over another.

While correct as far as it goes, this standard picture 
can encourage an overly sharp distinction between scientific 
activities and ethical deliberation. Far from entering only 
at the policy-making stage, ethical judgments often shape 
scientific research itself. This is most obvious in the choice 
of research questions. The choice of what to study ultimately
affects what knowledge can be brought to bear in real-world
decisions, including consequences for which (and whose)
decisions can be made with the benefit of scientific insight.
Such considerations are routinely referenced when motivat-
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ing funding proposals and research articles. Of course, more 
purely scientific motivations such as fundamental discovery 
and filling gaps in knowledge are also critical in choosing 
research questions. In this way, a researcher’s choice of what
to investigate illustrates a central concept of this chapter:
coupled ethical–epistemic choices (Tuana 2018). 

A little terminology is needed to unpack this jargon. We 
use the word values as a general term for the reasons or 
perspectives from which one evaluates something as good or 
bad. Applying this notion of values very broadly, any goal 
judged worthy of pursuit will be done so on the basis of val-
ues. Sometimes these will be ethical values such as concern 
for justice, human welfare, or environmental protection. (The 
overlapping concept of social values includes things valued 
by communities or individuals—like greenspaces or social 
services—even if these may not be recognizably ethical in 
nature. Here we use “ethical values” broadly to also include 
these social values.) In contrast, scientific findings can be
valued for how they advance understanding, and scientific
methods or models can be valued for their accuracy, reli-
ability, or generality. These aspects of research are valued
because they are thought to promote (or constitute) a central
aim of science: gaining knowledge. Such values are often
called epistemic values.

Many decisions made in the course of scientific research 
are coupled ethical–epistemic choices in the sense that their 
consequences can be judged from the perspective of both 
epistemic values (i.e., what are the contributions to scientific 
knowledge) and ethical values (i.e., what are the upshots 
for policy, society, and the environment). Coupled ethical– 
epistemic choices can be found at any spot along the contin-
uum of research-design choices, from the broad end of choos-
ing and refining research questions to narrower decisions
regarding approaches to answering those questions, specific
methods, and interpretation of results.

Scientific training tends to focus on epistemic values— 
especially when it comes t o the narrower, finer-grained re-
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search choices. In this chapter, we draw attention to the 
ethical values that are often linked to the same choices. Our 
aim is to encourage more deliberate and more reflective 
engagement with the ethical components of these choices. 
The topic of this volume is uncertainty in climate change 
research, and decisions about how to address sources of 
uncertainty in research pro vide a particularly rich arena for
interaction between epistemic and ethical values. We present
a series of examples of such interaction, followed by a short
list of recommendations on how to approach coupled ethical–
epistemic choices in research.

22.2 AttributionMethods and Public 
Co mmunication

Our first example concerns extreme event attribution (Na-
tional Academies o f Sciences, Engineering, and Medicine,
2016). Increasingly, climate scientists are investigating the 
extent to which particular extreme weather events, such as 
floods, droughts, and heat waves, can be linked to anthro-
pogenic climate change. Depending on the choice of method, 
different pictures can emerge regarding what can and cannot
be attributed to climate change, with implications for public
communication and litigation for damages.

The standard “risk-based” approach has been adapted
from epidemiology (Allen, 2003; Haustein et al., 2016; Stott 
et al., 2016). Researchers attempt to quantify the change in 
likelihood of a weather event like the one observed, given 
rising greenhouse gas concentrations. This is done via cli-
mate modeling studies that compare the frequency of such 
event types across simulations driven by different green-
house gas concentrations. In one set of simulations, historical
(i.e., increasing) greenhouse gas concentrations are used; in
the other, concentrations are held (counterfactually) at pre-
industrial levels.

For a variety of reasons, studies following the risk-based 
approach can be inconclusive. These reasons include the 
difficulties and uncertainties i n simulating the atmospheric
circulation driving some types of extreme events (Shepherd,
2014), use of null-hypothesis significance testing to interpret 
simulation results, and use of “ no change in likelihood”
as a null hypothesis (Shepherd, 2014; Lloyd & O reskes,
2018). Failure to reject such a null hypothesis means that 
the possibility of no change in likelihood cannot be excluded 
at the chosen significance level, given available evidence. 
But careful and cautious statements such as this are some-
times misinterpreted in public discourse as saying something
stronger andmore conclusive, namely that there is no connec-
tion between anthropogenic climate change and the weather
event in question.

Uncertainties about circulation, notwithstanding broad 
thermodynamic changes in the climate system such as 

rising sea surface temperature and increased moisture 
content are well understood as anthropogenic. Moreover, 
it is very plausible that these thermodynamic changes can 
make weather events, when they do occur, more intense 
than they would otherwise be. Critics thus worry that the 
(often inconclusive) risk-based a pproach to attribution will
miss some valuable opportunities to communicate to the
public, via salient events such as extreme floods, that climate
change is already having negative impacts (Trenberth, 2011; 
Trenberth et al., 2015). This line of thought has led to a 
second approach to attribution, sometimes referred to as the 
“storyline” approach. (Though note that the storyline concept 
is also used more broadly for communication, uncertainty
characterization, and risk management beyond the context
of attribution science (Shepherd et al., 2018; Sillmann et al.,
2021). 

In general terms, the storyline approach to event attri-
bution offers descriptive narratives of specific past events, 
with emphasis on understanding the driving factors that were 
in volved in those events and that may shape future events
as well (Shepherd et al., 2018). Such an approach would 
typically ask: How did “known” thermodynamic changes in 
climate make a difference to the intensity of this particular 
weather event? To address this question, the first step is 
to simulate the extreme event as it occurred. The second 
step is to re-simulate the event, removing the human-caused 
thermodynamic changes, e.g., making the nearby sea surface 
temperature cooler by a specified amount in the simulations. 
These studies very often do find a link between anthro-
pogenic climate change and an extreme event of interest—
specifically, an increase in intensity. For example, the con-
clusion might be that rising greenhouse gas concentrations,
via their effects on sea surface temperature, increased a
flood-causing storm’s precipitation by at least 30% (see, e.g.,
Meredith et al., 2015; Hoerling et al., 2013). 

The risk-based and storyline approaches ask different 
questions (Lloyd & Oreskes, 2018). One asks whether in-
creasing greenhouse gas concentrations have, all things con-
sidered, changed the probability of a given event type. The 
other brackets anthropogenic circulation changes and asks 
whether the thermodynamic consequences of increasing con-
centrations affected the intensity of a specific event, holding 
fixed the actual circulation that led up to the event. When
applied to the same case, the two methods can give different
answers (e.g., “no” and “yes,” respectively) with no logical
contradiction.

Given limited time and resources, which approach should 
attribution researchers prioritize? The considerations that 
have been aired in discussions contrasting the two approaches 
include not only aspects subject to epistemic values (different 
kinds of insights; different degrees of uncertainty in results) 
but also consequences judged by ethical values. The latter
include purported differences in: messaging to the public
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regarding “links” from climate change to extreme weather; 
potential for misinterpretation of results; relevance of results 
for climate risk management; long-term effects on public
trust in science; and potential for reputational damage to
individual scientists (Otto et al., 2016; Lloyd & O reskes,
2018). 

Each approach to attribution thus comes with a bundle 
of features and consequences, some of which are important 
for epistemic reasons and some of which are important for 
ethical reasons. The ethical and epistemic merits of an ap-
proach can be judged s eparately, yet they are bound together
in the same scientific choice. In this way, attribution methods
illustrate the concept of coupled ethical–epistemic choices in
research.

22.3 Parameter Choices 
and the Consequences of Err or

A second example concerns the way inwhichmethod choices 
can affect the balance of inductive risk: the risk of erring in
one’s scientific conclusions (Douglas, 2000a). The errors at 
issue could be Type I (“false positives”) versus Type II (“false 
negatives”) or could concern overestimating versus underes-
timating a quantity of interest. A classic example is the choice 
of significance level used in null-hypothesis significance 
testing. This significance level (often fixed conventionally at. 
05) affects the balance between the relative risks of Type I 
and Type II errors. More broadly, choices between alternative 
datasets, modeling assumptions, o r statistical algorithms can
have analogous consequences for the risk of different types
of error in the findings of a study (see, e.g., Fujiwara et al.,
2017; Flato et al., 2013). 

As an example, consider the assignment of numerical 
values to uncertain parameters in a climate or impacts model 
(i.e., model calibration). When model output is compared 
to observations across a suite of performance metrics, some
parameter assignments result in better model performance
on some important metrics, while other assignments result
in better performance on others (Mauritsen et al., 2012). A 
number of different model versions might fit the observations 
reasonably well and yet differ substantially in their projec-
tions. With different projections come different inductive 
risk profiles: for a given quantity of interest (e.g., precipita-
tion extremes, heat stress, or crop loss), higher projections
come with a greater risk of overestimating that quantity,
while lower projections risk underestimation to a greater
degree.

One approach to managing inductive risk is to make 
one’s method choices while giving some consideration to 
the potential consequences of erring in one way versus an-
other. Would overestimating future precipitation extremes 
or crop losses be worse than underestimating them? If so, 

this could be factored in as the researcher chooses among 
the scientifically reasonable approaches to addressing the
research question. Indeed, it has been argued that doing
so helps the researcher fulfill her obligations as a moral
agent, which include taking due care to avoid errors with
particularly bad consequences (Douglas 2000a, 2009). Of 
course, the question of which consequences are particularly 
bad is informed by ethical values, not epistemic ones. In this 
way, consideration of the risks of error can generate cou-
pled ethical–epistemic choices. (Approaches to transparently
incorporating ethical values in the model-calibration exam-
ple include risk-based calibration (e.g., Pappenberger et al.,
2007) and careful definition of loss functions (Jaynes, 2003) 
when comparing model performance with observations.)

When facing research design choices, instead of choosing 
a single approach, sometimes several options can be tried, 
producing a range of results. Ensemble modeling studies, for 
instance, involve multiple simulations that incorporate differ-
ent options for modeling equations, parameter assignments, 
or initial conditions. But ensemble studies can still involve 
uncertain method choices, such as specifying the boundaries 
of the “plausible” ranges for the parameters (or model struc-
tures) to be sampled. For these choices too, there m ay be
a range of scientifically reasonable options with different
associated risks of error. Indeed, it seems likely that almost
every modeling study in the climate-change context will
involve uncertain method choices with potentially different
risks of error.

This does not mean, however, that ethical values ought 
to influence method choices in every modeling study, even 
if one is persuaded by the reasoning abo ve. The inductive
risk implications of some choices will be unforeseeable in
practice (Undorf et al., 2022; Betz, 2017). And there might be 
overriding reasons for making choices on other grounds. For 
example, researchers might stick with “default” parameter 
assignments for the sake of more meaningful model inter-
comparisons, tractability, or to avoid upsetting an existing 
“balance of approximations” among model components. The 
case for ethical values influencing method choices seems 
most compelling when modeling is done in support of partic-
ular decision-making tasks, and where some method options
have clear inductive risk implications that align better with
the aims and values of stakeholders or clients. Such situations
may arise, for instance, in the context of climate services
(Adams et al., 2015;  Parker  &  Lusk, 2019). In any case, 
whenever such precautionary thinking does lead to ethical 
values shapingmethod choices, this s hould be communicated
clearly and transparently (Adams et al., 2015; Baldissera 
Pacchetti et al., 2022). 

Ultimately, even if one remains unpersuaded that ethical 
judgments about potential errors ought to influence method 
choices, there is a crucial insight here that should not be
overlooked: method choices that are not directly influenced
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by ethical values can nevertheless affect the balance of induc-
tive risk in ways that serve the needs and interests of some 
stakeholders better than others. That is, even method choices 
that are not v alue-influenced can, in an important sense, fail
to be value-neutral.

22.4 Model Complexity and High-Impact 
Even ts

High-impact, low-probability events provide another exam-
ple of interaction between ethical values and the treatment of 
uncertainties in research. By definition, high-impact events 
are those that are particularly dangerous or concerning— 
a judgment based on ethical values. Because they are of 
such concern, learning about the likelihood of high-impact 
events can be particularly important for understanding cli-
mate change impacts and assessing risk-management strate-
gies. (In terms of specific decision-support frameworks, the
probability of extreme, high-impact outcomes can, for exam-
ple, have an outsized impact on expected damage calculations
(Weitzman 2009) and can shape the range of possibilities 
across which satisfying strategies are sought in robustness-
based frameworks (Quinn et al., 2020).) 

The highest-impact events also tend to be low-probability 
occurrences, which can complicate uncertainty assessment
(Keller et al., 2021). For example, where uncertainty in 
projections is characterized through an ensemble of simu-
lations, use of computationally expensive models can limit 
ensemble size and impede estimation of the small proba-
bilities associated with high-impact outcomes (Lee et al.,
2020; Sriver et al., 2012; Wong & Keller, 2017). A state-
of-the-art Earth System Model may be the richest and most 
complete encapsulation of knowledge relevant to, e.g., sea-
level rise by century’s end. Yet the large number of model 
runs needed for ensemble-based uncertainty quantification
of extreme sea-level rise may be feasible only using faster,
more idealized models (Bakker et al., 2016;  Helgeson  e  t al.,
2021;Wong et al., 2017). In this way, some of the scientific or 
epistemic merits of models can, in practice, trade off against 
the relevance of the questions that can be addressed using 
those models, where relevance is a question of ethical values.

22.5 Disaggregation and Distributive 
Justic e

So far, we have discussed examples that specifically con-
cern the treatment of uncertainties. Here we relax this focus 
somewhat in order to provide an indication of the broader 
character of coupled ethical–epistemic research choices in
climate change research (which need not always link directly
to the treatment of uncertainties).

There is a particularly rich and explicit role for ethical 
values when it comes to designing and assessing climate risk 
management strategies. To be relevant for decision-makers 
and stakeholders, such analyses should characterize potential 
futures in terms that allow those actors to apply their own val-
ues to the decision problem (Helgeson et al., 2024). What are 
these values? Climate change impacts people in many ways, 
and people care about those i mpacts from many different
perspectives (Tschakert et al., 2017; O’Brien &Wolf, 2010). 
To give just one example, an interview-based study with 
community members in the city of New Orleans found that 
stakeholder views on coastal flood risk encompassed values 
such as concern for personal safety, property damage, broader 
economic impacts, sense of place, perception of s afety, non-
human welfare, distributive justice, intergenerational justice,
and having a say in risk management decisions (Bessette
et al., 2017). Each of these concerns provides a perspective 
fromwhich projected outcomes and impacts can be evaluated 
(except for the l ast one, which is about process rather than
outcomes).

Consider one specific concern mentioned above: distribu-
tive justice. In the context of local flood risk management, 
distributive justice addresses the fairness of how flood risk, 
or related costs and benefits, are distributed across com-
munities and populations. Analysis of adaptation strategies 
(such as levees, evacuation planning, or funding programs 
for home elevation) that estimates costs and benefits only 
in the aggregate—e.g., for a whole city or region—will be 
blind to differences in the way that alternative strategies 
distribute risk across smaller units such as neighborhoods
or households. For stakeholders who care about distribu-
tive justice, a distribution-blind analysis will fail to provide
relevant decision support because those stakeholders will
be unable to apply their values to the evaluation of the
adaptation strategies (Jafino et al., 2021; Vezér et al., 2018). 
(For related illustrations, see Khosrowi (2019); Parker and 
Winsberg (2018).) 

Estimating the effectiveness of adaptation measures with 
attention to distributive justice may require a more complex 
or disaggregated modeling frame work that resolves neigh-
borhoods or even households (Jafino et al., 2021). For exam-
ple, Vezér et al. (2018) contrast two specific models used for 
coastal flood risk analysis in the state of Louisiana, including 
the city of New Orleans. Both models take flood hazards 
and adaptation measures as inputs and project the success
of those measures as outputs. But one model (Groves et al.,
2014) includes detailed and disaggregated spatial informa-
tion, while the other (Jonkman et al., 2009) works with a 
simplified and highly aggregated representation of the study 
system. The models also differ in their usability, adaptability,
and transparency (Vezér et al., 2018). At the same time, 
model choice is, as always, subject to a range of epistemic
considerations concerning the accuracy and trustworthiness
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of a model’s representations and projections. Like previous 
examples, here a single choice in the design of a study can 
have consequences both for the epistemic or purely scientific 
side of a s tudy (including but not limited to the treatment of
uncertainties) and also for the treatment of ethical values in
the analysis.

22.6 C onclusion

We have presented a series of examples illustrating 
how choices made during the conduct of research can 
carry implicit value judgments or create side effects and 
consequences with ethical import. These consequences 
include what (and whose) questions receive scientific 
attention, how mitigation and adaptation strategies are 
evaluated, which impacts are prioritized, how science is 
communicated, and what kinds of errors are avoided. We 
have focused on examples in which the research choices 
in question also shape how uncertainties a re addressed:
alternative attribution methods can subtly recast the research
question and shift the burden of proof; model complexity
can enable or constrain the characterization of ethically
important uncertainties, and model calibration plays a key
role in determining which uncertainties and which types of
futures are characterized and how.

Many research choices are like these examples. On the one 
hand, they have consequences that might be judged from the 
perspective of ethical values, and on the other hand, they have 
consequences—regarding, e.g., the depth of insight or relia-
bility of findings—that can be judged by scientific standards 
that express epistemic va lues. In other words, many research
choices (perhaps even most) are coupled ethical–epistemic
choices (see (Beck & Krueger, 2016) and (Deitrick e t al.,
2021) for further illustrations). Scientific training naturally 
focuses on the epistemic side. Here we have highlighted the
ethical side and the coupling of the two sides.

Once this coupling is recognized, many further questions 
arise, such as: whose or which values should be considered? 
How should we balance epistemic and ethical considerations 
when they are in tension? What are the best approaches 
for representing the tradeoffs between value c onsiderations?
How should the connections between epistemic and ethi-
cal considerations be discussed in scientific publications?
For views on some of these questions, readers can consult
(Adams et al., 2015; Elliott, 2017;  Hick  s, 2014; Baldissera 
Pacchetti et al., 2022). Here, we close with some brief rec-
ommendations on first steps toward eng aging with coupled
ethical–epistemic choices (see (Pulkkinen et al., 2022)  for  
related, complementary recommendations).

• Develop an eye for the ethical side of research choices. 
Make a habit of thinking through how your findings 
might be used and by whom. Ask questions like: Whose 
information needs does my research design serve? What 
value system does my policy-evaluation framework as-
sume? Whose vulnerabilities does my approach to haz-
ard mapping prioritize? Who might be disadvantaged by
my research findings? What kinds of errors have I been
most/least careful to avoid?

• Discuss ethical values explicitly in research outputs. 
Answers to questions like those listed under suggestion 
the previous bullet point can help readers contextualize 
your findings and assess whether they are useful for a 
given purpose. Be transparent about your explicit and 
implicit working assumptions. Briefly explain how your 
research design balances relevant ethical and epistemic
values. Note any tradeoffs between value considerations.
Declare any motivating ethical priorities and, especially
if the rationale for these priorities is not obvious, defend
them.

• Engagewith end users and/or boundary organizations. 
While there are many reasons to engage with decision-
makers, stakeholders, and boundary organizations, one 
important reason is to facilitate the alignment of research
with stakeholder values and priorities (Adams et al., 2015; 
Helgeson et al., 2024). 
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