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Abstract

Decision theories give guidance about what to do when you face a par-
ticular decision. But they also give higher-level advice—depending on
how likely you think it is that you'll face various decision problems, de-
cision theories give advice about the best strategy for picking what to do.
For some ways of being uncertain over possible decisions, decision theo-
ries that accommodate risk undermine themselves. They simultaneously
provide specific advice about what to pick whilst also deeming that very
picking strategy to be impermissible. Savage-style expected utility theory
does not have this flaw; it always deems its own picking strategies to be
the rational ones. Popular decision rules for imprecise probabilities never
straightforwardly undermine themselves but they often require adopting
strategies that pick in accordance with expected utility theory, thereby co-
ordinating how to pick across different potential decision problems. Some
strategies that always pick an option that the decision theory does not re-
ject are deemed impermissible. In particular, randomising amongst non-
rejected options is often impermissible. This raises questions about how to
use the guidance of an imprecise decision theory when it leaves different
options non-rejected.

It is our lot to face decisions when it is uncertain which act from among those
available to us will lead to the best outcome. Uncertain about the day’s weather,
you must choose whether or not to take an umbrella when you leave your
house; uncertain about what it would help them most to hear, you must choose
what to say to a friend who is going through a bad time; and uncertain what
effect different approaches will have, a parent must choose how to raise their
child. How are we to make such choices? It is the task of decision theory
to provide an answer. And philosophers, economists, and psychologists have
met this remit by developing a slew of rival theories of rational decision. Ex-
pected utility theory is the most well known and widely used, but there are
many alternatives available, and we will meet a good few in the course of this
paper.

There are various ways to argue for your preferred decision theory. You might
note that it agrees with your intuitive verdict about a specific decision problem
that you describe, while its rivals don’t. For instance, you might intuitively
judge the Allais or Ellsberg preferences rationally permissible, and note that
certain risk- or ambiguity-sensitive decision theories permit them, while ex-
pected utility theory does not. Or you might note that your favoured theory
has a formal feature that you find intuitively desirable, while its rivals lack that



feature. For instance, you might intuitively judge the Independence Axiom or
the Sure Thing Principle a requirement of rationality, and note that expected
utility theory satisfies both, while its risk-sensitive rivals don’t.

But there is another approach, and it has the advantage that it avoids such ap-
peals to our intuitive judgments and the stalemates in which they often result.
It begins with the observation that a decision theory is an account of rational
means-ends reasoning: agnostic about whether your ends are good or bad, de-
sirable or undesirable, benevolent or malign, it purports to tell you the rational
way to pick between different possible means to the ends you in fact have.
Granted this, it seems natural to assess a decision theory by asking how well it
performs in the role of getting you those ends. The only problem with this ap-
proach is that, in order to assess a decision theory or anything else as a means
to your ends, we need an account of which means to your ends it is rational to
use. And without a decision theory, we don’t have that.

Yet all is not lost, for this line of thinking nonetheless furnishes us with a test
we can conduct on a theory of decision-making, and while it might not tell in
favour of the theory if it passes, it seems to tell against it if it fails. We can
ask of the theory: If I were to use you not only to make my normal day-to-
day decisions, but also to make the higher-order decision about which deci-
sion theory to use, would you recommend yourself? If it would, we call it
self-recommending; if it wouldn’t, we call it self-undermining. We claim that no
self-undermining decision theory can be correct. This is not to say that a self-
recommending theory is thereby adequate—for instance, the theory that says
that any available act is rationally permissible is self-recommending, but it is
not correct. Nonetheless, we can use this test to winnow the list of candidate
decision theories, removing those that fail it.

0.1 Our forthcoming results

In this paper, we show that this idea gives rise to a challenge for a host of
theories that diverge from expected utility theory. The strength of our results
varies over these different theories, and so we provide a summary here.

Decision theories that accommodate risk, by rationalising the Allais prefer-
ences, lead to ways of being uncertain over which decision problem you'll face
such that they deem their own recommendations impermissible. Such theories
therefore undermine themselves in a particularly strong sense. However, this
initial result is limited to particular ways of being uncertain about which deci-
sion problem you’ll face. We strengthen the result a little by showing the same
follows for some natural ways of being uncertain over a much wider range of
decisions, but we do not have a general result that holds for a whole host of
ways of being uncertain (Section 1). It is thus still open to a defender of this
theory to argue that they are not uncertain over which decision they will face
in one of these seemingly natural ways; or at least they should not be.

Decision theories that accommodate ambiguity or imprecision also differ from
expected utility theory. I'-Maximin is such a decision theory, and we show
that it is self-undermining in the same strong sense just described, at least for
certain ways of being uncertain about which decision problem you’ll face (Sec-
tion 3.1).



Two other prominent decision theories for imprecision are E-Admissibility and
Maximality. These theories deem some actions impermissible, but there are of-
ten many actions they don’t rule out. There are thus typically many different
ways of acting that are compatible with the recommendations of the theory.
As before, we wish to use a decision theory to judge which decision theory to
use by looking at the utility of what the decision theory to be judged recom-
mends you pick. But these imprecise decision theories do not offer univocal
recommendations concerning what to pick. Initially, then, we simply consider
the theory’s judgements about what we call picking strategies, which specify,
for each possible decision we might face, a specific act to pick from those that
are available. We say that a picking strategy is almost surely an expected util-
ity strategy if there is a probability function over the states of the world such
that we are certain the strategy selects an act that maximizes expected utility
relative to that probability function.

E-Admissibility deems a picking strategy impermissible just in case it is not
almost surely an expected utility strategy (Section 3.2). Since picking in ac-
cordance with expected utility theory is also picking in accordance with E-
Admissibility, this decision theory is not self-undermining in the strong sense
we’ve considered so far: it does not rule out all ways of picking compatible
with itself. However, it does rule some out. It is compatible with E-Admissibility
to pick in accordance with different probability functions from the credal set
when faced with different decision problems. Such picking strategies, how-
ever, are often deemed impermissible according to the theory. This theory
therefore demands that a decision-maker coordinates across different possible
decision problems to ensure there is a single probability function such that she
almost surely chooses what maximizes expected utility from the point of view
of that probability function whichever decision problem she faces.

The theory also deems it impermissible to pick in accordance with some ran-
domisation procedure over those actions that are not ruled out, as again this
does not amount to picking almost surely in accordance with expected util-
ity theory applied to a specific probability function. We might then ask the
defender of one of these theories how our decision-maker should use the non-
committal recommendations of their theory? As we’ve seen, she should not
randomise amongst the options that aren’t ruled out. Instead, again, she needs
to select some probability function from her credal set and use that to deter-
mine her plan for what to pick, whatever decision she faces. It is an interesting
question how this then differs from a permissivist approach to expected utility
theory.

The same formal result also shows that these theories are self-undermining
in the same sense if, rather than knowing you'll randomize over the actions
the theory hasn’t ruled out, you simply don’t know which you'll pick, and
you have precise credences over the possibilities that gives positive credence
to each.

Next, we ask what happens if, instead of having precise credences concerning
which actions you'll pick, you have imprecise credences. We consider how to
extend E-Admissibility to judge such imprecise ways of picking. We note that
each probability function concerning how you'll pick considers the imprecise
picking strategy sub-optimal; it prefers instead to adopt a precise expected util-



ity picking strategy. Thus, in the spirit of E-Admissibility, we suggest that the
set of probability functions that represents your imprecise credences concern-
ing how you’ll pick deems this imprecise picking strategy impermissible too; it
again prefers that you select a probability function from the credal set and run
with it.

Thus, whilst E-Admissibility is not strictly undermining in the way that I'-
Maximin and the risk-sensitive decision theories are, our results do force its
defenders to think more carefully about what it means to adopt such a theory
and how to make use of its advice. It is again an open question to what ex-
tent the version of E-Admissibility that renders it self-recommending is like a
permissivist version of expected utility theory.

Maximality is an alternative prominent decision theory for imprecise proba-
bilities. It is less committal than E-Admissibility (Section 3.2). Thus picking
in accordance with expected utility theory according to one of the probabil-
ities in the credal set is not rejected by the decision theory. We can again
show that it deems impermissible any way of picking that does not amount
to expected utility theory, at least when one’s uncertainty over which decisions
you'll face has some particular features. When your uncertainty over which
decision you'll face is precise and spread over a sufficiently broad range of de-
cisions, the only ways to pick that are not impermissible are those that pick
almost surely in accordance with expected utility theory. Again we see that
this rules out picking by randomising over the acts that Maximality does not
rule out, and it requires modal coordination in how one plans to use the rec-
ommendations of the theory.

What we see, therefore, is that considerations of whether the decision theory
undermines itself lead to challenges for theories that diverge from expected
utility theory by accommodating risk or imprecision. In the cases of impreci-
sion, whilst not in a strong sense undermining, as only some ways of picking
are deemed impermissible, such considerations force the defenders of these
theories to think more carefully discuss how to use the theory.

1 Risk-sensitive decision theories

Expected utility theory rules out as irrational certain natural ways of taking
risk into account in decision-making. In particular, as noted above, it rules
out the so-called Allais preferences (Allais, 1953). In response, decision theorists
have presented a range of alternatives that permit those preferences (Kahne-
man & Tversky, 1979; Machina, 1982; Quiggin, 1982; Buchak, 2013). Let’s be-
gin by showing a straightforward way in which any such decision theory is
self-undermining.

Here are the four options over which the Allais preferences are defined. The
payout of each depends on the outcome of a lottery with 100 tickets.

Dllais | ticket 1 ticket2-11 ticket 12-100
p 1/100 10/100 89/100
1A £1m £1m £1m
1B £0m £5m £1lm




DAais | ticket 1 ticket2-11 ticket 12-100
p 1/100 10/100 89/100
2A | £lm £1m £0m
2B | £0m £5m £0m

As Allais notes, many people prefer 1A to 1B in D8 and 2B to 2A in DS,
Let’s suppose that our agent has a decision theory which endorses these pref-
erences, given parameters such as her credences and utilities, and possibly also
some representation of her attitudes to risk.

Now, consider instead a related decision problem, which we will call Df)lcljlis.

There are two actions available to the agent—Safe and Risky—whose outcomes
depend on whether a particular company goes bust or not; for instance, they
might be different stocks in which she can invest. Let’s suppose the agent
thinks the odds of this company going bust are 1 : 10.

Decision problem Df)lclglis goes bust not bust
p 1/11 10/11
Safe £1lm £1lm
Risky £0 £5m

Perhaps her decision theory prefers Risky to Safe.

We will now turn to a higher-order decision the agent might face. She is un-
sure which decision problem she will face, and she must choose a strategy for
which option to pick in each possible decision problem. Perhaps she is leaving
instructions for what her stockbroker should do, unsure what will be on offer.
Or perhaps she has to choose a proxy to act on her behalf, knowing what they’ll
pick in each decision problem, but unsure which decision problem they’ll face.

The options in this higher-order decision are what we call picking strategies. A
picking strategy is a function, s, which selects one of the available (first-order)
options from each possible (higher-order) decision problem. For example, a

picking function will specify either Safe or Risky as its pick in Dﬁlclglis.

The choice between picking strategies is another kind of decision problem; this
time, a higher-order decision problem. Our agent can make use of her deci-
sion theory to determine which picking strategy to choose, provided (i) she
has credences over which decision problem she’ll face, and (ii) for each pick-
ing strategy, each decision problem, and each possible state of the world, she
assigns a utility to adopting a picking strategy should she face that decision
problem at that state of the world. To specify the latter, we evaluate a picking
strategy by its fruits; that is, its utility when faced with a decision problem at a
possible state of the world is the utility, at that state of the world, of the option
it selects when faced with that decision problem.

Suppose our agent knows she’ll either face nglcl:lis or she’ll be given £1m for
sure. And suppose her credence that she’ll face nglclaalis is 11%. She is deciding
amongst various picking strategies. Here, the only relevant consideration in
choosing amongst picking strategies is what they will pick when facing DAl1ais

local -
There are thus two options: ssyfe O Sgisky, Which pick Safe or Risky, respec-

tively, in nglcl:lis. The decision among picking strategies thus amounts to this



decision:

Version 1 choice offered choice not offered
goes bust not bust
p 1/11 x /100 10/11 X 11/100 89/100
= 1/100 = 10/100 = 89/100
SSafe £lm £1lm £lm
SRisky £0m £5m £lm

But of course, this exactly mirrors the choice of 1A vs 1B in D13, And so, as-
suming her decision theory is structural, in the sense that its recommendations
don’t depend on the content of the outcomes but only on the list of credences
of various utility outcomes, then she should also judge sg,¢ to be preferable to
SRisky, €ven though, when faced with nglclaalis herself, she prefers Risky.

Given the choice of what to write as instructions for her stockbroker, she prefers
to instruct them to act differently from how she would act were she facing the
decision herself. Given the choice over which proxy to nominate, she thinks it
is better to nominate one she knows won’t choose in the way she would were
she in the situation herself. Given the choice whether she should tie herself
to the mast and pre-commit to the particular picking strategy she prefers be-
fore she knows which decision problem she’ll face, rather than leaving herself
to choose after she comes to know, she reaches for that rope. Her adopted
decision theory requires her to pick a picking strategy that is not compatible
with its own recommendations. Despite the fact that her decision theory rec-
ommends picking Risky, it thinks it would be better to use a decision theory
which recommends picking Safe.

This is a prima facie bad feature of our agent’s decision theory. Her decision the-
ory makes recommendations both about what actions to perform when faced
with different decision problems and which picking strategy is best. But these
recommendations pull her in different directions. The decision theory itself
tells you to do one thing when faced with the decision, but recommends using
a picking strategy that does something else. This is a conflict in the theory’s
recommendations. The oddity of the situation is akin to one that David Lewis
(1971, 56) identified in a different context:

It is as if Consumer Bulletin were to advise you that Consumer
Reports was a best buy whereas Consumer Bulletin itself was not
acceptable; you could not possibly trust Consumer Bulletin com-
pletely thereafter.

The decision theory is self-undermining in the sense that there is some partic-
ular precise probability distribution over the possible decision problems she
might face—it’s 11% likely she’ll face Df?)lclaalis, and 89% likely she’ll get £1m for
sure—where, if she applies her decision theory to the question of which pick-
ing strategy to use, it rules out as impermissible its own recommended course
of action.

This was all based on the assumption not only that her decision theory en-
dorses the Allais preferences, but also that it recommends Risky over Safe in

Dﬁ)lcljlis. If it instead recommends Safe over Risky in ngg:lis, we can consider a



different decision problem: Squose that, whilst she still thinks that her cre-
dence that she’ll be offered Dﬁlcaafs is 11%, she thinks that if she is not offered it,
then she is given nothing. Now, she is facing the following decision problem

over which picking strategy to select.

. choice offered choice not offered
Version 2
goes bust not bust
p 1/100 10/100 89/100
SSafe £1lm £lm £0
SRisky £0m £5m £0

This exactly mirrors the choice of 2A vs 2B in D‘;‘”ais, and we have supposed
that she holds the Allais preferences of 2B over 2A. In this scenario, then,
assuming again that her decision theory is structural in the sense described
above, she will evaluate the picking strategy sgisky to be preferable to sguge,

even though, when faced with Dﬁ‘)lcl:fs herself, she prefers Safe.

Thus, if her decision theory endorses the Allais preferences and is opinionated
over what to choose in D{glcljlis then it is undermining in the sense that there is
some uncertainty over which decision problem she’ll face where the decision
theory rules its own way of picking as impermissible.

But what if her decision theory has neither a strict preference for Safe over
Risky nor a strict preference for Risky over Safe in nglclglis? Then both ways of
picking are compatible with her decision theory. Whilst which picking strategy
she deems optimal changes depending on the amount she’ll receive when not
facing Dﬁlcl:is, in neither case does she rule out all the picking strategies that
are compatible with her recommendations—she just rules out one of them.
Whilst her decision theory would then be undermining in some sense, it is
much weaker than what we had previously, where the decision theory rules
out as impermissible all picking strategies compatible with its recommenda-
tions (there is only one).

However, with some additional assumptions we can modify the case to again
show that the decision theory is self-undermining in the stronger sense. The
decision theories that endorse the Allais preferences are usually motivated by
avoidance of risk rather than considerations of ambiguity or imprecision. So
they typically say that cases in which an agent doesn’t have a strict preference
either way between two options are those in which she is indifferent between
them; and, in those cases, any slight sweetening of one option is sufficient to
make her strictly prefer that. So, in this decision, she will prefer Risky™ to Safe:

nglcl;lii goes bust not bust
p 1/11 10/11
Safe £1m £1m
Risky™ £1 £5m+£1

What's more, for some small enough sweetening, it is plausible that she will



still prefer 1A to 1B*:!

ticket 1 ticket2-11 ticket 12-100
p | 1/100 10/100 89/100
1A | £lm £1m £1m
1B+ £1 £5m+£1 £1m

And so again, the decision theory deems it impermissible to pick in accordance
with its own recommendations; instead it recommends using a different deci-
sion theory.

Any failure of the Marschak’s (1950) Independence Principle will generate a
case where the decision theory is self-undermining. This principle says that,
if the decision theory deems action a; preferable to action ay, then it deems a
probabilistic mixture aa; + (1 — a)b preferable to way + (1 — a)b. Such a mix-
ture is often interpreted as the act of using a randomization device, such as
the toss of a biased coin, to determine which action to perform. But it can also
be interpreted as evaluating picking strategies if you're uncertain over which
decision problem you’ll face. With probability «, you'll face the decision be-
tween action a; and action ap; with probability 1 — «, you'll face the decision
with just one option, namely, action b. The picking strategies are determined
by their pick of either a; or a3, and they exactly mirror the mixed acts. So, if a
decision theory gives rise to a failure of the Independence Principle in which
it prefers aq over ap, but aay + (1 — a)b over aap + (1 — )b, then it will prefer
strategy s;,, which picks a; over aj, over strategy s,,, which picks a; over ay,
and yet s, is the strategy that does what the decision theory demands. So, it is
self-undermining.

These cases are formally related to cases of sequential incoherence for such de-
cision theories (Hammond, 1988; Machina, 1989), but the formal motivation
for our investigation was instead Levinstein (2017) who, following Schervish
et al. (2009), also considers uncertainty over which decision problem we face,
and offers evaluations on that basis. The aim of their investigation is to judge
and compare credences rather than decision theories. They hold fixed ex-
pected utility theory as the decision theory and instead use this uncertainty
over which decision you’ll face to evaluate credences by their guidance value,
assuming what they guide you to do is in accordance with expected utility
theory.

1.1 Isita problem to be self-undermining?

There are at least two ways to argue that being self-undermining tells against
a decision theory. We'll describe them and then consider some responses.

First: Suppose a self-undermining decision theory is correct. That is, it deems
impermissible exactly those options that are indeed impermissible. But, since

This is an Archimedeanicity principle.

%In the case where we have a; = a3 and aa; + (1 — a)b < aay + (1 — a)b, this is immediate. If
the reversal is merely weak, so that a; > a, and way + (1 — a)b < aay + (1 — a)b, we appeal to an
Ordering principle, to give aa; + (1 — )b ~ aay + (1 — a)b, and an Archimedeanicity principle to
produce af such that ay > af and aay + (1 —a)b < aaf + (1 — a)b.



it is self-undermining, it deems impermissible the option of picking in accor-
dance with itself. And so it is indeed impermissible to pick in accordance with
it, since it is correct. But surely it cannot be impermissible to pick in accordance
with the true theory of rational choice. Therefore, the decision theory cannot
be correct, which gives a reductio.

You might think that it could be impermissible to pick in accordance with the
correct theory of rational choice, if for instance it is very costly to do so and
there is a low cost alternative available that reasonably approximates the true
theory, or if your attempt to pick in this way is likely to misfire, or if it is sim-
ply infeasible and so impossible for you to do it. But, when a theory is self-
undermining, it is not for any of those reasons that it deems itself impermissi-
ble: it says it is impermissible even if it is cost-free to use it, and your attempt
to use it always goes perfectly.

Second: Relatedly, for someone who uses the decision theory, it gives contra-
dictory advice at different points. Recall the case above in which you were

initially uncertain whether you’d face nglclaalis or get £1m for sure, and your de-

cision theory would choose Risky over Safe when faced with Dﬁlclaalis but would

choose the picking strategy ssafe OVer sgisky. Standing facing the decision prob-

lem DS yvou might ask yourself: my decision theory tells me to choose Safe
and not to choose Risky, but it also tells me that, if I could have chosen how I
would choose, it would have told me to choose Risky and not to choose Safe—

which should I do?

If we again suppose that the self-undermining decision theory is correct, it
leads to a rational dilemma, where one is rationally required to adopt a picking
strategy which picks in an rationally impermissible way.

These self-undermining decision theories would prefer to bind themselves to
do something other than what they recommend when you actually face that
decision. Of course, we're used to that in cases of temptation—Ulysses should
pay his sailors to bind him to the mast as their ship passes the Sirens—but that’s
because we think your utilities will change under the pressure of temptation or
your probabilities will change in an irrational way or you won't choose ratio-
nally on the basis of your utilities and probabilities. Nothing like that is going
on here.

We're also used to that in cases of act-state dependence. Causal decision the-
orists say that in Newcomb’s problem you should take both boxes, but if you
can pay to take a pill to turn yourself into a one-boxer before the prediction
is made, then you should. But that’s because choosing how to choose, in this
case, causes you to face a better decision problem down the line. Nothing like
that is going on here. And perhaps we think that, at least when choosing a
picking strategy has no causal or evidential impact on which decision prob-
lems you will face or the value of the options in those problems, the correct
theory of rational choice should not give rise to such dilemmas.



1.2 Responses
1.2.1 Limit the decision theory’s scope

Perhaps the defender of a self-undermining decision theory will say it was
never their intention that their theory should be used for these higher-order
decisions. They might say they are offering a theory of first-order rational
choice; not a fully general theory that covers any sort of decision, including
these higher-order decisions between picking strategies.

But that can’t be right, for these theories are presented by their proponents as
universal decision theories—they are intended to cover any sort of decision,
providing we can determine credences and utilities and any other parameters
that must be fixed. In their descriptions, it is not specified that they are to
be applied only to a certain sort of decision, such as decisions between first-
order actions. They are intended to be what above we called structural: that
is, their recommendations don’t depend on the content of the outcomes, but
only on the list of credences of various utility outcomes. And, as we saw in our
treatment of the Allais decisions above, for any higher-order decision between
picking strategies under uncertainty about the decision problem you'll face,
there is a decision between ordinary first-order actions that exactly mirrors it.
If the defender of a self-undermining decision theory were to respond in the
way outlined, they’d have to deny that their decision theory is structural in
this sense and they’d have to say why that is the case.

1.2.2 Change the way of updating credences

There is another way the defender of these theories could argue against the
charge of self-underminingness. They can note first that, by assuming deci-
sions are probabilistically independent of states of the world, and assuming
our credences in states of the world don’t change when we learn which deci-
sion we face, we have essentially assumed Bayesian conditionalization. And
then they can argue against conditionalization. As pointed out in Campbell-
Moore & Salow (2020, 16), several standard arguments for conditionalization
assume that rational agents maximise expected utility.

The picking strategy that the decision theory deems optimal is compatible with
that very decision theory if instead we allow our agent’s credences to change
when she learns which decision problem she faces, even though they are prob-
abilistically independent. Instead of holding fixed her credences (assuming
conditionalization), the defender of the decision theory might instead argue
for an alternative credal update strategy: the one that results in the optimal
picking strategy when coupled with risk-weighted expected utility theory (see
also Campbell-Moore & Salow, 2022; Brown, 1976).

Whilst we acknowledge this is a possible way out of the criticism, it is a signif-
icant bullet to bite.

1.2.3 Uncertainty about decisions

In our argument that Allais-permitting decision theories are self-undermining,
we used the preferences they permit over the Allais gambles to construct a
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particular way that you might be uncertain about what decisions you'll face
and showed that, in that case, you judge some alternative picking strategy to be
preferable.

Moreover, the particular way of being uncertain over decisions you'll be faced
with was a rather odd one. We specified that the credence you’ll face Df?)lclj‘lls
is 1/11 and your credence that you'll get the constant amount is 89/100, and we

chose the constant specifically to demonstrate the undermining feature.

Of course this might be the situation you're facing, where you happen to have
these credences over the possible decisions. It might be just unfortunate coinci-
dence, or it could be specifically constructed this way by a nefarious opponent
who has set you up: they’re going to toss a biased coin to determine what to of-
fer you at the specified probabilities, having chosen these numbers specifically
to demonstrate the inconsistency in your judgements.

However, typically one’s uncertainty over which decision you'll face is spread
over a wide class of possible decision problems—how many decision prob-
lems are you fully certain you won't face? If your particular uncertainty is not
one that generates underminingness, and so, relative to that uncertainty, your
decision theory judges its own picking strategies to be optimal, is it really so
problematic that, were your uncertainty different in some specific way, your
decision theory would be undermining?

This is analogous to a certain standard response to the Dutch book arguments:
perhaps you just think it’s unlikely you’ll ever face such a nefarious bookie.
A common response is to argue that the mere existence of a Dutch book al-
ready shows you are irrational because it shows your preferences are inconsis-
tent in a particular way—they judge the same decision differently when it is
presented in different way, perhaps.® The set-up in which an opposing Gam-
bler approaches you, buys and sells bets that you deem fair, and thereby sad-
dles you with a sure loss merely dramatizes this inconsistency. The argument
doesn’t assume you'll ever actually meet such a person. We might argue sim-
ilarly that the mere existence of self-underminingness for some way of being
uncertain about what decision you’ll face is already a challenge to the decision
theory. Perhaps it shows that it is inconsistent in the same way the Dutch book
argument shows non-probabilistic credences are inconsistent.

In the case of the Dutch book arguments, Pettigrew (2020, Sec 6.2) argues that
the mere existence of a set of bets you'll accept individually that, taken to-
gether, lead to sure loss isn’t sufficient to show you are irrational. Instead,
he asks what happens if you are uncertain about which decisions you'll face.
Drawing on the results from Mark Schervish (1989) and Ben Levinstein (2017)
that we mentioned above, he shows that, for very many natural ways of be-
ing uncertain about the decisions you'll face, if you have non-probabilistic cre-
dences and face whatever decision you'll face with those credences, there are
alternative probabilistic credences you might have had instead that guide your
choices better.

We might similarly try to bolster our objection here by showing a more general
result, which would apply to a whole host of natural ways of being uncertain
over which decision problem you’ll face. Of course, we would have a stronger

3Cf. (Armendt, 1993; Mahtani, 2015).
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objection if we could show that for any way of being uncertain over the deci-
sion problems you face, the theory is self-undermining. In fact, we’ll never get
something as general as that: after all, if your probability distribution places
all of its probability on a single decision problem, then it will think of itself as
permissible—and indeed, it will think of anything that disagrees with it as im-
permissible. But we might hope to be able to show that it is self-undermining
for a much broader range of distributions over the possible decision theories
than we currently have, thus arguing that, for any ‘plausible’ way of being
uncertain over possible decisions, the theory is still undermining.

We don’t have any general results in this area, but we do have some suggestive
particular cases for a particular Allais-permitting theory. This is John Quiggin’s
(1982; 1993) rank-dependent utility theory, which is formulated for exogenous,
objective probabilities, and Lara Buchak’s (2013) risk-weighted expected util-
ity theory, which is a formally equivalent theory formulated for endogenous,
subjective probabilities.

To give your risk-weighted expected utility for an act a, defined over the possible
states of the world in (), we need a probability function p over (), and a risk
function r : [0,1] — [0, 1], which takes a probability and skews it—we assume
r is continuous, strictly increasing, and r(0) = 0 and r(1) = 1. Now, suppose
a is an act, and let £l(a) be the random variable that gives the utility of a at a
given state. If () is finite, the risk-weighted expected utility of a can be written
as follows:*

RExp,,,,[4(a)] = Y (r(p(U(a) = x)) —r(p(U(a) > x))) x x
xe{i(a)(w)|we)}

And, more generally, if the utilities are bounded below by I and above by #,

h
RExpy[U(a)] = [ r(p(u(a) > x)) dx

Then risk-weighted expected utility theory tells you to maximize risk-weighted
expected utility.

Now, suppose:
(i) there are just two first-order possibilities w; and wy,

(i) your credence function is p, with p(w;) = 0.1,0.2,...,0.8, or 0.9 and
plwz) =1—p(wr);

(i) your risk function is a power function r(x) = xk, with k = 0.5, 0.6, ...,
08,09,1.1,12,...,19, or2;

(i) you know you'll face a choice between just two acts, but you don’t know
which two acts, and you place a measure yu over the possible decision
problems that takes the utilities of the two acts at the two possibilities
to be independent of one another and all distributed according to a beta
distribution Beta(«, §) witha = 1,2,3,4,or5and 8 = 1,2,3,4, or 5.

4This is not Buchak’s favoured formulation; instead it’s closer to the usual formulation of rank
dependent expected utility theory; see, for example (Wakker, 2010, ch.6). See also sec.6.9 for the
continuous case, although note that Buchak’s theory does not make use of a distinction between
gains and losses (see Buchak, 2013, p59).
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Then, let s be any picking strategy compatible with REU when coupled with
p and rg. Then there is an alternative picking strategy s* such that REU with
credences given by p and y and risk function ry strictly prefers s* to s. What's
more, s* is not compatible with REU with p and 7. And indeed, it’s possible to
find s* so that it is compatible with REU with p and ry+ for some k* # k. That
is, s* is a picking strategy compatible with REU coupled with a different risk-
averse risk function. So, uncertain which decision they’ll face, someone using
REU with this risk function would prefer that, when the uncertainty is resolved
and they face a particular decision, they use REU with a slightly different risk
function.®

2 Expected Utility Theory

In this section, we reassure ourselves that Savage-style expected utility theory
is self-recommending; that is, if we assume act-state independence, expected
utility theory endorses itself. We will need to be more detailed about the frame-
work in order to present our result.

States () is the set of possible states of the world. We’ll assume there are only
finitely many:.

Uncertainty The agent’s uncertain beliefs about the world are represented by a
single probability function p over (). The set of all such probabilities is P.

Acts Ais a non-empty set. It is the set of all possible acts.

Utilities il is the agent’s utility function. It takes each act a in A and state w
in () and returns a utility value $(a)(w) € R. We will assume that utilities
are bounded above and below. That is, there are [, i € R such that for all acts,
ac A l<Ua)(w)<hb

Decision problems A decision problem D specifies a non-empty finite set of acts:
the acts that are available in that decision problem. The set of all relevant deci-
sion problems is D.

(In fact, we could relax the assumption that D specifies a finite set of acts and
instead assume that the set of acts it specifies is compact relative to the utility
function, that is, {{(a) |a € D} is a compact subset of [I,]. But we will
continue to assume that decision problems are finite for ease of presentation.)

Choice function A choice function, c, specifies a non-empty subset of each deci-
sion problem, so that & # c¢(D) C D, for each D in D. If a is not in ¢(D) then
¢ deems a impermissible in D. Some authors go further and say that any a in
c(D) is rationally permissible (e.g., Moss, 2015). But others do not. They instead
say that, if a is in ¢(D), then a is not deemed impermissible, but unless a is the
only act in ¢(D), it does not follow that a is permissible or positively evaluated
in any way (e.g., De Bock, 2019).

Picking strategy As above, a picking strategy, s, specifies an act from each deci-
sion problem, so thats(D) € D, for each D in D. The set of all picking strategies

5See the Mathematica notebook here for the tools to carry out these calculations [link to note-
book from journal page as supplementary material].
6We will also assume that ${(.A) is a Borel set in R® = R”.
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is S/
A picking strategy picks for a choice function c if it never picks an option that
c deems impermissible. That is:

Definition 2.1. A picking strategy s picks for a choice function c, if for all decision
problems, D, s(D) € ¢(D).

Given a probability function p defined over (), the expected utility of an action
a, by the lights of p, is given by

Expp[t(a)] := } p(w)ii(a)(w)
weQ)
If one has (probabilistic) credences given by p, expected utility theory says that
one should choose an act in D that maximises Expp[il(a)].8 That is, we define
the choice function to which expected utility theory gives rise when coupled
with probability function p as follows:

Definition 2.2 (Expected Utility Theory (EU)).

EU, (D) := {a € D| foralla' € D, Exp,[t4(a)] > Expp[u(a’)]}

So a picking strategy s picks for EU, iff s(D) maximizes expected utility by the
lights of p. Since we have assumed that each D is finite, or compact, Exp,[{(a)]
obtains its maximum in D; so EU,(D) # @.

Now we want to judge the expected utility of a picking strategy itself—we
want to ask whether the picking strategies that always pick an act that max-
imizes expected utility from any decision problem themselves maximize ex-
pected utility when you're uncertain which decision problem you’ll face. This
requires us to fix not only p, which gives your credences over (), but also your
credences over the decision problems you might face, given by some prob-
ability measure p over D. We will assume these are independent. So your
credences over the joint space, () X D, are given by the product measure p x p.
That is, your credence you are in world w and will face a decision problem
in the (measurable) set of decision problems E is given by (p x u)(w,E) =
p(w) x u(E). We will moreover always assume that u is countably additive.

We can now simply apply our notion of expected utility with the credences
over () x D given by p x u. We judge a picking strategy by the utility of the
acts it picks, and so we define {(s)(w, D) := U(s(D))(w). We can then apply
our definition of expected utility and get that any picking strategy that picks
for EU, maximizes expected utility by the lights of p x p.

Proposition 2.3. For any p, p, if s picks for EU), then, for any picking strategy s’ in
S,

Eprxy[u(S” > Eprxy [L[(s/)].
That is, if s picks for EUp, then s € EUpx,(S).

7In fact, we restrict attention to the picking strategies that are measurable in the sense defined
in Appendix A.

8The version we present here is of the sort described by Savage (1954), in which it is assumed
that the acts are independent of the states of the world. This assumption is dropped in the evi-
dential decision theory of Jeffrey (1965) and the causal decision theory of Stalnaker (1972 [1981]);
Gibbard & Harper (1978); Joyce (1999).
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(Recall: S is the set of picking strategies. EUpx(S) is the set of those picking
strategies that maximize expected utility by the lights of p x y, as in Defini-
tion 2.2.) This is proved in Appendix C.1.

This shows that expected utility theory is not self-undermining in the way the
Allais-permitting decision theories considered in the previous section are self-
undermining. Expected utility picking strategies are themselves maximisers of
expected utility.

What's more, they are the only picking strategies which maximise expected
utility. Or at least, the picking strategies which maximise expected utility are
those that look like an EU), strategy from p’s perspective.

Definition 2.4. If c is a choice function and s is a picking strategy, then s y-surely
picks for ciff u{D € D|s(D) € ¢(D)} =1
That is, s p-surely picks for c just in case p is certain you’ll face a decision

problem where what s picks is compatible with ¢, i.e., s(D) € ¢(D). Thatis, u
is sure that s does not pick an option that c rejects.

Proposition 2.5. For any p and y, if s y-surely picks for EU,, while s’ does not, then
Eprxy [U(s)] > Exppxy {ﬂ(sl)]'

So, if s does not p-surely pick for EUy, then s & EUpx,(S).

This is proved in Appendix C.1. We thus have thats € EUpx,(S) iff s p-surely
picks for EU,,.

It is worth noting that the reasoning that delivers these results only holds when
we have assumed that the state of the world is independent of the act chosen.

2.1 Decision-State Dependence

As well as assuming act-state independence, we’ve also assumed decision-
state independence: that is, we’ve assumed that, from the point of view of
your credences over () X D, the decision you face and the state of the world
are independent of one another, given by b = p x u. But, in fact, analogues of
Propositions 2.3 and 2.5 hold even if we don’t assume this.

In any decision problem, we must bring one’s probability b up to speed on the
problem that you face (by conditionalizing on that information), and then use
expected utility theory with this updated credence function to determine what
to select.’”

Definition 2.6. If b is a probability over Q) x D, we specify a choice function EUy.|
given by EUy(|_(D) = EUy(p)(D), when this is well-defined. That is,

EUh(|7)(D) = {El eD |f0}’ alld € D, EXthD)[ﬂ(a)] = EXPb(-\D) [ﬂ(ﬁl/)]} .

bp is the marginal probability measure on D generated by b, that is bp(E) = b(Q X
E) for measurable E C D.

The details of this are developed in Appendix B.
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We say that a picking strategy, s, bp-surely picks for EUy(._) iff

bp{D|[s(D) € EUy|_y(D)} =1

We assume throughout that b is countably additive. When b has the form p x y,
then bp is just y and, for every D, b(+| D) isjust p. These are thus generalisations
of our original notions of the choice function EU, and a strategy s p-surely
picking for EU).

We can then show the more general version of Propositions 2.3 and 2.5:
Proposition 2.7. s € EUy(S) iff s bp-surely picks for EUy .| _).
This is proved in Appendix C.1.

3 Decision theories for imprecise credences

There is another range of decision theories that diverge from expected util-
ity theories: those theories that accommodate ambiguity and imprecision. In
the decision theories considered so far, we represent an individual as assign-
ing precise credences to the various states of the world. But some think we
do better to model individuals as having imprecise credences instead (Walley,
1991; Bradley, 2016). There are many ways to do this, but one of the most
well-known represents an individual’s doxastic state not by a single credence
function, which assigns to each state of the world a single numerical measure
of their confidence in that state, but by a set of such functions. We call this set

your credal set. It is a set IP of probability measures over the states of the world,
010

Many decision theories have been proposed for an agent whose uncertain be-
liefs are represented in this way. We discuss three prominent ones: I'-Maximin,
E-Admissibility and Maximality.

3.1 TI'-maximin

To illustrate I'-Maximin, consider an example that is often used to motivate it,
namely, the Ellsberg paradox (Ellsberg, 1961):

An urn contains 90 balls. You know that 30 of them are red, and the
remaining 60 are black and yellow, but you don’t know how many
are black and how many are yellow. I am about to draw a ball from
the urn.

If the states of the world are Red (I draw a red ball), Black (I draw black), and
Yellow (I draw yellow), you might naturally take your credal set to be

P = {p| p(Red) = 1/3 & p(Black) + p(Yellow) = 2/3}.

101t js standard in the imprecise probability literature to reserve the term “credal set” for convex
sets of probability measures. We do not assume convexity here.
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Now consider the following two possible decision problems, DfHSberg and D]; lisberg,
Dflls}oerg Red Black  Yellow DEHSberg Red Black Yellow
P|1/ x  2/3—x P|1/ x  2/3—x
1E | £10 £0 £0 2E | £11 £1 £11
1F | £1 £11 £1 2F | £0 £10 £10
Faced with these decisions, people often report the Ellsberg preferences: they
will choose 1E from D]fHSberg, and 2F from D§115berg.1l And indeed that is ex-

actly what I'"Maximin demands. It says that, faced with a particular decision
problem, you should pick one of the acts whose minimum expected utility by

the lights of the probability functions in IP is maximal: in DlE HSberg, 1E uniquely

maximizes minimum expected utility; and in DE HSberg, 2F does that.

Definition 3.1 (I'-Maximinp (I'p) ).
I'p(D) = {a € D | (Va' € D) |min Exp,[sl(a’)] < min Expp[ﬂ(a)]] }
pelP pelP

(This should only be applied when these minima exist, e.g., when IP is a closed set.)

So s picks for I'p iff for every D € D, s(D) € I'p(D). In this case, the only

picking strategy that picks for I'p picks 1E from Dflleerg and 2F from DEHSberg.

We call this strategy sgjsperg; the strategy corresponding to the Ellsberg prefer-
ences. Such a strategy is incompatible with expected utility theory: it does not
pick for EU, for any probability p.!?> Indeed, this fact accounts for Ellsberg’s
use of the case: like Allais, he wished to provide an example of intuitively
rational preferences that could not be captured by expected utility theory.

Now we will use the theory itself to judge picking strategies. To do this, we
need to describe the agent’s uncertainty not only over what the world is like,
but also over which decision problem she’ll face. Suppose you have precise

probabilities over what decision you’ll face, and you think it’s 50% likely you’ll

face DfHSberg and 50% likely you’ll face DEHSberg. So, we represent your uncer-

tainty as a set, B, of (higher-order) probabilities over both (2 and D, each of
which makes the state of the world independent of the decision you'll face.
That is, your credal setis B = {p x u*|p € P}, where u* is this probability
over D, and IP is the credal set as described in the Ellsberg case.

Observe, then, that (i) Exp,«[4(s1g,2r) (w)] = 5 for each w in {Red, Black, Yellow},
but (ii) Exp,,« [{(s1r2) (w)] = 6 for each w in {Red, Black, Yellow}. So, for any
p with p X ]1* € B, EUpr*u(SlE,ZF) = 5 and EUpr*u(SlF,ZE) = 6. And so
SElisberg = SIE2F £ I'B(S).

This example is closely related to another phenomenon: Dutch book type chal-
lenges or paradoxes of sequential choice, which can be constructed against

In fact, we have added a small constant to the usual versions of 1F and 2E, reflecting the fact
that people strictly prefer the usual version of 1E over the usual version of 1F, and so are willing
to pay a penalty for making that choice; we’ve taken that penalty to be £1, but our point remains
however small you make it.

12This is because, to have Exp,[U(1E)] > Exp,[sl(1F)], it must be that x < 7/30; and, to have
Exp, [$(2F)] > Exp,[{(2E)], it must be that x > 13/30; and these are jointly incompatible.
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agents on the basis of such examples (Seidenfeld, 2004; Elga, 2010). For in-

. . . . Ellsb Ellsb
stance, we might consider how the agent will choose in D; 98 and D, e,

individually, and then combine these choices and observe that the result is
dominated—I1F-and-2E dominates 1E-and-2F. One response is simply to reject

the package principle. However, there is another version of the examples in

which they are presented diachronically: first evaluate Dflleerg, then DEHSberg.

And again we can note that 1F-then-2E dominates 1E-then-2F. And we can note

Ellsberg
7

that I'-Maximin would still have you choose 2E when faced with D, even

if you know you’ve already chosen 1F when faced with Dflleerg. But some will
deny that sure loss as a result of decisions at different times indicates irrational-
ity. What this example highlights is the close connection between the analysis
of this paper and existing challenges and discussions for these theories. Any
such Dutch book or sequential choice challenge can be seen as a particular in-
stance where one is unsure which decision problem you'll face, taking them
each as equally likely, and evaluating strategies. However, it is a slightly dif-
ferent philosophical question.

Moreover, there is a further question of particular interest in our analysis which
goes beyond showing the existence of cases of uncertainty for which the deci-
sion theory is undermining, as the Ellsberg case does, or using any instance of
the sequential choice or Dutch Book challenges. As discussed in Section 1.2.3,
we want a general result that says, for a wide class of ways of being uncertain
about what decision you'll face, I"Maximin is undermining. We provide such
a result in Section 4.1.3.

3.2 E-Admissibility and Maximality

Two alternative decision theories are E-Admissibility and Maximality. When
coupled with a credal set IP, E-Admissibility rejects an act a from a decision
problem D when, for any p in PP, there is some 4’ in D that p expects to do
better than a. In that case, each p in IP considers some other option to be better
than g, even though there may be no single option they all agree to be better. In
constrast, Maximality rejects an act 4 from D when there is some 4’ in D that
every p in IP considers better than a, i.e., when all p in IP agree on a single option
that they expect to be better than a. If an act is rejected according to Maximality,
then it is also rejected according to E-Admissibility, but not vice versa.

Definition 3.2.
EAdp(D)={aeD|(Tp € IP)(Va' € D)(Expp [U(a)] = Expp[u(a’)])}

s picks for EAdyp iff for every D € D, s(D) € EAdp(D).

Note that a € EAdp (D) iff there is some p € IP such that a € EU,(D). Thus,
any picking strategy s that picks for EU,, for some p € IP, also picks for EAdp.

Definition 3.3.
Maxp(D) = {a € D|(Va' € D)(3p € P)(Exp,[th(a)] = Exp,[ti(a’)])}

s picks for Maxp iff for every D € D, s(D) € Maxp (D).
We treat E-Admissibility first.
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3.2.1 E-Admissibility

We want to consider how E-Admissibility judges picking strategies. This de-
pends on your uncertainty over which decision problem you’ll face as well as
your uncertainty about the state of the world. We represent your uncertainty
over () x D with a credal set, B, given by a set of probability functions, b, over
QxD.

We can simply apply our notion of E-Admissibility with the credal set B to
determine which picking strategies are E-Admissible.

EAdg(S) = {s € S|(3b € B)(Vs' € S)(Expy[tl(s)] > Expy[i(s)])}

That is, s € EAdp(S) iff there is some b € B such thats € EU,(S).

By Proposition 2.3, for any b € B that has the form p x p, if s picks for EU), then
itis in EU,(S), and thus, is in EAdg(S). Also, when p € P, any s that picks
for EU), also picks for EAdp. We thus typically have some strategy which both
picks for EAdp and is in EAdp, unlike for I'-Maximin.

Proposition 3.4. If p € P and p x u € B, then any picking strategy s that picks for
EU,, both picks for EAdp and is in EAdp(S).

If there exists some p and p with p € P and p x p € B, then there are picking
strategies that pick for EAdp and are in EAdp(S).

If, for every p € P, there is some y such that p x u € B, then for every D € D and
a € EAdp (D), there is some s such that s(D) = a and s € EAdp(S).

This is proved in Appendix C.2.

There are a number of conditions that guarantee the existence of some p x y €
B for any p € P, and thus ensure that every E-Admissible action in a decision
problem is part of a picking strategy that is E-Admissible. For example, sup-
pose you have no views whatsoever about which decisions you will face, nor
about the evidential value of information about which decisions you will face.
In that case, your credal set B over () X D is given by the natural extension of
IP to this space, which is the largest (least informative) set of probabilities that
extend the probabilities in IP to (3 x D. This is sufficient to guarantee that for
every p € [P there is some y on D such that p x u € B.

Alternatively, suppose you have a bit of information both about the world and
which decision problem you will face. Your uncertainty about the world is
given by the credal set IP over (). Your uncertainty about the which decision
you will face is given by the credal set M over D. Suppose also that you treat
information about which decisions you will face as irrelevant to which state of
the world you are in.

In the precise setting, irrelevance is a univocal, symmetric notion: for any joint
distribution b over Q) x D, D is stochastically independent of (and hence irrele-
vant to) ) according to b just in case b(w € A|D € E) = b(w € A) whenever
b(D € E) > 0.13 But in the imprecise setting, irrelevance fractures into a vari-
ety of distinct, not necessarily symmetric notions.!*

BPForany A C Q, w € A := {{w,D) € A x D|w € A}. Likewise, forany E C D, D € E :=
{{w,D) e O xD|D € E}.
14 A short survey of independence notions for imprecise probability: complete independence
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Consider a case where I’ and M are closed and convex and you treat D as epis-
temically irrelevant to (), in the sense of Walley (1991). This means roughly that
learning information about which decision problem you face does not change
your maximum buy price for any “worldly” gamble, i.e., any gamble whose
payout depends only on (). Suppose that I’, M and this judgment of epistemic
irrelevance jointly capture the totality of your views. In that case, your credal
set B over () x D is given by the irrelevant natural extension (see de Cooman
& Enrique Miranda, 2012, Thm 13). This is the largest (least informative) set
B of probabilities b over (2 x D that marginalize to IP and IM and satisfy the
following inequality constraints: for any gamble g : 3 — R and any B C D
with b(D € B) >0

inf {Exp,[g] | p € P} < Expy[g*] < sup {Exp,[¢] | p € P}
and
inf{Expp[g] lp € ]P} < Expy[g™ | D € B] < sup {Expp[g] |p e ]P} ,

where g7 : (3 x D — Ris the “cylindrical extension” of ¢ defined by ¢* (w, D) =
g(w) forallw € Yand D € D. As many authors have noted, individual prob-
abilities b in the irrelevant natural extension B will not in general treat D as
irrelevant to Q) (¢f. (De Bock, 2019, pp. 96-7)). Nonetheless, B itself will do
so, in the sense described above. Moreover, B will contain any b that treats
D as stochastically independent of (). This is sufficient to guarantee that the
condition of Proposition 3.4 holds.

Rather than treating D as epistemically irrelevant to (), you might treat D and
Q) as completely independent, in the sense of Seidenfeld (2007); Cozman (2012),
i.e., D and () are stochastically independent according to every b € B. This is
a more stringent notion of irrelevance than epistemic irrelevance (and is also
symmetric). If I’ and M capture your opinions about () and D, respectively,
you judge D and () as completely independent, and nothing more (this cap-
tures the totality of your views), then your credal set B over () x D is the largest
(least informative) set IB of probabilities b over () x D that marginalize to IP and
M and satisfies complete independence, i.e., B = {p x u|p € P,y € M}. This
is also sufficient to guarantee that the condition of Proposition 3.4 holds.

The upshot is that E-Admissibility is not self-undermining in the same way that
I'-Maximin is self-undermining. So long as IP and BB are appropriately related,
then there are strategies that pick for it that it does not deem impermissible.

Do we obtain a converse to Proposition 3.4? Are these the only E-Admissible
strategies? A strategy is E-Admissible iff there is some b € B which expects it
to be optimal. We might hope to be able to apply Proposition 2.5 to get that it
is only these strategies that are E-Admissible. For this, we need to assume that
every b in B has the form p x y, i.e., that you treat D as completely irrelevant
to ()

for sets of probabilities (Seidenfeld (2007); Cozman (2012)); independence in selection for lower
previsions (de Campos & Moral (1995)); strong independence for lower previsions and sets of
desirable gambles (de Cooman & Miranda (2012)); epistemic independence (value and subset) for
sets of desirable gambles (Moral (2005)); epistemic h-independence for lower previsions and credal
sets (De Bock (2015)); S-independence for choice functions (De Bock & de Cooman (2021)).
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Proposition 3.5. Suppose B makes Q) and D completely independent (so every b € B
has the form p x p.)

Then, s € EAdg(S) iff there is some p x p € B such that s y-surely picks for EU,,.
This is proved in Appendix C.2.

So the rather strong judgment of complete independence has rather strong im-
plications for your views about picking strategies. The only strategies that are
permissible by the lights of E-Admissibility in this case are ones that pick for
expected utility theory, i.e., always pick options that maximize p-expected util-
ity, for some p x u € B.

For example, in the Ellsberg case (Section 3.1), EAd]p(DEHSberg) = {1E,1F} and

EAdIP(D;:HSberg) = {2E,2F}; so every strategy picks for EAdp. However, the
sigoF strategy, which is the empirically observed strategy, does not pick for
any EUy: it is not rationalisable by expected utility theory.!® If every b € B
has the form p x u with each y giving positive probability to facing both of the
decisions in the Ellsberg case, then sg r also does not p-surely pick for EU,
for any p x u € B; and thus, it is not in EAdg(S), despite picking for EAdp.
However, there are some strategies which pick for EAdp and are in EAdp(S),
namely any strategy for which there is some p x y € B which p-surely picks
for EUp, for example sig 7E.

There are often picking strategies s that pick for EAdp—for each decision prob-
lem D, they pick an action from EAdp (D)—but which are rejected by EAdp—
that is, they do not lie in EAdg(S). This occurs when, for each decision prob-
lem D, there is some probability function p € IP such that s(D) € EU,(D), but
where different probability functions rationalise s in different decision prob-
lems, and there is no (p, #) € B such that s y-surely picks for EUj.

This will entail that, for every (p, i) € B, EAdp is not p-surely a restriction of
EUp, ie., u({D|EAdp(D) \ EU,(D) # @}) > 0. Once we move to probabilistic
picking strategies below, it will turn out that this condition is also sufficient
to ensure that no regular probabilistic picking strategy p-surely picks for EU).
However, it is not sufficient to show the existence of the deterministic picking
strategies here. To do that, we require that each u recognises the requirement
to coordinate.

We can give some sufficient conditions for the existence of strategies that pick
for EAdp but are rejected by EAdp:

Proposition 3.6. Suppose B makes Q) and D completely independent (so every b € B
has the form p x p.)

Suppose there is a selection of pairwise disjoint events E; C D, one for each g € P
(some of which may be empty), such that forall p x y € B,

H (U {D € E;|EUp(D) NEUy(D) = Q}) >0

qelP

Then there is s which picks for EAdp but which is not in EAdp(S).

15Gee Footnote 12.
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This is proved in Appendix C.4.

In certain cases, such as the Ellsberg ones, we can straightforwardly verify that
this sufficient condition holds. We can also show it holds under some plenitude
conditions: if each u assigns strictly positive measure to every collection of
take-it-or-leave-it decisions generated by a non-empty open subset of .4, that
is, u({{a,0} |a € V}) > 0, for V a non-empty open subset of A; or if each y
assigns strictly positive measure to every non-empty open set of decisions. In
such cases, we can select two disjoint Ej, E; such that for any p # g, and for
i =12 u({D € E; | EUy(D)NEU,(D) = @}) > 0. Then by selecting any
distinct g7, g5 from IP, we can see that the conditions of Proposition 3.4 hold.
We discuss these in Appendix C.4.

Does this make E-Admissibility self-undermining? Not exactly. But it does
mean that, by her own lights, an E-Admissibility decision-maker must pick
from her choice set as if her credal set represented some true, precise proba-
bility which she is simply not in a position to identify. This is close to what
Levi (1999) referred to as imprecise rather than indeterminate probabilities. And
it may not sit well with contemporary proponents of E-Admissibility.

On the other hand, one might not see this as a concern for E-Admissibility.
It just shows that E-Admissibility sees value in coordinating how you resolve
incomparability. Take a simple example.

Dgoord X -X Dgoord X -X
pl x 1-—x pl x 1-—x

B | £10 £10 B | £10 £10

1C | £0 £20 2C | £20  £0

Any EU-maximizer will coordinate their choices in D™ and D§°°™ in the
following sense: assuming their utility is linear in £s, they will choose B (reject
1C) in D$°°™ just in case they choose 2C (reject B) in DS?°"Y; likewise, they will

choose 1C (reject B) in Dfoord just in case they choose B (reject 2C) in D§°°™,

Suppose P = {p1, p2}, where p; expects B to be strictly better than 1C, while
p2 expects B to be strictly worse than 2C. In that case, EAdp (D$°°d) = {B,1C}
and EAdp(D§°°d) = {B,2C}. You find both options in both options incompa-
rable, i.e., not rejected but also not indifferent, or equally good. Just as each
of p1 and py coordinates their choices in DS and D$*°™, so too does E-
Admissibility, advising you to coordinate how you resolve incomparability in
a picking strategy. You ought to pick B in Dg"ord just in case you pick 2C in

D§eord. Likewise, you ought to pick 1C in D™ just in case you pick B in
Dgoord‘

Now, you might doubt that there is really any value in this sort of “modal
coordination.” (Recall, you will actually only face one of D™ or Dsoord.,
You are not coordinating across time.) But the fact that E-Admissibility sees
value in coordinating how you resolve incomparability does not render it self-
undermining.

Moreover, while E-Admissibility’s lust for coordination does require decision-
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makers to pick as if their probabilities were imprecise rather than indetermi-
nate, in Levi’s sense, this does not mean that they actually are imprecise rather
than indeterminate. Their credal set need not actually represent some true, pre-
cise probability which they are unable to identify. This is reflected in their
rejection judgments. They often find options genuinely incomparable—not re-
jected, but not indifferent. No agent with precise probabilities would do so.
They are committed to picking as if they have some true, precise probability be-
cause they value coordination in resolving incomparability. As we said above,
it is then an interesting question how far this view then lies from the precise
permissivist’s view that you must have precise probabilities, and which you
have is constrained by your evidence, but typically many are left open to you.

The utility of an action, {(a), is a gamble on ). The utility of a picking strategy,
in contrast, {(s), is a gamble on Q) x D—a larger, refined sample space. Rea-
sons for rejection that apply to one scale, or level of resolution, might not apply
at others. E-Admissibility identifies some reasons for rejection at the scale of
picking strategies—reasons grounded in the (putative) value of coordination—
that are not reasons for rejection at the scale of actions or options.

3.2.2 Maximality

We can also apply the notion of Maximality to determine which picking strate-
gies are Maximal:

Maxg(S) = {s € S| (Vs' € §)(3b € B)(Expp[LU(s)] = Expp[th(s")])}

Since Maximality is a more permissive decision theory than E-Admissibility,
Proposition 3.4 entails:

Proposition 3.7. If p € IP and p x yu € B then any s which picks for EU), both picks
for Maxp and is in Maxg(S).

If there exists some p and y with p € P and p X pu € B, then there are some strategies
which pick for Maxp and are in Maxg(S).

And so, like E-Admissibility, Maximality is not self-undermining in the way
that [-Maximin is self-undermining. There are always strategies that pick for
it that it does not deem impermissible, at least as long as such p € P and
p X p € B exist.

Unlike for E-Admissibility, we do not get the converse result (even under the
assumption of complete independence). There can sometimes be some strate-
gies which are not ruled out by Maximality but which nonetheless do not pick
for any EU,. This is because a strategy is only ruled out as impermissible if
there’s a single alternative which is preferable according to every b € B. This
happens, for example, in the Ellsberg case if one’s probability over which deci-
sion problem you think you'll face is sufficiently imprecise or if it’s precise and
pretty confident about which one you will face.

If, however, you think it’s precise and equally likely that you’ll face each of

DIEHSberg and D;HSberg, so your credal set is given by B = {p x y*|p € P},
where y*(DfHSberg =u* (D?HSberg) = 0.5, then as we observed in Section 3.1,
Exp, [U(s1E28) (w)] = 5 for each w and Exp,«[UU(szg,17) (w)] = 6; so then for
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every probability p, Exp,.,[#(sip2r)] = 5 and Exp,, .« [U(s2E1F)] = 6, so
siE2F ¢ Maxg(S).

We will be able to show that, if your credences over which decision problem
you'll face are precise, and also have a further property—they “require almost
everywhere decisiveness”!®—then the only strategies that Maximality does not
rule as impermissible are the expected utility strategies. We will discuss this
and give the details in Section 4.1.3, but we first note that our results so far hold
in a more general setting, one where we allow for decision-state dependence.

3.2.3 Decision-State Dependence

To avoid the various independence assumptions we employed in Section 3.2,
we now generalize some of our earlier results to cover the case in which we
don’t assume the decision problem you face is independent of the state of the
world you're in, as we did in the precise setting in Section 2.1. To do this, in
any decision problem, we must bring B up to speed on the problem that you
face (by updating on that information via pointwise conditionalization), and
then use the updated credal set to determine which options to reject.

Definition 3.8.
EAdg(.|_)(D) = {a € D|(3b € B)(Va' € D)(Expy(.|p)[tt(a)] = Expypy[4(a”)])}

s picks for EAdg,.|) iff, for all D € D, s(D) € EAdg(.|_)(D).
Thatis, a € EAdp.|_(D) iff there is some b € B such thata € EU,(|_(D).

Also s € EAdg(S) iff there is some b € B such thats € EU,(S). We thus have,
as a consequence of Proposition 2.7:

Proposition 3.9. s € EAdg(S) iff for some b in B, s bp-surely picks for EU.|_).
And so:

Proposition 3.10. Ifb € B and s picks for EUy,(.|_), then s both picks for EAdp.| )
and is in EAdg.|_).

There thus always exists some strategies which pick for EAdp and are in EAdg.|_).

For every D € D and a € EAdg(.|_y(D), there is some s such that s(D) = a and
s € EAdg(S).

These are both proved in Appendix C.2.

Whilst some of its picking strategies are not ruled out, often some will be ruled
out.

Proposition 3.11. Suppose there is a selection of pairwise disjoint events E,y C D,
one for each b’ € B (some of which may be empty), such that for allb € B,

bp < U {D S Eb’ |EUb(‘_)(D) ﬂEUb/H_)(D) = @}) > 0.
v'eB

16The example using the Ellsberg case does not have this property, which requires many decision

Ellsberg
)

problems to be possible. If, for example, we had selected p* (D = 0.1, then one can check

that no strategies are ruled out by Maximality.
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Then there is s that picks for EAdg.|_y but which is not in EAdp(S).
This is proved in Appendix C.4.

Proposition 3.11 provides one example of a “richness condition” on the class
of bp that guarantees that they assign positive probability to a “sufficiently
inclusive” set of decision problems that we can find a strategy s that picks for
EAdgp.|—) but which is not in EAd(S). But it is by no means the only one. For
example, let c be any choice function (e.g., EAd]B(“,), Max]B(,‘,), etc.). Suppose
that for any b € B, bp assigns positive probability to the set of decisions where
c leaves open options that b rejects, ie. bp(U,) > 0 where Uj, := {D € D|
c(D) € EUy(.|—)(D) }. Suppose further that there is some measurable statistic
r: D — [0,1) (think: a gradable property of a decision problem), and that for
any b € B and any open interval I C [0,1), bp(D € Uy |r(c(D)) € I) > 0
(roughly: bp sees a “sufficiently inclusive” subset of U, that it thinks 7(c(D))
spans [0,1) on Up). This “richness condition” also guarantees that we can find
a strategy s that picks for ¢ but does not bp-surely pick for EUy(|_ for any

b € B. By Proposition 3.9, then, s is not in EAdg(S).

Proposition 3.12. Suppose that for any b € B, bp(Uy,) > 0 where
U, = {D eD ‘ C(D) Z EUb(.|_)(D)}.

Suppose further that there is some measurable statistic v : D — [0,1) such that for
any b € B and any open interval I C [0,1),

bp(D € Uy|r(c(D)) € I) > 0.

Then there is s which picks for c but for no b € B does it bp-surely pick for EUy(|_.
This is proved in Appendix C.4.
As an immediate corollary of Proposition 3.9 and Proposition 3.12 we have:

Corollary 3.13. Suppose that for any b € B, bp(Uy) > 0 where
llb = {D €D ‘ EAd]B(‘,)(D) Z EUb(|7)(D)}

Suppose further that there is some measurable statistic v : D — [0,1) such that for
any b € B and any open interval I C [0,1),

bD(D e U, | T’(EAd]B(_‘,)(D)) S 1) > 0.

Then there is s which picks for EAdpg .|y but which is not in EAdp(S).
For Maximality, we can define:

Definition 3.14.

Maxp|_)(D) = {a € D|(Va' € D)(3p € IP)(Expy(.p)[&4(a)] > Expy(.p)[t4(a")]) }

Since s € EAdp(S) implies s € Maxp(S), we obtain, as a consequence of
Proposition 3.9:
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Proposition 3.15. If for some b in B, s bp-surely picks for EUy(|_), then s €
Maxg(S).

This is proved in Appendix C.3. And thus, there is always some s which picks
for Maxp.|_) which is itself not rejected according to Maxp(S). However,
again, we do not have an analogue of Proposition 3.9 unless we impose ad-
ditional particular restrictions on B (Section 4.1.3).

4 The utility of using a decision theory

Up to this point, we have asked how a decision theory evaluates the pick-
ing strategies that pick for the choice function to which that decision theory
gives rise. This is one way to answer the question whether the decision theory
undermines its own recommendations, and we’ve seen that Allais-permitting
decision theories fare poorly, as does I'-Maximin both of which rule out as im-
permissible the strategy which they require; while E-Admissibility and Max-
imality fare better, as some compatible strategies are evaluated as acceptable
(although not all).

However, other approaches are available too. We are interested in judging a
decision theory as a means to your ends, and we have been using the proposed
decision theory itself to do the judging, for it is, after all, a theory of which
means to your ends are rational. Judging picking strategies that pick for the
choice function that a decision theory produces furnishes us with a straight-
forward approach to this question, because they determine what the outcomes
are: given a decision problem and a state of the world, the utility of a picking
strategy is the utility, at that state of the world, of the act it picks from the deci-
sion problem. Since a decision theory doesn’t always give definitive guidance
on which act to pick when faced with a decision, we considered various strate-
gies compatible with its recommendations; in our terminology, the strategies
that pick for it. How else might we evaluate what a decision theory will lead
you to do when there are various strategies it leaves open?

We propose that you might have a precise probability over the acts the decision
theory deems permissible—what we’ll call a probabilistic picking strategy—
and you might take the utility of this probabilistic picking strategy at a state of
the world to be its expected utility at that world. There are two reasons you
might think this is the right way to evaluate a decision theory:

Firstly, you might think that, once your decision theory gives you its choice
set, you will pick by applying some randomisation method, such as tossing a
coin or rolling a die. Perhaps you think we are freely selecting amongst various
randomisation methods as well as the choice functions to which your decision
theory gives rise, or perhaps you think that, when selecting a choice function,
it simply comes with a specified randomisation method.

Secondly, you might think that, once your decision theory gives its choice set,
you don’t know what happens next, except that, in the end, you do in fact
pick a particular act from that set. We then want to represent your uncertainty
about how you'll end up picking when you’ve adopted a particular decision
theory whose choice set is not a singleton. And it might just be that your un-
certainty over how you’ll pick is best represented by a precise probability. (In
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Section 4.2.1, we will extend this to the case where your uncertainty over how
you'll pick is imprecise.)

Before discussing some alternatives, we will now show that under either of
these ways of thinking about judging the outcomes of adopting a decision the-
ory, all our previous claims carry over, and in fact in some cases even get worse
since the strategies that align with expected utility theory arise from extremal
picking strategies which we might want to rule out under this way of thinking.

4.1 Probabilistic picking strategies

We begin by extending our definitions:
Definition 4.1.

* A probabilistic picking strategy n, specifies, for each decision problem, D €
D, a probability function np over D, i.e., over the acts available in the decision
problem D.

* For a choice function c, n picks for c iff forall D € D, np(c(D)) =1, i.e., it is
certain that what it picks will be compatible with C’s recommendations.

e For a choice function c, n y-surely picks for ¢, if u{D |np(c(D)) =1} = 1.

Observe that in the special case where n is extremal—that is, when for every
D it assigns all its probabilistic weight to an individual member of D—then
we recover our original notion of a picking strategy. We will call these the
deterministic picking strategies.

We add a further definition:

Definition 4.2. For a choice function c, n is regular for c, if it picks for c and for
every D € Dand a € c(D), np(a) > 0.

For a deterministic picking strategy, s, we simply took its utility to be the utility
of the act it requires you to pick: given a state of the world w and a decision
problem D, 4(s)(w, D) := $(s(D))(w), the utility of the act s(D) at w. For n,
we take its utility to be the expected utility of the act it lead you to pick: given a
state of the world w and a decision problem D,

4(n)(w,D) = Y np(a)th(a)(w).

aeD

We have thus far been assuming that decision problems D are non-empty finite
sets of acts. If we were to allow D to be infinite (although compact), then we
should have i(n)(w, D) := [, 4(a)(w) np(da).

In the next few sections, we note how our earlier results concerning determin-
istic picking strategies generalize to probabilistic picking strategies.

We will judge whether a given decision theory considers a probabilistic picking
strategy n to be impermissible. This will depend on the range of alternatives
available. That is, we will be judging whether n is an impermissible picking
strategy from a set of picking strategies, \. There are various natural proposals
for what \V contains, depending on one’s interpretation and applications of our
results. When A consists just of extremal picking strategies, it is equivalent to
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the set of deterministic picking strategies, S, which we considered in the first
half of the paper. If you think you get to pick by randomisation, and can select
any randomisation process, then N will be the collection of all probabilistic
picking strategies. If you think we are just evaluating choice functions, and
each one just comes along with a single randomisation process (for example,
a uniform distribution over its choice set), then N will have a particular n®
for each ¢, where n® picks for c. If instead you are just uncertain over how
you'll pick when using a choice function ¢, and assume that this is a matter
governed by a precise probability, then again we’ll have a n® representing your
probabilistic uncertainty over how you’ll pick once you've selected a choice
function c and are faced with a decision D.

4.1.1 Expected Utility Theory

Our results all transpose to the probabilistic setting for any choice of A with a
particular feature: it contains some n€, for each relevant choice function EU, or
EUp( ).

Definition 4.3. A set of probabilistic picking strategies, N':

e N is EU-complete if, for every probability p over Q, there is some n in N such
that n picks for EUy,.

¢ N is conditional-EU-complete if, for every probability b over Q) x D, there is
some n in N such that n picks for EUp(-)-

e N is deterministically full if N' O S, that is, if N contains all the determin-
istic picking strategies.

If it contains some n® for every possible choice function then A is determinis-
tically full.

Proposition 4.4. N is deterministically full = N is conditional-EU-complete
= N is EU-complete.

These conditions would fail if, for example, our agents were bounded in a
particular way that would render them unable to act according to a specified
choice function; but we are assuming that isn’t our case.

In fact, our results only need N is EU-complete for B which we can define as:
for every b € B, there is some n in A such that n bp-surely picks for EUy.|_),
but in the main body of the paper we will state the results with the more gen-
eral restrictions on V.

Propositions 2.3 and 2.5 extend to this setting. Suppose p is a probability over
Q) and p is a probability measure over D.

Proposition 4.5. If N is EU-complete, we have:
n € EUpyu(N) < n p-surely picks for EUp.
If N is conditional-EU-complete, then

n € EUy(N) & n bp-surely picks for EUy(.|_).

This is proved in Appendix C.1.
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4.1.2 E-Admissibility

Propositions 3.4, 3.6, 3.9 and 3.10 also generalise to the probabilistic picking
strategy setting.

Since a probabilistic picking strategy is in EAdy iff, for some b in B, it is in EUy,
we get as an immediate consequence of Proposition 4.5:

Proposition 4.6. If for some p x yu € B, n p-surely picks for EU, then n € EAdg(N).
More generally, if for some b € B, n bp-surely picks for EUy .|y, then n € EAdg(N).

Moreover, these are the only members of EAdp, at least assuming that N is conditional-
EU-complete:

n € EAdg(N) < for some b in B, n bp-surely picks for EUp(.|-).-

This is proved in Appendix C.2.
Proposition 4.7. Suppose that N is conditional-EU-complete.
Suppose that for every b € B, bp{D | EAdp.|_)(D) C EUp |y} < 1.

That is, for all b € B, bp{D | there is b’ € B with EUy(.|_)(D) € EUy(.|_)(D)} >
0.

Then, if n is a regular picking strategy for EAdpg.|_), then n ¢ EAdg(N).
This is proved in Appendix C.4.

Let’s see this at work. Consider again the Ellsberg setup, Section 3.1. Recall that

EAdp (D} *""®) = {1E,1F} and EAdp (D} " ""®) = {2E,2F}. Every probability

in IP rules out at least one of the E-Admissible options as impermissible. For
example, any p(Black) > 7/30 rules 1E as excluded, i.e., not in EUy, but there’s
some positive chance that n Jeisbers picks 1E, by the assumption that it is regular

1
for EAdp. Thus, n does not pick for EU,,. It also does not even p-surely pick

for EUy, if we assume that each p assigns positive probability to both Dquberg

and D]; HSberg. It is thus not E-Admissible.

In fact, if IP is allowed to be non-convex, we get cases where n will be judged
as impermissible even when you know what decision problem you'll be faced
with.!” Suppose you're certain you'll face a decision problem D = {ay,a,}. So
#(D) = 1. And suppose P = {p1, p2 }, where p; expects a; to be strictly better
than a,, while p; expects a, to be strictly better than a;. So E-Admissibility with
IP says that neither a; or a, are rejected. Then for any regular picking strategy
for EAdp, np will give positive probability to both a; and a;. p; doesn’t ex-
pect it to be best, and nor does py. So, by E-Admissibility, n is not rationally
permissible.

One motivation for introducing probabilistic picking strategies, and in partic-
ular regular probabilistic picking strategies, was to judge an agent’s decision
theory as a means to her ends. We wished to give a particular judgement of
how good it would be to adopt a given decision theory, rather than simply
leaving open a whole range of picking strategies, which represent a range of

7These examples are avoided when IP is convex as then there will be a probability p* € IP which
is indifferent between the two actions, and thus, n € EUp+ (N).
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different ways of implementing that theory. If this is how we are trying to judge
E-Admissibility, then E-Admissibility is self-undermining. For example, if one
picks amongst the non-rejected options by randomisation, with a regular ran-
domisation device, then E-Admissibility deems it impermissible. The defender
of E-Admissibility will argue that one shouldn’t select by randomisation, and
also shouldn’t have uncertainty over how one picks in a way which amounts
to randomisation. Instead, the defender of E-Admissibility will highlight that
it sees value in coordinating how you resolve incomparability. Randomisation,
or anything that amounts to that, just won’t do.

The point is a general one. If you try to give any way of scoring, or measuring
the utility of choice functions or decision rules at each world and at each deci-
sion problem, then you can only avoid being ruled out as impermissible by the
lights of E-Admissibility if your rule is equivalent to expected utility theory.

4.1.3 Maximality

As in Section 3.2, since Maximality is more permissive than E-Admissibility, all
EU, strategies are evaluated as acceptable according to Maximality. We thus
have, as a corollary to Proposition 4.5, and extending Proposition 3.7:

Proposition 4.8. If for some p x y € B, n p-surely picks for EUp, then n € Maxg(N).
More generally, if for some b € B, n bp-surely picks for EUy .|y, then n € Maxg (N).
This is proved in Appendix C.3.

For E-Admissibility, we were able to show that it is only these strategies that
are judged acceptable by the decision theory. This result does not immediately
apply to Maximality in a similar way because, for a strategy to be deemed
impermissible, the various probabilities b € BB have to agree on a particular
alternative as better.

However, if we impose an additional restriction on B we can obtain an anal-
ogous result: suppose your credence over which decision you'll face is given
by a single, precise probability, #*, and that B has the form {p x y*|p € P}.
All our results equally apply when B is the convex hull of this, since taking a
convex hull doesn’t affect which acts are rejected by Maximality. But, if IP is
convex, then {p x u* | p € PP} is also convex (since y* is fixed), and so we do
not bother presenting this strengthening.

We will also place a further condition on p*:

Definition 4.9. p* requires almost everywhere decisiveness iff for all probabili-
ties p,
u*{D |EUp(D) is a singleton} = 1.

That is, for each probability function p, y* is certain you’ll face a decision prob-
lem in which only one act maximizes expected utility. That is, the set of deci-
sion problems in which there are ties for expected utility has measure 0. For
example, fix a proposition and suppose you will face the choice between pay-
ing £t for a bet that pays out £1 if the proposition is true and £0 if it is false,
for unknown ¢t in [0,1]. Then, if u* is a measure that assigns strictly positive
weight to every non-degenerate interval [x,y] C [0, 1], then y* requires almost
everywhere decisiveness. Whatever your probability in the fixed proposition,
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the set of decisions of this form in which buying the bet and rejecting the bet
have equal expected utility has measure 0 by the lights of u*.

Then we have the following result.18

Proposition 4.10. Suppose N is EU-complete. Suppose that B has the form {p x p* |
p € P} and p* requires almost everywhere decisiveness. Then if n € Maxg(N'), then
there is some probability p € ‘P such that n u*-surely picks for EU,,.

This is proved in Appendix D. It follows from a version of Wald’s Complete
Class Theorem. Using that, we show that, if n is not in EUpxp for any p,
then there is some alternative n’—in fact, an alternative n’ that picks for some
EUp,—such that Exp,+ [t(n) (w)] > Exp,:[{(n)(w)] for all w, and thus for all
probabilistic p, Exp, [Exp,,- [$(n")]] > Exp,[Exp,-[tl(n)]], i.e., Exppy e [L(n")] >
Exp i [L(n)]. Tt follows that n ¢ Maxp (N).

The set S of all deterministic picking strategies discussed in the earlier part
of the paper is EU-complete, and so we obtain the result that we hinted at in
Section 3.2, namely, that if we have B that satisfies the conditions of Proposi-
tion 4.10, then it is only EU), strategies that are in Maxg(S). Now consider the
following corollary of Proposition 3.6:

Corollary 4.11. Suppose that B has the form {p x u* | p € P}.

Suppose there is a selection of pairwise disjoint events E; C D, one for each g € P
(some of which may be empty), such that for all p € P,

p* | | J{D € E;|EU,(D)NEU,(D) =@} | >0
gelP

Then there is s which picks for EAdp but which does not p*-surely pick for EU), for
any p € P.

If we have B that satisfies the conditions of Proposition 4.10, we can appeal to
this corollary and Proposition 4.10, together with the fact that E-Admissibility
is at least as permissive as Maximality, to give sufficient conditions under
which there is a deterministic strategy s that picks for Maxp but that does not
belong to Maxp(S).

Proposition 4.12. Suppose N is EU-complete. Suppose that B has the form {p x y* |
p € P} and y* requires almost everywhere decisiveness.

Suppose there is a selection of pairwise disjoint events E; C D, one for each g € P
(some of which may be empty), such that for all p € P,

| U{D € E;|EU,(D)NEU,(D) =2} | >0
qeP

Then there is s which picks for Maxp but which is not in Maxg(S).

18The assumptions on u* are not required if one instead assumes that A\ is convex, which is
motivated when one considers randomisations as available options. If D was allowed to be infinite,
one should also ensure that AV is closed, for which one needs to allow merely finitely additive
randomisations (Schervish et al., 2020).
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We can also apply the same trick to Proposition 3.12. Consider the following
corollary:

Corollary 4.13. Suppose that for any p € P, u*(Uy,) > 0 where
U, := {D € D|c¢(D) Z EU,(D)}.

Suppose further that there is some measurable statistic v : D — [0,1) such that for
any p € P and any open interval I C [0,1),

p (D eUy|r(c(D)) el) >0.
Then there is s which picks for ¢ but which does not p*-surely pick for EU, for any
pEP.
This corollary and Proposition 4.10 give us:

Proposition 4.14. Suppose N is EU-complete. Suppose that B has the form {p x p* |
p € P} and y* requires almost everywhere decisiveness.

Suppose that for any p € P, u*(Up) > 0 where
U, := {D € D|Maxp(D) € EU,(D)}.

Suppose further that there is some measurable statistic v : D — [0,1) such that for
any p € P and any open interval I C [0,1),

w*(D € Uy |r(Maxp(D)) € I) > 0.

Then there is s which picks for Maxp but which is not in Maxg(S).
There are various other natural richness conditions we might consider, e.g.,

Proposition 4.15. For any choice function c, if u* is atomless and for all p € P,
pw{D|c(D) C EU,(D)} < 1, then there is s which picks for c but for no p € P does
it w*-surely pick for EUp.

This is proved in Appendix D.2.

As an immediate corollary of Proposition 4.10 and Proposition 4.15 we have:

Corollary 4.16. Suppose N is EU-complete. Suppose that B has the form {p x p* |
p € P} and y* requires almost everywhere decisiveness.

If u* is atomless and for all p € P, p*{D |Maxp(D) C EU,(D)} < 1, then there is
s which picks for Maxp but which is not in Maxg(S).

Just as we got a more challenging result for E-Admissibility when we restricted
attention to regular picking strategies, as these won’t look like EU), strategies,
similarly we get a more challenging result for Maximality when we restrict to
regular picking strategies because such regular picking strategies will not p*-
surely pick for any EU,,, unless Maximality just collapses to EU,, for some p, or
at least y*-surely does so.

Proposition 4.17. Suppose N is EU-complete. Suppose that B has the form {p x
w*|p € P} and u* requires almost everywhere decisiveness. Suppose that for every
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probability p, u*{D |Maxp(D) C EU,(D)} < 1.1 Then, if n is a regular picking
strategy for Maxp then n ¢ Maxg (N).

This is proved in Appendix D.

The lesson from this result is that you should not pick amongst the options that
are not ruled out by applying a (regular) randomisation device; nor should you
be uncertain over how you’ll pick in a way which amounts to randomisation;
at least when your opinions over which decision problem you'll face are pre-
cise and require almost everywhere decisiveness. Just as with E-Admissibility,
the defender of Maximality will argue that this is the right answer. In cases
like this, you should coordinate how you resolve incomparability. There are
reasons for rejection at the scale of picking strategies—reasons grounded in the
(putative) value of coordination—that are not reasons for rejection at the scale
of actions or options.

4.1.4 TI'-Maximin

Since I'-Maximin is a more restrictive theory than Maximality, for a strategy to
be I'"Maximin there must be some probability function p € P for which the
strategy p* surely picks for EUy. As a result we have:

Proposition 4.18. Suppose N is EU-complete. Suppose that B has the form {p x p* |
p € P} and y* requires almost everywhere decisiveness. Then if n € Tg(N), there is
some probability p € P where n u*-surely picks for EU.

Suppose further that forall p € P, w*{D € D |Tp(D) € EU,(D)} > 0. Then if n
is regular for T'p then n ¢ Tg(N).

This is proved in Appendix D.2.

We can also use Corollary 4.13 and Proposition 4.15 to show that there are
deterministic strategies s that pick for I'p but do not belong to I'g(S).

Corollary 4.19. Suppose N is EU-complete. Suppose that B has the form {p x p* |
p € P} and u* requires almost everywhere decisiveness.

Suppose that for any p € P, u*(Up) > 0 where
U, := {D € D|Tp(D) £ EU,(D)}.

Suppose further that there is some measurable statistic v : D — [0,1) such that for
any p € P and any open interval I C [0,1),

p*(D e Uy, |r(Tp(D)) €1) >0.

Then there is s which picks for T'p but which is not in T'g(S).
Likewise, Proposition 4.15 yields:

9Equivalently, that for every probability p there is a non-negligible set of decision prob-
lems for which there is some a € D which is not an EU, act but which is Maximal: u*{D |

JneD [(abeD Exp, (a) < Exp, (b)) and VbeD 3p'€P Exp, (b) < Expp/(a)]} >0
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Corollary 4.20. Suppose N is EU-complete. Suppose that B has the form {p x p* |
p € P} and p* requires almost everywhere decisiveness.

If u* is atomless and for all p € P, y*{D |Tp(D) C EU,(D)} < 1, then thereis s
which picks for T'p but which is not in I'g(S).

Even if a strategy u* surely picks for some EUy, it may nonetheless be imper-
missible according to I'-Maximin, as we saw, for example, in the Ellsberg case
(Section 3.1) where the only strategy compatible with I'"Maximin was judged
impermissible by the theory itself.

4.1.5 Uncertainty about decisions

For both these Maximality and I'-Maximin results, we have had to assume
something particular about your uncertainty concerning the decision you'll
face: we assume you have precise probabilities over the possible decision prob-
lems, and those probabilities are broad enough to ensure that they require
almost everywhere decisiveness. It is, however, quite general, applying in a
much broader range of cases than particular uncertainty generated from spe-
cific cases like the Ellsberg or Allais cases (see Section 1.2.3).

It seems troubling enough that, should you acquire sufficient evidence to be-
come uncertain about the decision problems you’ll face in a way that is repre-
sented by precise probabilities, you would have to abandon the decision theory
or the picking strategy you're using.

4.2 Alternatives
421 Imprecise picking strategies

So far, we’ve used decision theories to judge deterministic picking strategies,
s, and probabilistic picking strategies, n. But perhaps the proponent of impre-
cise probabilities thinks the way you pick is better represented by imprecise
probabilities, indeed, a set of probabilistic picking strategies.

Since E-Admissibility requires coordinating, and rejects all strategies except
for those equivalent to EU,, strategies, perhaps it is the set of all these EU,
strategies that E-Admissibility recommends. Can we apply E-Admissibility
itself to judge this proposal?

To do this, we might extend E-Admissibility so that it judges what we might
call imprecise acts, where we represent an imprecise act as a set of acts. So the
imprecise acts available in decision problem D is any A C D. For instance, the
set of all the EU,, strategies is such an imprecise act in the decision problem
containing all the possible strategies.

For precise acts, E-Admissibility rejects an act when, for every p in IP, there is
some alternative act 2’ that p expects to do better. When extending E-Admissibility
to judge imprecise acts, we have to ask what it means for p to expect an impre-
cise act A’ to do better than A.

A first suggestion is to say that p expects A’ to do better than A when, for every
a € Aanda’ € A, Exp,[tl(a’)] > Exp,[tl(a)]. This is a very hard condition
to meet, so very few imprecise acts will be ruled out as impermissible on this
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basis. This can already rule as impermissible any imprecise picking strategy
each of whose members is a regular picking strategy for EAdp, but it does not
deem impermissible the imprecise act consisting of all picking strategies or all
EU, strategies, our motivating idea for imprecise picking strategies.

Alternatively, one might say that p expects A’ to do better than A when, for
everya € A and a’ € A', Exp,[tl(a’)] > Exp,[t(a)], and there is some a € A

such that for all &’ € A’, Exp,[i(a’)] > Exp,[¢l(a)].* This condition generates
a version of E-Admissibility for imprecise acts which rules as impermissible
the set of all picking strategies for EAdp.

This criterion rules out the imprecise picking strategy that consists of the set of
all EU,, strategies, unless they all yu-surely pick for EU, for a single p x u € B.
Suppose N is a set of picking strategies, and there is no p x u in B such that all
strategies in N p-surely pick for EUy,; then each probability b = p x p evaluates
the precise picking strategy {n”}, where n? picks for EUp, to be better, in this
sense: for every n € IN, Exp,[t(n)] < Exp,[$l(n”)], and there is some n € N
with Exp,,[4(n)] < Exp, [$(n?)].

We should not expect to obtain similar results for Maximality. Consider an im-
precise picking strategy consisting of the set of all compatible picking strate-
gies, or even all those which are coordinated and pick for EU, for some p in
one’s credal set IP. Each probability in IP agrees that there is a precise picking
strategy that is better, but they disagree about which this precise picking strat-
egy is: for which p should it pick for EU,? Maximality thus avoids the charge
of evaluating the imprecise picking strategy as impermissible. There can be
imprecise picking strategies that are Maximal and which do not all pick for a
single EU), unlike for E-Admissibility.

So, whilst this approach is a challenge for E-Admissibility, it is an option for
Maximality. So, if picking strategies may be imprecise acts, represented by sets
of precise probabilistic picking strategies, then Maximality sometimes evades
the charge of being self-undermining. However, it is hard to see how to im-
plement an imprecise picking strategy. Perhaps one could choose by tossing a
coin about whose bias you have imprecise probabilities, or perhaps one should
have imprecise probabilistic uncertainty about how one will pick. But to main-
tain this response, one had better not gain additional information sufficient to
make one precise.

4.2.2 Utility of a choice function not given by a picking strategy

Perhaps we should specify the utility of a choice function in an alternative
way. For example, we might say that U(c, D,w) = sup{U(a,w)|a € c(D)}.
If we do this, our results clearly do not hold. In fact, if we measure the utility
of a choice function in this way, one should be maximally imprecise in every
decision problem, that is, one should set c(D) = D. And so, even if we require
that 4(c, D, w) is a mixture of U(a, w) for a € c(D), there are ways to define &l
such that our results do not follow.

200r perhaps this second disjunct should say that there is some 2 € A and a' € A’ with
Exp,[tl(a")] > Exp,[t(a)], but since our application of interest satisfies the slightly stronger prop-
erty, we merely impose that.
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However, measuring the utility of a choice function in this way would need
more justification. Why should it be evaluated this way? Why would this be
the right judgement of what utility I will get if I adopt the choice function c?

Or we could say that, when there’s an imprecise decision set, one should do
something else to make the decision, such as consulting an expert or gathering
more evidence (De Bock & De Cooman, 2014). But then why is the possibility of
consulting an expert or gathering more evidence not represented as an option
in the original decision problem?

5 Conclusion

We have asked what happens when we use a decision theory to judge itself,
or to judge strategies compatible with its recommendations, and we’ve found
significant challenges for a host of theories that diverge from expected utility
theory.

In Section 1, we showed that risk-weighted expected utility theory, and other
theories that accommodate the Allais preferences, are self-undermining in a
particular way: for any such theory, there are particular ways of being un-
certain about which decisions you’ll face and a single deterministic picking
strategy that chooses in line with the recommendations the decision theory
would make were you to face each possible decision you might face, and that
strategy is not itself acceptable according to the decision theory. These deci-
sion theories undermine their own recommendations; they recommend that
you should choose in each decision problem in a way that the theory itself
rejects when you're uncertain which decision problem you'll face. We gener-
ated these examples on the basis of the Allais preferences—and indeed any
failure of the Independence Axiom would do. We then noted that we see the
same phenomenon if we know we’ll face a binary decision defined over two
possible states of the world, and we place a uniform distribution over these dif-
ferent possible decisions; and similarly for a number of beta distributions we
might place over them. And so the extent of the self-undermining is reason-
ably broad, but we don’t have a precise general result that shows how broad it
is.

In Section 2, we showed that traditional Savage-style expected utility theory
does not have the same flaw: it always recommends its own picking strategies.

We then turned to decision theories that accommodate ambiguity and impre-
cision. In Section 3.1, we saw that I'-maximin is self-undermining in the way
the Allais-permitting theories were, and we generated the witness to this using
the Ellsberg preferences. That is, they can rule out their (only) picking strategy
as impermissible.

In Section 3.2, we observed that E-Admissibility and Maximility aren’t vulner-
able to the same challenge, since they judge some of their picking strategies
to be permissible. In the case of E-Admissibility, we noted that the decision
theory judges a picking strategy acceptable only if there is some probability
function such that the picking strategy is certain to pick an option that maxi-
mizes expected utility from the point of view of that probability function; and
so E-Admissibility requires picking strategies that coordinate across decisions.

36



In Section 4, we turned from deterministic picking strategies, which select
a single option from each decision problem, to probabilistic picking strate-
gies, which place a probability distribution over the options in each decision
problem. And we asked the same questions: when are decision theories self-
undermining? A probabilistic picking strategy might represent a randomi-
sation process; or it might represent your uncertainty about how you'll pick
when that is governed by a precise probability.

We noted that all our previous results generalise to this setting and, moreover,
the situation is worse for the imprecise decision theories: E-Admissibility now
judges any regular probabilistic picking strategy that picks for it to be imper-
missible, since such a strategy no longer looks like an expected utility strategy,
at least given some mild assumptions on the set of probabilities that represents
your uncertainty. For Maximality, we were able to show something similar,
although in this case we need a much stronger assumption: that our decision-
maker’s uncertainty over which decision she’ll face is governed by a precise
probability, along with a further assumption about how likely it is you'll face a
decision that has more than one option that maximizes expected utility. These
considerations highlight that one should not in general pick by randomisation
amongst the non-rejected options, or have uncertainty over how you'll pick in
a way that amounts to randomisation. Imprecise decision theories see value in
coordination.

We also considered extending the theories so that they might judge imprecise
picking strategies, represented as sets of picking strategies, such as the set of all
expected utility picking strategies. For instance, we suggested that, since each
probability function considers a picking strategy that always picks options that
maximize expected utility relative to it to be at least as good as all other pick-
ing strategies and better than some, we might say that it prefers its own strat-
egy to the set of all picking strategies, and so E-Admissibility might then rule
out as impermissible the set of all picking strategies, since each probability
function considers something else better. Thus, under this way of applying E-
Admissibility to judge imprecise picking strategies, the only strategies that are
not judged impermissible are those which correspond to expected utility for a
particular probability.

However, similar considerations do not show that Maximality is self-undermining
when we consider imprecise picking strategies.

We also noted that our results would not go through were we to measure the
utility of an imprecise choice set in some alternative way. For instance, if we
say that the utility of a choice function faced with a decision problem at a state
of the world is the supremum of the utilities, at that world, of the options in
the decision problem that the choice function doesn’t rule out, then of course
one should have a maximally imprecise choice function. But motivating and
justifying any such analysis remains an important task, and in any case, the
consequence in this case is not desirable.

To summarise: we have found challenges for any of the decision theories we’ve
considered that depart from expected utility theory. When we ask a whole
range of decision theories how they think one should pick, they pretty system-
atically recommend picking in accordance with expected utility theory. For
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some of the theories we considered (REU, I'-maximin), this undermines their
own recommendations whenever they don’t collapse into the recommenda-
tions of expected utility theory. For others (E-Admissibility, Maximality), the
situation is less clear, as picking in accordance with expected utility theory is
compatible with the theory and choice-worthy according to the theory, how-
ever other picking strategies are deemed impermissible, and all regular proba-
bilistic picking strategies are deemed impermissible. These theories thus have
to accept a deep-seated value for coordinating how to resolve incomparability
across possible decision problems. What is clear is that decision theorists must
face the question of how to pick head on.
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A Measure theoretic considerations

Throughout the paper, we ignored the question of measurability. We have con-
sidered various probability measures: p a probability on (), u a probability
on D, and b a probability on (2 x D. To make this precise, we should fix the
o-algebras on each of these spaces.
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Since Q) is finite, we can equip it with the discrete o-algebra, F = p((), so that
every subset of () is measurable.

D is defined as finite subsets of the set of acts A, with 4 simply being an ar-
bitrary non-empty set. The c-algebra we generate will be defined relative to
a utility function 4 : A — RO = R". Recall that §f is bounded, so in fact
U A= L =L hm

We define a metric on A induced by R", thatis d(a,a") := d(U(a),4(a")), with
the Euclidean metric. This then defines the topology on A and the associated
Borel c-algebra.

In fact, if there are some 4,4’ that have the same utility profile, {{(a) = $(a’),
thend(a,a’) = 0, so itis actually a pseudo-metric. Any measurable notions will
treat such acts equivalently and it is Borel isomorphic to the structure which
identifies any two such acts.

We can then use the Hausdorff metric on D to obtain our topology and the
associated Borel o-algebra.

N . / . /
d(D,D') = max{itelg a}gg,d(a,a ), 51611}; alggd(a,u )}

We will throughout additionally assume that £((.A) is a Borel subset of R", then
both A and D are standard Borel spaces.

We then require p a probability on (Q, F), u a probability on (D,X), and b a
probability on (Q x D, F ® X).

All the results in this paper are restricted to measurable picking strategies, either
of the deterministic form, s : D — A, or measurable probabilistic picking
strategies n : D — A(A). This ensures that the induced payoffs, £(s), (n) :
Q x D — R, are measurable random variables with respect to (2 x D, F ® %)
(recalling that {(n)(w, D) := Expy, [4(-) (w)]).

B Decision-State Dependence

When we have decision-state dependence, we made use of the idea of con-
ditional probabilities. For b, a probability measure on () x D, F @ ¥.), we
assumed we had appropriate conditional probability measures, b(-|D), on ),
defined for bp-almost every D. Since (), F) is standard Borel, this follows im-
mediately from the Conditional Distribution Disintegration Theorem (Kallen-
berg, 2021, Theorem 8.5), which guarantees that b(-|D) is defined and unique
for bp-almost every D, and that for every X € L?(b) and bp-almost every D:

Expy [X| D] :/QX(w,D)b(dw|D) - EQX(w,D)b(w]D).

where (D) is the o-field generated by D, the conditional expectation, Exp,[X|c(D)],
is defined as the orthogonal projection of X onto the linear subspace of o(D)-
measurable random variables, and Exp;,[X|D] is the value of this random vari-

able at D. (This extends by continuity to X € L!(b).)
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By the tower property of conditional expectation (Kallenberg, 2021, Theorem
8.1) we have Exp,[X] = Exp,[Exp,[X|D]], which implies

Expy [ExpyXIDI1 = | Expy[X|DIb(dw,dD)
= | Expy[XIDJbp (dD)
:/D w;ﬂx(w,z))b(wm)

= EXpr [Epr(.|D) [X(r D)”

Henceforth we write Expy,, [Expy.|p) [X]] as shorthand for Expy,, [Expy.py [X(+, D)]].
So Expy[X] = Expy,, [Expy(.|p) [X]]-

bp(dD)

When b = p x p, then bp = p and b(:|D) = p for p-almost every D. So
Exp, i [X] = Exp,, [Exp, [X]].

B.1 EU-completeness and measurability

With the clarification that we restrict to measurable selection functions, N being
EU-complete is taken to mean that for every probability p over () there is some
n € N which picks for EU,.

Lemma B.1. For every probability p there is a measurable s € S which picks for EU).

Proof. We will apply the Measurable Maximum Theorem of Aliprantis & Bor-
der (2006, Theorem 18.19).

Define ¢ a measurable correspondence from D to A by ¢(D) = D. It is weakly
measurable, i.e., for U open C A, {D|UND # @} is measurable (in fact,
open) in D (Aliprantis & Border, 2006, 3.91). It also takes non-empty compact
values by specification of D.

Exp,[U(a)] = Lweqp(w)U(a)(w) is a continuous function of a. Conceiving
of it as a function from A x D — R which doesn’t depend on D, it is trivially
measurable as a function of D. It is thus a Carathéodory function and we obtain
a measurable selector for EU,, as required. O

Similarly for being conditional EU-complete: it requires the existence of mea-
surable picking strategies for EUy(|_).

Lemma B.2. For every probability b over Q) X D, there is some measurable s € S
which picks for EUp (.| _).

Proof. We will apply the Measurable Maximum Theorem of Aliprantis & Bor-
der (2006, Theorem 18.19).

Asin Lemma B.1, ¢ is a weakly measurable correspondence from D to .4 which
takes non-empty compact values.

Consider Expy(.|p)[t4(a)], a function from D x A — R.

For fixed D, thisis = }_,cq b(:|D)(w)h(a) (w), which is linear and continuous
ina.
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We need to show that it is measurable in D, for fixed a. This holds because
D + b(+|D) is measurable.

It is thus a Carathéodory function and we obtain a measurable selector for
EUy(.|-), as required. O

Proposition 4.4 thus follows from these.

C EU and E-admissibility

C.1 EU (Propositions 2.3, 2.5, 2.7 and 4.5)

Our first series of results rely on the fact that a picking strategy has maximal
expected utility iff it y-surely picks for expected utility theory combined with
a particular probability. This core result, stated in Propositions 2.3 and 2.5,
is then extended to cover cases of decision-state dependence (Proposition 2.7)
and probabilistic picking strategies (Proposition 4.5).

We will prove the result in generality to cover all these cases.
Theorem C.1.

(i) If n bp-surely picks for EUy .|y then, for any n', Expy[£l(n)] = Expy [£l(n”)]

(i) If n bp-surely picks for EUy.|_) and n' does not, then Expy[£(n)] > Expy[$l(n")].
Proof. As in Appendix B, we have b(- | D) defined for bp-almost every D such

that, for every bounded measurable random variable X : O x D — R, the law
of total expectation holds: Exp,[X] = Expy,, [Expy(.|py[X]]-

$l(n) is a measurable random variable on Q) x D; and, since we have assumed
that ¢l is bounded above and below, £l(n) is bounded. And so, Exp,[U(n)] =

Expy,, [Expy(.p) [£(n)]]-
Consider any D* € D for which b(- | D*) is well defined. Then?!

Expy(.|p) [44(n)] = Expy(.|p)[ExPn,. [4]] = Expn . [Expy(.p)[L4]-
Expy(.|p+) [¢l(a)] is maximised, by definition, at any a € EUy.|_)(D*).

Thus, Expy(.|p+) [£(n)] = Expn . [Expp(.|p+) [£1]] is maximised when np+ (EU,(.|_y(D*)) =
1.

And so Expy[U(n)] = Expy,, [Expy(.|p)[L4(n)]] is maximised when np: (EU(.|_y(D)) =
1 for bp-almost every D. i.e., when n bp-surely picks for EUj(.|_. Our claims
follow from this. O

Corollary C.2. (i) If n bp-surely picks for EUy.|_y then n € EU,(N).

2More carefully:

Expy(.|p)[U(n) (-, D*)] = Zé) b(w|D*) ZD:* np+(a) U(a)(w) definition of £(n)

= ) np(a) } b(w|D*) U(a)(w)

aeD* we)
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(i) Suppose N contains some n” that picks for EUy(._y. Then n € EU,(N) iff n
bp-surely picks for EUy.|_).
Proof. (i) is immediate from Theorem C.1.

For (ii), if n does not bp-surely picks for EU(.|_), then Theorem C.1 implies
that Expj [t(n?)] > Expp[t(n)], so n & EU,(N). O

This suffices to prove Propositions 2.3, 2.5, 2.7 and 4.5.

C.2 E-Admissibility and EU equivalences
(Propositions 3.4, 3.5, 3.9, 3.10 and 4.6)
The results just stated imply many of the results about E-Admissible strategies.

We will again state the results for probabilistic picking strategies, n. The results
concerning deterministic picking strategies, s, are then special cases, recalling
that, when NV = S, the same definitions apply.

Lemma C.3.
(i) n € EAdg(N) iff there is some b € B such that n € EU,(N).
(ii) If px p € Band n € EUpxy(N), then n € EAdg(N)
(iii) If B makes Q) and D completely independent, then n € EAdp(N) iff there is
some p x p € B such that n € EUpyx, (N).

Proof. Immediate from definitions. O

We introduce a new definition that encompasses the notions of EU-completeness
and conditional-EU-completeness given in Definition 4.3, by specifying the set
for which the set of picking strategies is EU-complete:

Definition C.4. N is EU-complete for B iff for every b € B, there is some n” € N
such that n® picks for EUp( )

Note that, if N is deterministically full, i.e., N’ O S, then it is EU-complete for
any B.

Corollary C.5. Suppose N is EU-complete for B.
(i) n € EAdp(N) iff there is some b € B such that n bp-picks for EUy.|_).
(ii) If p x p € B and n p-surely picks for EUp, then n € EAdg(N).
(iii) If B makes Q) and D completely independent, then n € EAdp(N) iff there is
some p X p € B such that n y-surely picks for EU,,.
Proof. Immediate from Lemma C.3 and Theorem C.1. O
This gives Propositions 3.5, 3.9 and 4.6. For Propositions 3.4 and 3.10, we will
use a further lemma.
Lemma C.6.
(i) If p € P and n picks for EUy, then n picks for EAdp.
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(ii) If b € B and n picks for EUy(.|_), then n picks for EAdg.|_).
Proof. It follows from the definition of EAdp that, forall D and p € P, EU,(D) C
EAdp(D).

If n picks for EU), then for all D € D, np(EU,(D)) = 1. And so, since
EU,(D) C EAdp(D), np(EAdp (D)) = 1, i.e. n picks for EAdp.

An analogous argument gives (ii), as, for all D, EU,.|_y(D) C EAdg(.|)(D).
[

Corollary C.7.
(i) Suppose p € P, p X u € B and n picks for EUy,. Then n picks for EAdp and is
in EAd]B (N)
(i) Suppose b € B and n picks for EUy.|_y. Then n picks for EAdp.|_) and is in
EAdg(N).

Proof. (i): From Lemma C.6, n picks for EAdp. By Corollary C.5,n € EAdg(N).

(ii): From Lemma C.6, n picks for EAdp.|_. By Corollary C.5, n € EAdp(N).
O

Propositions 3.4 and 3.10 follow from this.
We have thus proved Propositions 3.4, 3.5, 3.9, 3.10 and 4.6.

C.3 Maximality (Propositions 3.7, 3.15 and 4.8)

As Maximality is a more permissive theory than E-Admissibility, Corollar-
ies C.5 and C.7 also imply our results that the relevant expected utility strate-
gies both pick for Maximality and are themselves judged as Maximal (Proposi-
tions 3.7, 3.15 and 4.8); so that Maximality is not undermining in the way that
we’ve seen the risk-sensitive decision theories or I'-maximin are.

C.4 Underminingness of E-Admissibility
(Propositions 3.6, 3.11 and 4.7)

We now move to Propositions 3.6, 3.11 and 4.7. For these results, we need to

give conditions under which there exists a strategy that picks for E-Admissibility

and does not look like an expected utility strategy from the point of view of our
measure y over the decision problems.

For regular picking strategies, this is simple: E-Admissibility must disagree

with each EU,, at least pi-surely.

Proposition C.8 (Proposition 4.7). Suppose that, for every b € B, bp{D | EAdp.|_y(D) C
EUh(_‘,) (D)} <L

Then, if n is a regular picking strategy for EAdg.|), then n ¢ EAdg(N).

Proof. Suppose n is a regular picking strategy for EAdp(.|_) and the conditions
of the theorem hold.
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Take any b € B. If EAdg(.|—)(D) £ EUy._y(D), then, since np is a regu-
lar probabﬂlty function, nD(EUb (|-)(D)) < 1. Since bp{D|EAdp(.|-)(D) £
(

EUp(|-)p)} > 0, we have p{D |n(EU,,_y(D)) < 1} > 0. So n does not
bp- surely plck for EUp(|—).
By Corollary C.5, it follows that n ¢ EAdp(N). O

To ensure the existence of deterministic picking strategies that are not EU,, strate-
gies, this assumption does not suffice, as the following example demonstrates.

Example C.9. IfIP = {py, p2} and p;y expects aj to be better than ay and p, expects
ay to be better than ay. Suppose y is sure you'll face D* = {ay,ay}, i.e., u({D*}) =
1. Then picking strategies are determined by their selection on this single decision
problem, picking either ay or ay. So any strategy is p-surely an EU, strategy for some
p € IP, even though, for each p € P, uy{D |EAdp(D) C EU,(D)} < 1.

Instead, the requirement of coordination needs to be visible from the point of
view of the measure p. There need to be distinct decisions where the probabil-
ities in IP require coordination across the decisions, but E-Admissibility does
not. This is what happens in the Ellsberg case or the Coordination cases dis-
cussed in the main text.

In these cases, we have distinct decisions and probabilities such that every
probability function disagrees with the recommendations of EUg+ on D;, and

the D; have positive measure according to every y. More generally:

Proposition C.10 (Proposition 3.6). Suppose B makes ) and D completely inde-
pendent (so every b € B has the form p x p.)

Suppose there is a selection of measurable, pairwise disjoint events E; C D, one for
each q € P (some of which may be empty), such that for all p x u € B,

p (U {D € E;|EU,(D) NEU,(D) = @}) >0

qepP
Then there is s that picks for EAdp but which is not in EAdp(S).

Proof. Define s as follows:

e for D € Ey, s(D) is any member of EU,(D);

e for D ¢ Ugep Eq, s(D) is any member of EAdp (D).
As they are disjoint, this is well-defined.

Moreover, such an s can be chosen to be measurable. For each g there is a
measurable s; (Lemma B.1) and so we can specify s(D) = s;(D) for D € E;
and s(D) = s4,(D) for D ¢ Ugep Eq where qo € IP. As E; are assumed to be
measurable, this will be a measurable function.

Then consider any p x u € B. If s(D) € EU,;(D) and EU,(D) NEU,(D) = &,
then s(D) ¢ EU,(D). So, foreachq € IP, {D € E; |EU,(D) NEU,(D) = @} C
{D|s(D) ¢ EUP( )}. Thus,

{D|s(D) ¢ EUp(D)} 2 |J{D € E;|EU,(D) NEU,(D) = @}.
qelP
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By our assumption on y, it follows that u({D|s(D) ¢ EU,(D)}) > 0. So s
does not p-surely pick for EU. O

Proposition C.11 (Proposition 3.11). Suppose there is a selection of measurable,
pairwise disjoint events Eyy C D, one for each b € B (some of which may be empty),
such that forall b € B,

bp < U {D € Ey |EUb(_‘,)(D) ﬁEUb/H,)(D) = @}) > 0.
b'eB

Then there is s which picks for EAdg.|_y but where there is no b € B such that s
bp-surely picks for EUp|_).

Proof. As above, except ensure s(D) some member of EUy(.|p) (D), for D € Ey;
and s(D) some member of EAdp.|_) (D), for D ¢ Upep Ep- O

We can find cases with such events when we make additional assumptions that
each u is sufficiently spread.
Proposition C.12. Suppose that B makes () and D completely independent.

Assume U(A) = [1, 1] with | < 0 < h. In particular, for every X € [I,h] there is
some a € Awith $l(a) = X.

Suppose P is non-singleton and for every p X u € 1B, for every open non-empty subset
UCA u{{a,0}|acU}>0.

Then there is s that picks for EAdp but for which there is no p x u € B such that s
p-surely pick for EU,,.

Proof.

Sublemma C.12.1. Suppose V is a non-empty open subset of [I,h] such that for
each X € R there is some A > 0 such that AX € V.

Then, for any p # q, {X € V| Exp,[X] > 0 > Exp,[X]} is non-empty and open.
Proof. It is non-empty: First, observe that there is some X € R such that
Exp,[X] > 0 > Exp,[X]. For example, with A such that p(A) # q(A), we can

put X =14 — Ml; or the negative of this, if required. By our assump-
tion concerning V, there is some A > 0 with AX € V. And so Expp[/\X} >0 >
Exp, [AX].

It is open by continuity of expectation. O
Thus, for any p x p € B and any q # p,

#({{a, 0} [4U(a) € V and Exp,[8l(a)] > 0 > Exp,[tl(a)]}) > 0.
Note also that for D = {a,0} with Exp,[tl(a)] > 0 > Exp,[£l(a)], then EU,(D) =

{a} and EU,(D) = {0}, so they are disjoint. For Ey := {{a,0} |a € V}, then
u({D € Ey |EU,(D) NEU,(D) = @}) > 0.
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To construct our disjoint E; satisfying the conditions of Proposition 3.6, first
note that we can find two disjoint V; and V; that are non-empty open subsets of
[1, h]? such that for each i € {1,2} and each X € R there is some A > 0 such
that AX € V;. For example, we could put V; := {X € [L,h]" | ||X]|| < 0.5} and
Vo :={X € [L,h]"| || X]| > 0.5} (assuming that! < —0.5 < 0.5 < h).

Then take any distinct g7, 95 € IP.

Put
Ey, = {{a,0}[ac Wi} q=4q;
Ep:=Ep ={{a0}lac WV} q=¢;
1%} otherwise
and observe that the conditions of Proposition 3.6 are then satisfied. O

Proposition C.13. Suppose that B makes Q) and D completely independent.

Assume U(A) = [1,h]?. In particular, for every X € [I, h]* there is some a € A with
i(a) = X.

Suppose P is non-singleton and for every p x y € B, u has full support on D (assign-
ing strictly positive measure to every non-empty open subset of D).

Then there is s that picks for EAdp but for which there is no p x u € B such that s
p-surely pick for EU,,.
Proof.

Sublemma C.13.1. Let E = {D € D| D C V'} for some open subset V C [I,h].
Forany p # q, {D € E|EU,(D) NEUy(D) = @} is open and non-empty C D.

Proof. It is nonempty:
Take any Dy € E. If EU,(Dg) NEU,(Dg) = @ this suffices.
Otherwise, there is some ag € EU, (Do) N EUy(Dy).

As in Proposition 3.6, we can find some X* such that Exp,[X*] > 0 > Exp,[X*].

And, moreover, we can choose a scalar A small enough so that £((ag) + AX* €
[, h]" and thus that ag + AX* € LU(A).

So Exp, [{h(ag + AX*)] > Exp,[U(ag)] and Exp,[U(ag + AX*)] < Exp,[£l(ap)]-
Consider D* = Dy U {ag + AX*}, recalling that ay € Dy.

Observe that EU,(D*) = {ag + AX*} but that a9 + AX* ¢ EU,(D*), since g
finds ag preferable. Thus EU,(D*) NEU,(D*) = @.

Since (ag) + AX* € V, by choice of A, D* C V, and so D* € E, as required.
It is open:

Take any Dy € E with EU, (Do) NEUy(Dy) = @.

Let t, = max,ep, Exp,[tl(a)] and t; = max,ep, Exp,[¢(a)].

As EUy(Dg) NEU,(Dg) = @, for all a € Dy, either t, > Exp,(a) or t; >
Exp,(a). So, define f(a) := max{t, — Exp,[tl(a)], t; — Expy[UU(a)]} > O, for all
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a € Dy. Since Dy is finite, let 6 = min,ep, f(a) > 0. So that for all a € Dy,
either Exp, [tU(a)] < tp — J or Expy[th(a)] < tg—6

Let € = 9/2. Suppose d(Dy,D) < €. Thatis, for all a € D, there is some
¢ € D such that d(a,c) < € and, for all ¢ € D, there is some a € Dy such that
d(a,c) <e.

Take any a, € EU,(Dy), so Exp,[t(ap)] = tp. There is some ¢, € D such
that d(ay, cp) < €, and thus Exp, [{l(cp)] > t, — €. Thus, max.ep Exp,[U(c)] >
tp — €, and so if c € EUp(D), then Exp, [8l(c)] > t, —€.

By an analogous argument, if ¢ € EU,(D) then Exp,[tl(c)] > t; —€.

For any ¢ € D, there is some a, € Dy such that d(c,a;) < e. If, also, ¢ €
EU, (D) NEU,(D) then

Exp, [t(ac)] > Exp,[8h(c)] — € > t, — 2¢
and Exp,[U(ac)] > Exp,[iU(c)] —€ > t; —2¢

By choice of € = /2 there is no such a. € Dj. O

Let V1, V5 be any disjoint non-empty open subsets of [, 1]
Then take any distinct g7, 95 € IP.

Let
{DeD|DC Wi} q=4;
E:={{DeDIDCV2} q=g;
@ otherwise
and observe that the conditions of Proposition 3.6 are then satisfied. O

To prove Proposition 3.12, let ¢ be any choice function. Let ¥ : D — [0,1) be
any measurable statistic, e.g., 7(D) = (erD ||x||2> mod 1.

Proposition C.14 (Proposition 3.12). Suppose that for any b € B, bp(U,) > 0

where

Suppose further that for any b € B and any open interval I C [0,1),
b'D(D e U, | T’(C(D)) S I) > 0.

Then there exists a measurable function s : D — A which picks for c but fornob € B
does it bp-surely pick for EUy(.|_.

Proof. For any D € D, enumerate the choice set in lexicographic order c(D) =
{x1(D),...,xuy (D)}, where np = |c(D)|. Partition [0,1) into np intervals
I;(D) = [, ). Define

] p’ np

®(D) := min{j|r(c(D)) € [;(D)}, s(D) := x4(py(D).
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Measurability follows immediately from the measurability of * and min, and
s(D) € ¢(D) by construction. So s picks for c.

Choose b € B.

For each D € Uy, choose x4(p)(D) € ¢(D) \ EUy(.|_y(D). If r(c(D)) € Igpy(D)
then s(D) = X,B(D)(D) ¢ EUb(.‘,)(D).

Define V}, := {D € U, |r(c(D)) € Igp)(D)}. Because Igp)(D) has positive
length 1/np (and hence contains an open interval), we must have bp(V;,) > 0.

Forall D € Vj, s(D) ¢ EUy(.|_)(D), hence
bD(D | S(D) ¢ EUb(.|_)(D)) > bD(Vb) > 0.
Therefore bp (D |s(D) € EUy.|_)(D)) < 1.So s does not bp-surely pick for
EUp(|)-
O

So we have proved Propositions 2.3, 2.5, 2.7, 3.4 to 3.7, 3.9, 3.10, 3.12, 3.15
and 4.5 to 4.8

Propositions 4.10, 4.12, 4.15, 4.17 and 4.18 require a different approach.

D Maximality
(Propositions 4.10, 4.12, 4.15, 4.17 and 4.18)

To prove Propositions 4.10, 4.12, 4.15, 4.17 and 4.18 we turn to a version of
Abraham Wald’s (1947) Complete Class Theorem, which we prove as Theo-
rem D.7. We state it in a general setting and then explain how they apply to
our case. Along the way, we prove a more standard version of Wald’s theorem.

D.1 Wald theorem

To state them, we need some definitions.
e () is a finite set of states.

¢ A probability function over () is a normalised function p : (3 — [0, 1], ie.,
Ywen P(w) = 1. Given a random variable (or vector) X € R®, we write
p(X) for the expectation of X, i.e., p(X) = Exp,[X] = Leq p(w) X(w).

e O is aset of “options”. In our application it will be A, containing (prob-
abilistic) picking strategies, n.

e U: 0O xQ — [l,u] is abounded “utility function”. In our application, it
will be U (n, w) = Exp, [¢U(n, w)].2

¢ Given an option o, the utility profile of o is the random variable (or vector)
U(0) € RO with U (0)(w) = U (0, w).

22We have assumed it is bounded; however all that is actually needed for the proof is that it is
bounded above, i.e., we could allow U : O x Q) — (—o0,0].
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* So, given an option 0 and a probability function p over Q, p(U(0)) =
Expp U (0)] = Lowen p(w)UU(0)(w) = Lwea plw)U(o,w).
Definition D.1. Relative to U:

0 is strictly dominated in O iff there is o' € O with U(o',w) > U (o, w) for all w.
o is called admissible if it is not strictly dominated.

0 is weakly dominated in O iff there is o' € O with U (o', w) > U (o, w) for all w
and U (o', w) > U (o, w) for some w.

0 is Bayes for p in O iff, forall o' € O, p(U(0)) = p(U(0")).
o is Bayes in O iff there is some probability p such that o is Bayes for p.
Lemma D.2. If o is Bayes in O, then it is not strictly dominated in O.

Proof. Suppose it is strictly dominated. Then there is o’ such that U (o, w) <
U(0',w), for all w. So every probability function p over (), we have p(U(0)) <
p(U(0")). Thus it is not Bayes. O

From now on, we'll think directly in terms of vectors. We let U (O) := {U (o) |
0 € O} C R?, and we write ConvHull(/(O)) for the convex hull of this
set of real-valued vectors. We write cl(ConvHull(U/(Q))) for the closure of
ConvHull(4(O)) in the product topology. This can also be characterised by
limits of sequences, or more generally of nets: if a sequence (or net) of mem-
bers of ConvHull(U/(O)) is such that, for each coordinate, w, Xy (w) — X*(w),
then X* € cl(ConvHull(U(O))).

The definitions of strict and weak dominance, and the definitions of being
Bayes for p and being Bayes simpliciter carry over straightforwardly to vec-
tors. For instance, given two vectors X,Y € R2, we say X strictly dominates
Y if X(w) > Y(w), for all w; and we say that X is Bayes for p in a given set of
vectors if p(X) > p(Y), for all Y in that set; and so on.

Our first lemma says that if a vector is not Bayes in U (0O), then it is strictly
dominated in the convex hull of U/ (O).

Lemma D.3. If X € R and there is no probability p with p(X) = p(U(0)), for all
0 € O, then thereis Y € ConvHull(U(O)) such that Y (w) > X(w), for all w.

Proof. Suppose X is not strictly dominated in ConvHull(/(O)). Let Domx be
the set of strict dominators of X, i.e.,

Domy := {Y € R?|forall w, Y(w) > X(w)}.

Then, by assumption, Domx and ConvHull(¢/(Q)) are disjoint. They are also
both convex. And so, by the Separating Hyperplane Theorem, they can be sep-
arated by a non-zero linear functional (Boyd & Vandenberghe, 2004, Section
2.5.1). That is, there is a linear functional, f : R? — R, with f # 0 and a con-
stant ¢ such that f(Y) > ¢ > f(Z) forany Y € Domyx and Z € ConvHull(U(O)).

We now show that f is non-negative. Let Z > 0 and suppose f(Z) < 0. Then
take any Y € Domyx and any k > 0, and note that Y 4+ kZ € Domy, and so
f(Y+kZ) > c. Then, since f(Z) < 0, we can make f(Y +kZ) = f(Y) + kf(Z)
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arbitrarily small by making k arbitrarily large. And, in particular, we can make
f(Y+kZ) = f(Y)+kf(Z) less than c. This gives a contradiction.

Also, since f # 0, there is w such that f(w) # 0. After all, by linearity, f(X) =
Y e f(w)X(w), and so, if f(w) = 0, for all w, f(X) = 0, for all X € RY, i.e.,
f =0, which gives a contradiction.

We can thus normalise f to obtain our probability function p over ) with
p(Y) = > p(Z), forany Y € Domy and Z € ConvHull(U(O)).

Now, X € cl(Domy), and so p(X) > ¢/, and so p(X) > p(Z), forall Z €
U(O) C ConvHull(U(O)), as required. O

This now gives us a standard version of Wald’s Complete Class Theorem,
which says: if U(QO) is convex, then o is Bayes in O iff o is not strictly dom-
inated in 0.2 But this is not the version we apply to obtain our results. So we
continue.

This result doesn’t show that, if 0 is not Bayes, it is strictly dominated by some-
thing that is itself not dominated, and thus is Bayes. We get that from the next
result.

Lemma D.4. Suppose X is strictly dominated in ConvHull(U/(O)). Then we can
find Z € cl(ConvHull(U(O))) that strictly dominates X and is itself not even weakly
dominated in ConvHull(U (O)).

In the usual setting for Wald’s Complete Class Theorem, the vector Z in cl(ConvHull(U/(O)))
that dominates X and is not weakly dominated is called the ‘lower boundary’

of the set; in our case, it would be ‘upper boundary’, since we are working with

positive utility rather than risk or disutility. This then says that, if a vector is
dominated, it is dominated by something in the lower (upper) boundary. The

result depends essentially on the fact that ¢/ (O) is bounded from above.

Proof. Take any Y € ConvHull(/(O)) that dominates X. Consider A := {Z €
cl(ConvHull(U(0))) | Z(w) > Y(w) for all w}. Observe that this is closed (as it
is the intersection of two closed sets) and bounded (as we assumed that util-
ities were bounded above), and thus compact. Let f(Z) := Y, Z(w). Since
f is a continuous function, the Extreme Value Theorem ensure it obtains its
maximum somewhere in A. This maximum point will be as required. O

This result can also be proved by applying Zorn’s lemma. That argument also
works when Q) is infinite.?

This will not apply to our general case yet. For that, we need further assump-
tions on the relationship between ¢/ and O.

Definition D.5.

e O is Bayes-existing (relative to U) iff, for every probability p, there is some
o € O that is Bayes for p.

2Note that this requires that I/ (Q) is convex, not O.

24Define < a partial order on A as the natural coordinatewise order. For any chain, consider
its pointwise supremum, which exists because utilities are bounded above, and checking that it is
in the A since it is closed and this is a pointwise limit. Consequently, every chain has an upper
bound, allowing the application of Zorn’s lemma to guarantee the existence of a maximal element,
which will be as required.
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* U is Bayes-continuous on O iff, forall o € O, if 0 is Bayes for p and p1, pa, . ..
are probabilities converging to p then there is some sequence of options 01,0y, . . .,
with o, Bayes for py,, whose utility profiles converge to those of o.

Lemma D.6. Suppose U is Bayes-continuous on O and O is Bayes-existing. Then,
if Z € cl(ConvHull(U(0O))) is not weakly dominated in ConvHull(U (O)), then Z €
U(O) and Z is Bayes in U(O).

Proof. Since Z is not weakly dominated, it is also not strictly dominated. So, by
Lemma D.3, there is some probability function p* on Q with p*(Z) > p*(U(0)),
for all 0. Since O is Bayes-existing, there is some o, that is Bayes for p* in

U0).

We will now show that U(0p)(w) > Z(w) for every w. It will follow from
this that U (0, ) (w) = Z(w), for every w, since we know that Z is not weakly
dominated, and so U (0p+) = Z.

Hold fixed a single w, which we call w*. Let 7t,,+ be the projection function for
the w* that we are considering, i.e., 77+ (Y) := Y(w™). Then define p, by:

pu= (1= 1/u)p* +1/n7t

Note that this depends on the w* under consideration. Observe that p; is a
probability function on (2. And so, since O is Bayes-existing, for each #, there
is some 0,, that is Bayes optimal for py, i.e., pu(U(0p,)) = pu(U(0)), for all 0.
Since we have assumed Z € cl(ConvHull(U/(0))), also pn (U (0p,)) = pn(Z).5

We also know that p*(Z) > p*(U(0p,)). So, since p, is a mixture of p* and
T+, to get that p, (U(0p,)) = pn(Z) we must in fact have that 71« (U (0p,)) >
Tw+(Z). That is, we can conclude that ¢ (o0p, ) (w*) > Z(w™).

Observe that p, — p*. So, since U is Bayes-continuous on O, U(0p,) —

U(op+), so U(op,)(w) — U(op+)(w) for each w. Thus, since U(op,)(w*) =
Z(w*) for all n, also U(0p+ ) (w*) = Z(w™).

Now, this worked for any w. That is, for any w we can construct the relevant se-
quence and apply this argument. So, we have in fact shown that /(0 ) (w) >
Z(w) for all w. And so, as noted above, it follows that ¢ (0,+) = Z, for if
U(op+)(w) > Z(w) for any w, U(0p+) would weakly dominate Z, and, by as-
sumption, this isn’t the case. O

This proof in fact shows that the assumptions on O and U are very strong. It
shows that for every probability there is a unique member of cl(ConvHull(U/(O)))
that is not weakly dominated; thus also that for every regular probability, there
is a unique Bayes option.

Theorem D.7. Suppose O is Bayes-existing and U is Bayes-continuous on O. Then,
if 0 is not Bayes then there is o' that strictly dominates it; moreover, it is strictly
dominated by an option that is itself Bayes and not even weakly dominated.

Proof. 1f 0 is not Bayes in U (O), then, by Lemma D.3, U (0) is strictly dominated
in ConvHull(U(O)).

25To show this, we first observe it for any Z € ConvHull(i/(©)), just taking a mixture, and then
note that taking limits can’t break a non-strict inequality, >.
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By Lemma D.4 it is thus strictly dominated by some Z € cl(ConvHull(U(O)))
which is itself not weakly dominated in ConvHull(Z/(©)). By Lemma D.6, in
fact Z = U(oz), for some 0z in O, and moreover, 0z is Bayes, as required. [

We now have two versions of Wald’s Complete Class Theorem: the first we
proved along the way to proving the second. First: if U/(O) is convex then o is
Bayes iff 0 is not strictly dominated. Second: if ¢/ is Bayes-continuous over O
and O is Bayes-existing, then again o is Bayes iff o0 is not strictly dominated.

D.2 Applying Wald’s Complete Class Theorem to probabilis-
tic picking strategies for imprecise decision theories
e Fix p* a measure over D.

* The options, O, are a specified collection of probabilistic picking strate-

gies, V.
® The utility of a probabilistic picking strategy n at w is the expectation of

the utility you'll obtain at w by picking in accordance with n.

U: N xQ — [l,u] defined by U (n)(w) := Exp,-[t(n)(w)].

That is, U (n)(w) = Exppn [$(n)(w, D)] = Exppy+ [Expgnp, [U(a) (w)]].
Recall Definition 4.3, which says when A is EU-complete.
Lemma D.8. Suppose N is EU-complete.
Then n is Bayes for p in O, relative to U, iff n u*-surely picks for EU,.
Also N is Bayes-existing, relative to U.
Proof. nisBayes for p in NV, relative to i/, iff foralln’ € N, p(U(n)) = p(U(n")).
That is, Exp,, [Exp,[44(n)]] > Exp,, [Exp,-[tl(n')]]. This is when n € EUp - (N).

By Corollary C.2, using the EU-completeness of AV, this is just when n y*-surely
picks for EU,,.

By EU-completeness, for any p there is some such n € N. So A is Bayes-
existing, relative to 4. O
Recall Definition 4.9, which says when a measure requires almost everywhere
decisiveness.

Lemma D.9. Suppose N is EU-complete.

If w* requires almost everywhere decisiveness, then U is Bayes continuous on N
Proof. Suppose p* is a probability function over (). And suppose p1,p2...isa
sequence of probability functions over () that converges to p*.

Take n* € A Bayes for p* and n!,n?,... in A/ with n* Bayes for p;. This is
possible by Lemma D.8, and also by that Lemma, n* p*-surely picks for EU
and each n* p*-surely picks for EUy,. Thatis, u*({D | n%,(EU,+ (D)) = 1}) =1,
and p*({D | n", (EU,, (D)) = 1}) = 1 for each k.
Let

E:={D|n",(EU, (D)) = 1 and for all k, n*,(EU,, (D)) = 1}.
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By countable additivity, p*(E) = 1.
Let

S :={D|EU, (D) is a singleton}.
As p* requires almost everywhere decisiveness, u*(S) = 1.
Take any w* € Q and D* € ENS.
EU,«(D*) is a singleton, so let EU,«(D*) = {a*}. As n*,.({a*}) = 1, observe
that U(n*)(w*, D*) = U(a*)(w*).
Expected utility is continuous as a function of probabilities; i.e., for alla € A,
Expp, [U(a)] — Exp,«[tl(a)]. Thus, as D* is finite, there is some N € N\ {0}
such that for all k > N, EU,, (D*) = {a*}.26
And so, for each k > N, 5. ({a*}) = 1 and so U(n¥)(w*, D*) = 8l(a*)(w*) =
U(n*)(w*, D*).
This gives us that 4(nk) (w*, D*) — U(n*)(w*, D*).
So we have that for any D € ENS, 4(nf)(w*, D) — U(n*)(w*, D). As we
know that u*(ENS) = 1, we can use a Dominated Convergence Theorem (as
utilities are bounded) to obtain Exp,,« [U(nF) (w*)] — Expy, [U(n*)(w™)]. That
is, U (n*) (w*) — U(n*) (w*).
As this holds for any w € (), we have that I/ is Bayes continuous on . O

Corollary D.10. Suppose that N is EU-complete, and suppose u* requires almost
everywhere decisiveness.

If there is no probability p over Q) for which n maximises Exp, [Exp,«[{(n)]]; then
there is some n’ such that Exp,« [$(n") (w)] > Exp,«[U(n)(w)] for all w € Q.

Proof. This is immediate from Theorem D.7 and Lemmas D.8 and D.9. O

Corollary D.11. Suppose that N is EU-complete, u* requires almost everywhere
decisiveness.

If n does not p*-surely pick for EU, for any probability p, then there is some n’ such
that for all probabilities p, Expp - [4(n")] > Expjpp [¢h(n)].

Proof. By Theorem C.1, if n does not y*-surely pick for any probability p, n does
not maximise Exp,,, ,[44(n)] for any p. Observe, also that Exp,, [Exp,-[(n)]] =
Exp .+ [44(n)]. So by Corollary D.10, there is n” with Exp,,« [¢l(n) (w)] > Exp,, [¢(n)(w)]
for all w; and thus, Exp,, [Exp,,- [4(n")]] > Exp,[Exp,,«[t4(n)]] for all probabilities
p; which gives us the claim. O

2If D* is an infinite compact set, one can use Berge’s Maximum Theorem to observe that
EU, (D*) is upper hemi-continuous, so that if py — p* and V is an open set with EU,« (D*) C V,
then there is some N such that for all k > N, EU, (D*) C V. Let Ve = {a]|U(a)(w*) —
U(a*)(w*)| < e}, which is open superset of EU,«(D*) = {a*}. So there is some N such that
for all k > N, any a; € EU, (D*) is in V, and so |¢(a)(w*) — U(a*)(w*)| < €; thus also
[8U(nk) — a* (w*)| < €; 50 U(nk) (w*, D*) — LU(n*)(w*, D*).
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Proposition 4.10 follows from this. Proposition 4.12 follows from this together
with Corollary 4.11, since Maximality is more permissive than E-Admissibility.

We now prove Proposition 4.15. Let ¢ be any choice function.

Proposition D.12 (Proposition 4.15). For any choice function c, if u* is atomless
and for all p € P, p*{D |c(D) C EUy(D)} < 1, then there is s which picks for c
but for no p € P does it u*-surely pick for EU,,.

Proof. Choose q € P.

Let t;(D) = sup, ., Exp, [{(a)].

Let G(q,D,¢€) := {b € D|t(D) > Exp,[s(D)] + €}.

Sublemma D.12.1. Thereis somee; > 0s.t. u”*{D|G(q,D,e;) Nc(D) # @} > 0.

Proof. We have assumed that y*{D | c(D) € EU,(D)} > 0, forall g € P.

Observe

{D|<(D)  EU4(D)} = {D|3b € ¢(D) and t;(D) > Exp,[$i(b)]}

= |J{D3b € ¢(D) and t;(D) > Exp, [l(b)] + 1/k}
keN

= |J{D|G(g,D,/x) Ne(D) # @}

keN

so it follows from countable additivity that there is some k such that p*{D |
G(q,D,/k)Nc(D) # @} > 0. This gives us our €, as 1/k for this k. O

We have assumed that utility is bounded. Put M > 0 such that ||{(a)]|e =
sup{|t(a)(w)||w € O} < Mforalla € A, thatis M > max{|l|,|h|} if & :
A — [ILh]9. Let

€q

4M”

These are open, and cover P as p € Up. So by compactness, there is a finite
sub-cover, Uy, ..., Uy,

Let

Uy :={pePlllg—rlh<

Ci:={D|G(qi,D,eq,) Nc(D) # &}.
and note that we have 1*(C;) > 0 by choice of €.

Sublemma D.12.2. We can choose E; C C; pairwise disjoint and with y*(E;) > 0

Proof. This uses the atomlessness of y*.
Put a = min{p*(Cy),..., u*(Cx)}.
Choose E; C C; with 0 < p*(E;) < ¢ (possible since y* is atomless).

Then p*(Co \ E1) > a — % > % so we can choose E; € Cp \ E; with 0 <
w(E2) < -
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Then p*(Cs \ (E; UEz)) > a — 2% > § so we can choose E3 C C3 \ (E; UEy)
with 0 < u*(E3) < -

And so on, with the final stage ensuring p*(Cy \ (E1U...UE;_1)) > a — (k—
1) = % sowecan choose E; C C\ (E;U...UE;_1) w1th0 <w(E) <% O
Then put s(D) € G(g;,D,e5) Nc(D) for D € E; C C;, and s(D) € ¢(D) for
D¢ Uiz

Observe that s(D) picks for c by definition.

Take any p € P. As Uy,, ..., Uy, cover P, there is some i such that p € U,,.

We will show that for any D € E;, s(D) ¢ EU,(D). This will use the following
sublemma:

Sublemma D.12.3. Suppose p € Uy. Ifb € G(q,D, €;) then b ¢ EU,(D).

+ €, where t;(D) = sup,., Exp, [tl(a)].

Proof. Asb € G(q,D,¢€q),t5(D) > Expy[UU(D)]
= to(D) which implies Exp,[t(a*)] —

Take a* € EUy(D) so that Exp,[tl(a”)]
Exp, [LL(b)] > €.

As p € Uy, we have ||qg — plj1 < f—]'(/l.
So

Exp[4(a”)] — Expy, [U(b)] = (Equ[ﬂ( ")) — Expy[4(b)

)+ (p =) (tH(a") - 2(b)
g —l(p—g)- (t(a") — (b

>e )l
>e;— |lp —qll1||¢4(a”) — U(b) || (HOlder’s inequality)
26‘,7 467\/I><2M_€q—€q/2_5q/2>0

This shows that b ¢ EU,(D). O

Since we have chosen s(D) € G(ql,D €g;) for D € E;, we have {D|[s(D) ¢
EU,(D)} 2 Ej, and thus, p*{D|s(D) ¢ EU,(D)} > 0. O

Proposition D.13 (Proposition 4.17). Suppose N is EU-complete. Suppose that
B has the form {p x u*|p € P} and u* requires almost everywhere decisiveness.
Suppose that, for every probability p, u*{D | Maxp (D) C EU,(D)} < 1. Then, if n
is a regular picking strategy for Maxg,.| ) then n ¢ Maxg(N).

Proof. Suppose n is a regular picking strategy for Maxp.|_) and the conditions
of the theorem hold.

Take any p € P. If Maxp.|_y(D) Z EUp(D), then, since np is a regular proba-
bility function, nD(EUp(D)) < 1. Since bp{D |Maxp.|_)(D) £ EU,(D)} > 0,
we have y*{D |n(EU,(D)) < 1} > 0. So n does not pu*-surely pick for EU,.
Since this holds for any p € IP, Corollary D.11 tells us that n ¢ Maxg(N). O

57



Proposition D.14 (Proposition 4.18). Suppose N is EU-complete. Suppose that B
has the form {p x y* | p € P} and p* requires almost everywhere decisiveness. Then
ifn € Tg(N), there is some probability p € ‘P where n y*-surely picks for EUy,.

Suppose further that for every probability p € P, p*{D |I'p(D) € EU,(D)} < 1.
Then if n is reqular for T'p then n ¢ T (N).

Proof. Suppose that n € I'g(N) C Maxg(N). By Proposition 4.10, there is
some probability p € P where n u*-surely picks for EU).

Suppose n is a regular picking strategy for I'p and the conditions above hold.

Take any p € P. If I'p(D) Z EU,(D), then, since np is a regular probability
function, np(EU,(D)) < 1. Since p*{D |Tp(D) € EUy(D)} > 0, we have
#*{D|n(EU,(D)) < 1} > 0. So n does not p*-surely pick for EU,. Since this
holds for any p € P, we must have n & I'g(N).

O
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