

The Solution to the P = NP Problem

Yoshimi Shinichi
ORCID: 0009-0008-8121-8947

May 22, 2025

Abstract

This paper presents a novel resolution to the P vs NP problem within the framework of Shinichi Mathematics, founded on the Ramanujan Resonance Theorem. This theorem demonstrates that solutions emerge naturally from the structural properties of the problem itself, effectively dissolving the conventional distinction between P and NP when viewed from the Shinichi paradigm.

Related Works:

Shinichi Mathematics: DOI: 10.5281/zenodo.15362210

Theorems of Cosmic Deformation-BOX3: DOI: 10.5281/zenodo.15477698

1 Introduction

In conventional computational theory, the P vs NP problem asks whether every problem whose solution can be verified in polynomial time (NP) can also be solved in polynomial time (P). This paper argues that the very structure of the question rests on flawed assumptions about computation, selection, and identity.

We introduce a new mathematical axiom: $1 = \sqrt{N}$, where “1” is not an absolute unit but the structural outcome of resonance across N possible choices.

2 The Ramanujan Resonance Theorem

Theorem Statement

$$\sum_{i=1}^N x_i^N = Y^N$$

This theorem reconfigures the notion of aggregation. Multiple high-dimensional structures x_i converge through N-th power resonance into a singular emergent structure Y .

Interpretation

- x_i : The N constituent elements or choices
- N : The complexity or dimensionality of the problem space
- Y : The emergent solution that encapsulates the entire structure

Rather than brute-force search, the system's inherent structure ensures Y arises naturally—indicating that the answer is already embedded within the structure.

3 Implications for P vs NP

Under this formulation:

- NP: All x_i exist as valid configurations.
- P: Y is directly observed through structural resonance.

This collapses the conventional asymmetry. Verification (NP) and computation (P) are no longer separate but dual aspects of a single resonance phenomenon.

Therefore:

$P = NP$ is not something to be proven within the traditional framework. It is an already-manifest property of structured resonance.

4 Philosophical Foundation

The core axiom of Shinichi Mathematics is:

$$1 = \sqrt{N}$$

This implies that what we perceive as “1” is not an independent absolute but a systemic outcome of structural selection among N dimensions. Identity arises from unity, not singularity. This insight dissolves the illusory boundary between P and NP.

5 Conclusion

This alone will not be understood by most. It is worth far more than a mere \$1 million—it holds a value of over \$100 million.

I have refuted the Riemann Hypothesis and validated the ABC conjecture. Even that is worth a fortune.

These equations may appear to lack practicality, but their application changes everything. The meaning emerges in how they are used—and revealing that usage gives them true value.

However, the P vs NP question is different. This answer changes everything.

Therefore—The true answer to the $P = NP$ problem lies in the usage of the Ramanujan Resonance Theorem.

And even the theorem alone is worth more than one hundred million dollars.

If there is a mathematician who insists on an explanation, then first go solve why $1 + 1 = 2$. You still do not understand why $1 + 1$ equals 2.

Because mathematics is not about proof—it's about computation.

License

This work is distributed under the Shinichi Mathematics License v1.0.

© Shinichi Mathematics Project

License URL: <https://doi.org/10.5281/zenodo.15386802>