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A B S T R A C T

The Internet of Things (IoT) comprises a vast number of interconnected devices that generate and share enor
mous amounts of data. Traditional machine learning approaches, which rely on the exchange of raw data, are 
impractical for real-world applications with extremely high data volumes due to challenges such as energy 
constraints and node mobility. To mitigate these overheads in IoT, Federated Learning (FL) can be employed, 
decentralizing the learning process to various devices without the need for centralized data collection or sharing. 
In this paper, we propose a new energy-efficient decentralized federated learning framework aimed at reducing 
energy consumption in mobile IoT. This framework utilizes a Master/Slave clustering method and a dynamic 
sleep/wake-up strategy, ensuring that the Base Station (BS) does not interfere with the aggregation of learning 
models and only supervises the clustering process. To rigorously evaluate the results of the proposed approach, 
we initially present a Linear Programming (LP) mathematical model designed to optimize energy consumption 
costs. Simulation results demonstrate that the proposed scheme improves energy consumption by up to 52 % 
compared to the star scheme and 41 % compared to the hierarchical method. Additionally, the proposed 
approach achieves a high accuracy performance of approximately 98 %, significantly surpassing standard 
schemes. These quantitative results highlight the effectiveness of our approach in optimizing energy use and 
enhancing model performance in mobile IoT environments.

1. Introduction

The Internet of Things (IoT) is rapidly gaining traction, with forecasts 
indicating that approximately 125 billion smart devices will be inter
connected by 2030 [1]. The pervasive integration of IoT across various 
applications has become so significant that meeting sustainable devel
opment goals, particularly in reducing energy consumption, is unat
tainable without incorporating IoT. As a result, vast amounts of data are 
generated and exchanged within these networks by devices like robots, 
sensors, smart devices, and mobile phones. This substantial volume of 
data must be analyzed and processed to serve the intended application 
[2].

In many applications, raw information gathered from the network is 
analyzed using intelligent, machine learning-based approaches to derive 
final results and data. Traditionally, data is sent from personal devices or 
organizational data centers to a server for processing, where the final 
analysis is conducted centrally [3]. This method incurs several costs, 
including increased risk of data leakage during transmission, creating 

network traffic, and significantly increasing the server’s computational 
load [4].

To address these concerns, new alternative approaches are being 
developed in the IoT environment, aiming to perform as much of the 
learning process locally on the devices as possible. This minimizes the 
need to transfer data to a central server. One such innovative machine 
learning approach is federated learning [5].

In federated learning, the majority of the learning process is 
distributed and performed on the end devices, eliminating the need to 
exchange and share datasets. Instead, only "learning model updates" 
need to be exchanged [6]. In this approach, the learning model com
putations are conducted locally on the end devices, and the learning 
parameters are then sent to the server for aggregation. While federated 
learning initially seems like an excellent approach, its implementation in 
practical environments is not straightforward and comes with chal
lenges [7]. These challenges include the need for computational power 
at the end stations, energy constraints at these nodes, the requirement 
for sufficient data samples to achieve the desired accuracy, and the 
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necessity to exchange learning parameters between devices and the 
server during each learning round [8].

In general, based on the strategies for information exchange between 
devices and the server, federated learning approaches are divided into 
two main types: Centralized Federated Learning (CFL) and Decentral
ized Federated Learning (DFL) [9]. In the centralized federated learning 
approach, the central server plays a relatively more active role in the 
learning process. Devices train their models with local data and then 
send their local models to the server. The server aggregates these 
models, updates the global learning model, and sends it back to the 
devices. The main challenge with this approach is that, in practice, 
nodes must continuously communicate with the server to exchange 
learning parameters, significantly increasing energy consumption in 
these networks. Additionally, this approach still relies on a central server 
with high reliability and processing power [10].

In contrast, to overcome the limitations of centralized federated 
learning methods, decentralized approaches have been introduced to 
eliminate dependency on a central server. These approaches use device- 
to-device (D2D) communications, exchanging learning parameters with 
neighboring devices without the need for a base station (BS), enabling 
the learning process to be distributed and completed within the network. 
In this approach, each node executes the learning process using local 
data and then aggregates its learning model by receiving updates from 
its neighbors [11].

The use of decentralized federated learning in mobile IoT also pre
sents challenges, and given the nature of devices in these networks, 
reducing energy consumption remains the primary challenge in this 
approach [12]. IoT devices are generally mobile and use wireless com
munications, have limited energy, and thus are often reluctant to 
participate in the learning process. Additionally, factors such as the 
increasing number of devices participating in the learning process, un
stable and weak bandwidth in wireless environments, node mobility, 
and the low speed of model parameter exchange disrupt the learning 
process in these methods, making it harder to achieve a final and uni
versal learning model in decentralized federated learning methods.

To overcome the issues of decentralized federated learning in IoT 
networks, several solutions have been proposed. One approach focuses 
on reducing the communication overhead related to learning model 
parameters, where each device calculates its local updates and sends 
them to a central server based on conventional topologies [13]. Some 
approaches concentrate on improving D2D communications, enabling 
devices to exchange data directly without the support of a central 
coordinator [14]. Other approaches focus on compression schemes to 
reduce the volume of exchanged data [15]. Conversely, some methods 
aim to reduce the communication rounds needed for parameter ex
change [16]. Additionally, several approaches focus on utilizing clus
tering ideas during the learning process [17].

In this paper, a new hybrid approach for utilizing decentralized 
federated learning in IoT-based networks is presented. In the proposed 
approach, the base station does not get involved in the aggregation of 
federated learning model parameters. Instead, the base station is solely 
responsible for the clustering process and the selection of cluster heads. 
The aggregation of learning model parameters is performed by edge 
devices in a decentralized manner, with the goal of minimizing the 
involvement of the base station and central server in the learning pro
cess. For the clustering process, the proposed approach employs a hybrid 
method based on the geographical location and availability time of the 
devices, unlike previous approaches. This means that devices located 
geographically close to each other and available within a certain time
frame are grouped into the same cluster.

The proposed approach uses an unscheduled scheme; thus, the tasks 
of the devices within the cluster are not predetermined. This approach 
offers devices substantial flexibility and adaptability, allowing them to 
respond dynamically to various conditions such as device availability, 
energy levels, and network connectivity. As a result, it enables the 
seamless integration of a broader array of devices into a federated 

learning system. This integration provides multiple benefits in terms of 
energy consumption and accuracy in learning models, which will be 
discussed in Section 5. Initially, the clustering process and selection of 
appropriate cluster heads for each cluster are performed. Subsequently, 
the clusters are divided into two main types: master and slave, based on 
the number of devices participating in the learning process within each 
cluster. The master cluster, having a higher number of participating 
devices and therefore collecting more data, provides better model pa
rameters and becomes the core of the network. Slave clusters, using their 
local data and the parameters received from the master cluster, perform 
local learning and send their results back to the master cluster, 
enhancing and optimizing the final model.

To further reduce energy consumption, a sleep/wake-up mechanism 
is introduced for the clusters. In this mechanism, clusters with insuffi
cient devices for effective collaborative learning can enter a sleep mode. 
During this time, they receive appropriate parameters from a master 
cluster, which has suitable conditions for learning. Additionally, the 
parameters generated by the devices involved in the learning process are 
transmitted to the cluster head using the local FedProx algorithm [18,
19].

An important point here is that in the initial phase of learning, 
processing the data in slave-clusters is inefficient due to the low number 
of participating devices in those clusters. Therefore, devices in slave 
clusters enter a sleep mode until new parameters are received from the 
master cluster. This mechanism also applies to devices in the master 
cluster, which remain in sleep mode until a new model needs to be 
trained. Asynchronous communications are used for intra-cluster device 
communication; in this mechanism, if a device moves out of its cluster 
during the learning process, other devices continue the learning process 
independently without waiting, reducing the wandering effect [20].

In this research, a mathematical model based on Linear Program
ming (LP) is used to formulate and evaluate the mentioned mechanisms, 
and mathematical and conceptual modeling is performed to describe all 
the variables in the problem-solving process. To precisely evaluate the 
proposed framework, its performance is compared with both the opti
mized mathematical model and existing approaches in Section 4.

The key contributions of this research can be summarized as follows: 

• Proposing a decentralized federated learning framework for mobile 
IoT based on asynchronous D2D communications.

• Introducing a dynamic clustering method with the assistance of the 
base station, suitable for implementing decentralized federated 
learning in mobile IoT.

• Developing a sleep/wake-up mechanism to reduce energy con
sumption in clusters formed for implementing decentralized feder
ated learning in mobile IoT.

• Modeling the proposed framework using linear programming to 
optimize energy consumption in mobile IoT.

• Evaluating the performance of the proposed framework in compar
ison with similar approaches and the optimized state based on a 
mathematical model.

The structure of this paper is organized as follows: The second 
chapter reviews related research. The third chapter outlines the system 
model, while the fourth chapter discusses the proposed framework in 
detail. In the fifth chapter, numerical results are presented. Finally, the 
sixth chapter offers a summary and conclusions of the study.

2. Related work

In this chapter, we will first review the concept of federated learning. 
Subsequently, recent studies utilizing centralized federated learning in 
the Internet of Things will be examined, followed by an exploration of 
recent research on decentralized federated learning in IoT. Finally, to 
provide a comprehensive view of the research path in this field and to 
compare the achievements of previous works with the proposed 
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approach, a general comparison of the existing approaches has been 
presented.

2.1. Introduction to federated learning

Federated learning, also known as collaborative learning, is a 
distributed machine learning approach where model parameters are 
shared only between network devices and a central server [21]. In this 
paradigm, the process unfolds in three stages: each device initially re
ceives an initial model from the server, trains it with its private data, and 
sends the updated model parameters back to the central server. Once 
these parameters are aggregated, a global model is created by the server. 
This iterative process continues until the global model achieves the 
required accuracy for the subsequent training rounds across all nodes. 
This approach allows computations to be performed closer to the data, 
addressing critical issues such as privacy preservation and data locality 
efficiently [22].

Federated learning finds diverse applications such as autonomous 
vehicles [23], traffic prediction [24], telecommunications [25], IoT [26] 
and Industrial IoT (IIoT) [27], AI-driven healthcare [28] and security 
issues [29]. Its implementation in IoT offers advantages such as pre
serving privacy, reducing data exchange latency, improving scalability, 
enhancing learning models, and reducing energy consumption [30].

Today, federated learning in IoT is broadly categorized into two 
types: centralized federated learning with a central server and decen
tralized federated learning without a server [31]. Centralized federated 
learning involves a central server and a set of devices that communicate 
concurrently with the server to aggregate and update learning param
eters. In contrast, decentralized federated learning typically operates 
without a central server to mitigate existing bottlenecks. In this 
approach, devices connect peer-to-peer (P2P) and receive the aggre
gated model through neighboring devices. Thus, each node performs 
local learning based on its data and aggregates its model based on up
dates received from its peers. The key advantage of this approach lies in 
enhancing scalability for applications where access to a central server is 
either unavailable or impractical.

2.2. Centralized federated learning in IoT

Several studies explore advanced techniques and algorithms to 
optimize centralized federated learning across diverse IoT and mobile 
networks. In [32], a two-step communication protocol and dynamic 
resource allocation strategy enhance centralized federated learning by 
maximizing bandwidth allocation among clients, selecting participants, 
and appointing leaders to improve global model accuracy. This 
approach outperforms FedAvg in terms of communication cost and 
model accuracy.

In [33], Li et al. introduce a data compression scheme, FT-LSGD-DB, 
tailored for edge wireless devices, which integrates local stochastic 
gradient algorithms and gradient reduction strategies. This scheme 
significantly reduces communication rounds and sizes, achieving sub
stantial energy savings. Additionally, hierarchical federated learning is 
explored in [34], demonstrating EARA’s effectiveness in resource allo
cation for heterogeneous IoT systems, improving classification accuracy 
by accommodating non-iid. data distributions.

Luo et al. [35] propose a time-sharing scheduling scheme for feder
ated learning in edge mobile networks, optimizing client participation 
and local iterations to reduce training time and energy consumption. 
Furthermore, MUCSC, introduced in [36], utilizes model compression 
techniques like B-MUCSC to enhance communication efficiency by 
grouping minor updates within super-clusters, thereby reducing overall 
communication traffic.

In [37], a dual-level incentive mechanism mitigates node failures 
through evolutionary game theory, allowing clusters to reward user 
participation and compete for model services. Yang et al. [38] address 
energy and computational resource efficiency in wireless federated 

learning with algorithms optimizing time, bandwidth, power, and fre
quency allocation.

In [39], a weighted Proximal learning-based algorithm minimizes 
energy consumption and completion time for federated learning in 
wireless IoT, demonstrating superior efficiency compared to traditional 
methods.

The studies by Wu et al. [40,41], Gong et al. [42,43], and Yu et al. 
[44] introduce various approaches such as semi-asynchronous federated 
averaging, Semi-SynFed for Internet of Vehicles, clustered federated 
learning, Hierarchical Federated Edge Learning (HFEL), and ELASTIC 
algorithm for wireless IoT, each focusing on specific challenges and 
optimizations in federated learning environments.

2.3. Decentralized federated learning in IoT

Recently, extensive research has been conducted on the application 
of decentralized federated learning in the Internet of Things, and we will 
review some of these studies below. In [45], a Distributed Federated 
Learning (DBFL) approach is introduced, aiming to achieve scalable and 
energy-efficient exchange of trained models. This approach focuses on 
the heterogeneity of data and their feature spaces, employing autoen
coders for model aggregation. Reported results demonstrate that this 
approach outperforms centralized federated learning approaches in 
terms of accuracy and energy efficiency.

In [46], a new Federated Learning approach called TT-HF is pro
posed as a semi-decentralized federated learning method. In this 
approach, Device-to-Device (D2D) communications are utilized for 
federated learning between end devices and a server. During each global 
aggregation round, devices send their local model parameters via D2D 
communications within local clusters. Experiments show that TT-HF 
offers improvements in model accuracy and network energy consump
tion under various statistical heterogeneity scenarios.

In [47], a FL-EOCD framework is proposed for decentralized feder
ated learning, aiming to reduce energy consumption using D2D com
munications and overlapping clustering. In this method, a cluster is 
defined as a coverage area for an end device, and devices overlapping in 
cluster areas are termed Bridge Devices (BDs). Clusters are inter
connected via BDs either in a star or hierarchical topology, allowing for 
decentralized deployment of cluster-specific models without the need 
for a central server. Results indicate that the proposed approach en
hances energy consumption and learning time compared to similar hi
erarchical and star-based approaches.

In [48], focused and distributed learning approaches for Internet of 
Drones (IoD) have been proposed using graph theory computations. The 
proposed federated learning approach for IoD utilizes a decentralized 
distribution of local parameters among drones in network overlap re
gions to enable aggregation of a global model. Results show that the 
decentralized approach provides comparable performance in terms of 
privacy preservation and energy consumption compared to centralized 
approaches among drones.

In [49], leveraging edge-to-cloud distributed training using Feder
ated Edge Learning (DFEL), an intelligent model training process is 
distributed across nodes from edge devices to cloud servers. This method 
considers a multi-layered heterogeneous device framework with added 
local network topology structures, synchronized via D2D communica
tions. This approach is expected to be beneficial for latency-sensitive 
applications such as intelligent factory automation, transitioning from 
star topologies to distributed topologies to significantly reduce network 
resource costs. Horizontal/vertical communication optimization, 
resource allocation, clustering issues, and network dynamics are not 
adequately addressed in this scheme.

In [50], a clustered federated learning approach is presented for 
vehicular networks. This approach utilizes Vehicle-to-Vehicle (V2V) 
communication to overcome federated learning communication bottle
necks. In each round, a subset of vehicles is selected to act as a cluster 
head, and other vehicles are matched with them. Non-iid is employed to 
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converge learning models, creating new models for non-participating 
individuals and new vehicles. Finally, a greedy algorithm for selecting 
and allocating cluster head resources and a two-part matching algorithm 
with maximum weight for cluster formation are proposed.

In [51], a hybrid approach combining Decentralized Federated En
ergy Learning (DFEL) and Multi-Principal Single-Agent (MPOA) 
contract-based methods is proposed for Electric Vehicle (EV) networks 
to increase profit for Charging Stations (CSs). The proposed approach 
allows CSs to locally train their energy transactions for accurate demand 
prediction while ensuring data privacy preservation. On the other hand, 
using MPOA, maximizing the profitability of CS is formulated as a 
non-collaborative energy contract problem, allowing each desirable CS 
to increase its appeal under common constraints of the Smart Grid 
Provider (SGP). The results show that the proposed method increases 
energy demand prediction accuracy and reduces communication 
overhead.

2.4. Comparison of existing approaches

In this section, to clarify the position of the proposed approach in the 
field of research, we’ve made an effort to provide a straightforward 
analysis of previous research that relates to the proposed solution in this 
paper. To achieve this and offer a more comprehensive view, earlier 
centralized and decentralized approaches are briefly summarized in 
Table 1. Through this comparison, the contributions and innovations of 
the proposed approach are highlighted, particularly in combining the 

sleep/wake mechanism with the federated learning process, which helps 
improve energy efficiency in a meaningful way. Moreover, the table 
provides a good overview of recent research trends in using federated 
learning for IoT and makes the connection between the proposed 
approach and earlier studies more clear. The last row of this table 
compares the proposed approach of this paper based on the same 
comparative framework.

3. System model

In this chapter, the system model and assumptions considered for 
implementing the proposed framework are delineated, including 
network model, communication model, mobility model, and learning 
model. The system model outline is presented in Fig. 1.

3.1. Network model

In this proposed framework, the edge network consists of IoT devices 
along with a base station. End devices include smart sensors, smart
phones, etc., within the IoT environment, providing raw data for ma
chine learning algorithms. These devices are typically mobile and have 
specific constraints such as processing power, memory, and battery life. 
On the other hand, the base station plays a crucial role in clustering and 
assigning primary and secondary roles based on the number of partici
pating devices in a cluster. Selecting an appropriate device as a cluster 
head is based on factors like device energy and mobility.

Table 1 
Summary of key contributions and frameworks for improving FL in IoT and mobile networks.

Approache Refs. Key Solutions Mobility Evaluation
Compression Clustering D2D S/ 

W
Centralized [32] ⨯ ✓ ✓ ⨯ ✓ Addressing scalability issues in federated learning by enhancing model accuracy and 

communication efficiency.
[33] ⨯ ✓ ⨯ ⨯ ⨯ Focusing on energy efficiency in edge computing environments, ensuring relevance for real- 

world applications with resource constraints.
[34] ⨯ ⨯ ⨯ ⨯ ✓ Emphasizing user assignment in heterogeneous settings to broaden the applicability of 

federated learning across various scenarios.
[35] ⨯ ✓ ⨯ ⨯ ⨯ Balancing client participation and resource management to improve efficiency in mobile 

federated learning systems.
[36] ✓ ✓ ⨯ ⨯ ⨯ Minimizing bandwidth usage through compression strategies, addressing communication 

bottlenecks in federated learning.
[37] ⨯ ✓ ⨯ ⨯ ⨯ Enhancing user engagement and participation through an incentive mechanism, while 

exploring practical implementation challenges in diverse environments.
[38] ⨯ ⨯ ⨯ ⨯ ✓ Reducing energy consumption to enable more sustainable federated learning systems.
[39] ✓ ⨯ ⨯ ⨯ ✓ Addressing real-world constraints with a pragmatic approach, contributing to environments 

with limited resources.
[40] ⨯ ⨯ ⨯ ⨯ ✓ Advancing client-server dynamics management through the semi-asynchronous federated 

averaging (SAFA) protocol.
[41] ⨯ ⨯ ⨯ ⨯ ✓ Improving efficiency in IoV systems, showcasing the importance of adaptive federated learning 

protocols in transport applications.
[42] ⨯ ✓ ⨯ ⨯ ✓ Solving data heterogeneity challenges with AdaCFL to enhance model performance in 

recommender systems.
[43] ⨯ ✓ ⨯ ⨯ ⨯ Addressing communication challenges in edge computing with the HFEL framework to improve 

federated learning efficiency.
[44] ⨯ ⨯ ⨯ ⨯ ✓ Optimizing resource management and energy efficiency in IoT with the ELASTIC algorithm 

while maintaining model performance.
Decentralized [45] ⨯ ✓ ⨯ ⨯ ⨯ Tackling data heterogeneity while enhancing accuracy and energy efficiency with DBFL, 

suitable for real-world applications.
[46] ⨯ ⨯ ✓ ⨯ ⨯ Improving accuracy and energy utilization by incorporating D2D communications in federated 

learning systems.
[47] ⨯ ✓ ✓ ⨯ ✓ Enabling decentralized model distribution through cluster connections via bridge devices, 

reducing energy consumption and learning time.
[48] ⨯ ✓ ✓ ⨯ ✓ Offering a balanced solution by combining centralized and decentralized methods for IoD 

applications.
[49] ⨯ ✓ ✓ ⨯ ⨯ Coordinating D2D communications in heterogeneous devices with a multi-layer hybrid 

learning structure for latency-sensitive applications.
[50] ⨯ ✓ ⨯ ⨯ ✓ Enhancing communication efficiency by selecting cluster heads based on update similarity, 

accelerating learning in Non-IID settings.
[51] ⨯ ✓ ⨯ ⨯ ✓ Maximizing utility for charging stations while ensuring data privacy through local training, 

improving energy demand forecasting and reducing communication overhead.
Our 
paper

⨯ ✓ ✓ ✓ ✓ Utilizing a dynamic sleep/wake mechanism and asynchronous communications to 
address energy and mobility challenges in federated learning.
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The base station and IoT devices are essential components in this 
system, where devices form a set D= {D1, D2, ..., DN} within the coverage 
area of the base station denoted by B. DB ⊆ D represents devices 
communicating with BS. Each device di in D has a geographical location 
defined by coordinates (xi, yi), indicating its position in the environment.

The base station leverages clustering informed by device statuses, 
combining geographic location approaches and device availability. 
Clusters are formed with devices that are simultaneously available and 
physically close to each other, facilitating possible D2D links. Similar to 
the approach in research [47], it is assumed that each device cannot 
transmit and receive data simultaneously, making the D2D channel 
half-duplex. RRBs are employed as communication protocol models for 
parameter transmission, minimizing bandwidth interference and link 
failures caused by mobility.

3.2. Communication model

In this study, both Device-to-Device (D2D) and cellular communi
cations are considered. D2D communication is utilized when devices are 
within each other’s coverage range, improving energy efficiency 
compared to traditional infrastructure-based communications. 
Conversely, if devices are outside each other’s coverage, cellular com
munications are used, providing connectivity beyond D2D coverage 
limits. Finally, parameters are relayed to respective cluster heads 
through neighboring devices (relays), enabling devices outside the 
cluster coverage to transmit their parameters for final aggregation.

3.3. Mobility model

In this framework, we use a simple mobility model to make it easier 
to understand while still capturing the essential dynamics relevant to 
our study. The mobility model used in this system assumes that the 
movement of each device is determined solely based on its geographical 
position, without considering the device’s speed [52]. These assump
tions allow us to focus on the key aspects of federated learning optimi
zation without introducing unnecessary complexity.

At each time step, their positions are updated according to their 
current coordinates and a simplified mobility model. The new position 
of device di at time t is represented as (x′i. y′i), calculated based on (1)
and (2): 

xʹi = xi + Δt (1) 

yʹi = yi + Δt (2) 

where Δt represents the time interval between updates. The mathe
matical description of the mobility model is also defined according to 
(3): 

(xi.yi)→ (xʹi. yʹi) = (xi +Δt. yi + Δt) (3) 

where (xi, yi) represents the initial position of the device, and (x’i, y’i) 
denotes its updated position.

3.4. Learning model

In the proposed framework, collected data are not sent to a central 
location; instead, final devices, aided by federated learning principles, 
train their models based on local data. This approach employs a feder
ated learning algorithm called FedProx, particularly advantageous for 
heterogeneous data environments compared to other algorithms like 
FedAvg, especially when dealing with non-IID data distributions [19].

The FedProx algorithm is an improved version of the FedAvg algo
rithm, specifically designed to handle and address non-IID data and 
heterogeneous models, especially in IoT environments [53]. This algo
rithm introduces a "proximal term," which adds a regularization term 
proportional to the distance between the updated local model and the 
global model, to keep devices closer to the global model. This approach 
prevents devices with highly heterogeneous data from diverging too far 
from the global model and ensures better convergence [54].

The regularization parameter λ controls the permissible deviation 
between local and global models; a higher λ results in more restricted 
updates, leading to greater homogeneity, while a lower λ allows for 
more heterogeneity. Generally, λ should be carefully adjusted to balance 
between fitting local data and maintaining proximity to the global 
model [55]. The value of λ will be determined and discussed in the 
performance evaluation section.

4. Proposed framework

In this section, the details of the proposed framework are outlined, 
including the clustering mechanism, the sleep/wake-up mechanism, and 
the federated learning mechanism. Subsequently, the proposed frame
work is formulated. Table 2 summarizes the main notations used in this 
part.

4.1. Clustering mechanism

The clustering operations in the proposed framework are centered 
around the base station. In this approach, the base station first identifies 
the set of devices within a specific time slot tsb and a geographical radius 
rb; this resulting set is represented as follows: 

Fig. 1. An overview of the proposed system model.

Table 2 
Summary of symbols.

Notation Description

Md Mobility of a device, indicating how much it has moved
Mthreshold A threshold value to assess low mobility
M Devices in the master cluster
HM Cluster head of the master cluster
Si Devices in the slave cluster i
HSi Cluster head of the slave cluster i
XM Data set in the master cluster
XSi Data set in the slave cluster i
Sj Device state in sleep/wake mode
Mg Global parameter/model
f (w) Initial model based on the master cluster data
g (w) Learning process with the device dataset and creating a local parameter
h (w) Aggregation of local parameters by the master cluster head
Δ (Mg) Difference between new and previous model/parameters
threshold Control of changes in parameters
Mǵ Previous model/parameter
f(x;θ) Global model across the dataset
θi Current local parameter for device
λ Regularization parameter
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C (tsb. rb) = {di|tsb ∈ Ai && distance (di. (xb.yb))< rb} (4) 

where (xb, yb) are the coordinates of the base station. In this approach, 
each device di has a set of available time slots denoted as Ai, which is 
represented as Ai = {ts1, ts2, …}, where tsk is a specific time slot available 
to di. Based on this, the base station defines a cluster for each time slot 
tsk, referred to as Ck, which includes the devices for which that time slot 
is available, defined as follows: 

Ck (tsk) = {di | tsk ∈ Ai} (5) 

After this, based on the defined cluster, a location-based cluster is 
established. This cluster includes all devices located within a specified 
geographic radius R, defined as follows: 

Cl =
{
di
⃒
⃒distance

(
di.dj

)
< R. ∀ di.dj ∈ Cl} (6) 

A location-based cluster Cl is defined, encompassing devices within a 
specified geographic radius R, each device has a limited coverage area, 
representing its service area as a circle with radius R. Subsequently, by 
intersecting Ca and Cl as C= Ca (tsk) ∩ Cl, a cluster C is formed, 
comprising devices that are both temporally and geographically proxi
mate. Ultimately, all devices are divided into k clusters using this 
method: C= {C1, C2, …, Ck}.

In the proposed approach, the clustering details are handled using 
the Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) algorithm [56]. This method can identify points that are close 
to each other by considering the updated positions of devices due to 
mobility [57]. To achieve this, the density of data points within a 
specified radius is denoted by e, and the minimum number of points 
required to form a cluster is denoted by m. Specifically, e is a distance 
parameter that sets the maximum permissible distance between two 
data points for them to be considered neighbors, indicating how close 
devices must be to each other to be grouped in the same cluster. Addi
tionally, m determines the minimum number of devices that must exist 
within the e-neighborhood for a point to be considered a core point.

DBSCAN is chosen here over other clustering methods, such as k- 
means, because of its robustness to noise and its ability to identify 
clusters without prior knowledge of their number. This flexibility is 
critical in environments where device distribution and density can vary 
significantly. In addition, DBSCAN is particularly effective for mobile 
devices because it can adapt to real-time changes in location and den
sity, making it an ideal choice for implementing our proposed clustering 
approach in the federated learning framework [56,57].

4.1.1. Determining master and slave clusters
After completing the first stage of the clustering process and identi

fying the set of clusters as C= {C1, C2, …, CK}, the cluster with the most 
members is designated as the master cluster. Formally, this is expressed 
as: 

Master = Cxwhere Cx..devicesize = max
(
Ci.devicesize

)
for all Ci in C (7) 

For subsequent periods, if the cluster still has the most devices, it will 
continue to be selected as the Master due to the higher participation of 
devices. If the cluster loses its devices due to mobility or weak connec
tions (based on a threshold T, which is defined as a percentage of the 
master cluster size Dm and given by T= γ×Dm, where 0<γ<1), then 
dynamically, the cluster with the highest score will be selected as the 
new Master.

In the meantime, the remaining clusters are considered as slave 
clusters, defined as slaves(t)=C− {master(t)}, until a slave cluster grows 
and becomes the master cluster, and the former master cluster takes on 
the role of a slave. Overall, the cluster with the most devices is always 
selected as the master cluster. It is worth noting that during the learning 
process, the devices within a cluster are allowed to communicate with 
each other to collect local parameters for updating the global model.

4.1.2. Selecting master and slave cluster heads
After performing the clustering operation and determining the pri

mary and Slave clusters, the next step is to designate the cluster head for 
each cluster. To select an appropriate cluster head for the master cluster, 
the proposed approach first considers the remaining energy levels of the 
devices, followed by their mobility.

In the first step, the device with the highest remaining energy among 
all devices is selected as the cluster head. This ensures that the chosen 
device has sufficient energy to function effectively as the cluster head. 
Once a device is selected as the cluster head, its mobility is assessed 
based on the parameter Md. If Md<Mthreshold, it indicates that the device 
has low mobility and can continue to serve as the cluster head.

For selecting the slave cluster heads, the connection to the master 
cluster head is of significant importance. A device is chosen as the slave 
cluster head based on its ability to act as a bridge to the master cluster. 
Specifically, the distance between each device in the slave cluster and 
the master cluster head is calculated, and the device with the minimum 
distance is selected as the bridge device and the slave cluster head. By 
incorporating periodic checks of the cluster heads, it can be ensured that 
slave cluster heads are updated in case of device mobility or unstable 
connections. This approach guarantees that the cluster heads operate 
effectively and maintain a robust network topology.

4.2. Sleep/wake-up mechanism

The sleep/wake-up mechanism operates as follows: 

1. Initially, all devices in the slave clusters are in sleep mode, while all 
devices in the master cluster are awake. In other words, Sj = 0 for all 
j ∈ Si and Sj = 1 for all j ∈ M.

2. The master cluster head creates an initial model by collecting and 
aggregating parameters from the devices within the cluster accord
ing to (8): 

Mg = f (XM[HM]) (8) 

3. The initial model is sent to all the slave cluster heads within its 
overlap region according to (9): 

HSi ∩ HM ∕= ∅ (9) 

HSi receives Mg from HM. This condition in the sleep/wake mech
anism is implemented considering that the slave cluster heads 
overlap with the master cluster head.

4. The slave cluster heads wake up their devices and send the initial 
model to their member devices. Specifically, HSi sends Mg to Si, and Sj 
is set to 1 for all j∈Si.

5. Each device in the slave clusters performs the learning process with 
its dataset, creating a local parameter as described in (10): 

Si = g
(
XSi

)
(10) 

6. Each slave cluster head sends its local parameter to the master cluster 
head, meaning HM receives Si from HSi .

7. The master cluster head aggregates the parameters to create a new 
global model (for each slave cluster) as described by (11), denoted by 
Mg. 

Mg = h (Si) (11) 

8. According to (12), if the new global model significantly differs from 
the previous model, the master cluster head sends the new model to 
all slave cluster heads, and the process repeats from step 4: 
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Δ(Mg) > threshold. HSi ∩ HM ∕= ∅ (12) 

where HSi receives Mg through HM.
9. Conversely, if the new global model does not show significant dif

ferences, the master cluster head sends a sleep signal to all devices in 
the system, as described in (13): 

Δ(Mg) ≤ threshold.∀j ∈ M => Sj = 0 (13) 

In steps 8 and 9, the threshold Δ is a parameter that determines when 
the global model parameters have changed sufficiently to wake up the 
devices in the system. It is defined as a function of the difference be
tween the current global model and the previous global model, as 
described in (14): 

Δ = α × ||Mg − Mʹg|| (14) 

In this framework, the threshold Δ is a parameter that determines 
when the global model parameters have changed sufficiently to wake up 
the devices in the system. It is defined as a function of the difference 
between the current global model (Mg) and the previous global model 
(M’g), with ||x|| representing the L2 norm, indicating the magnitude of 
change between the two models. The parameter α controls the sensi
tivity of the threshold and can be set to a high value (e.g., 0.1) to ensure 
rapid convergence, considering the energy constraints of the devices. 
This approach measures convergence based on the difference between 
the current and previous models. If the difference is below the threshold, 
devices can enter a sleep state since there is no significant new data to 
learn from. Conversely, if the difference exceeds the threshold, devices 
should remain awake to learn from the new data. This strategy balances 
energy efficiency and learning performance. 

10. If a device moves out of its current cluster and joins another 
cluster due to mobility, the mechanism must adapt accordingly. This 
means that once it is assigned to a new slave cluster or master cluster, 
it sends the parameters to the adjacent device in the master cluster 
(M) or slave cluster (Si). Then, the process resumes from step 4, 
updating the parameters using the new device’s data, as shown in 
(15). 

Mg = h (Si|M. Xnew) (15) 

where Xnew represents the dataset of the new device. The process repeats 
from step 3, ensuring that the new device can participate in the learning 
process. 

11. If a device exits the system due to depleted energy or unstable 
connectivity, its tasks are redistributed among the remaining devices 
in the corresponding cluster. When the device becomes available 
again, it receives the current parameters from a neighboring device. 
Consequently, depending on whether it is a member of a primary or 
slave cluster, it will repeat steps 5 or 7 respectively.

4.3. Federated learning mechanism

In the proposed framework, each device D at the edge of the network 
has a local dataset (

{
xi. yi

}
), where xi is the input sample i and yi is the 

output sample i. It is assumed that X represents the data distribution 
across a set of devices D = {D1, D2, …, Dk}. Each device Di maintains a 
subset Xi of the data, as described by (16). 

X = ∪iXi (16) 

4.3.1. Learning method in the master cluster
The objective of this task is to train a global model f (x; θ) across the 

entire dataset X, where θ represents the model parameters. Here, the 
process is carried out in a decentralized manner. Devices in the master 
cluster M= {M1, M2, …, Mk} train their local parameters fi (x; θi) using 
their local data Xi. Through communication with each other, they up
date their local parameters and coordinate the training of the global 
model. Each device sends its parameters to its neighbor, or if it is close to 
the cluster head, it sends them directly to the cluster head for aggrega
tion. The aggregated model is then sent to the slave cluster heads and 
finally to the member devices of the master cluster. The steps for this 
process are as follows [58]: 

- fi (x; θi) is considered the local model parameter of device Mi at time 
t.

- In each iteration t, the devices in the master cluster update their local 
parameters according to (17): 

θi. t+1 = argminθ

⎡

⎢
⎢
⎢
⎢
⎣

λ
2

× ||θ − θi. t ||
2
+

(
1
n

)

×
∑n

j=1
LM

(
fj (x; θ). Xj

)

⎤

⎥
⎥
⎥
⎥
⎦

(17) 

where λ is the regularization parameter, θi is the current local parameter 
for a device Dj trained on the corresponding local dataset Xj. θ represents 
the global model parameter, which embodies the collective knowledge 
of all devices. n is the number of devices, and LM is the local loss function 
for device Dj, measured with fj (x; θ) and local data Xj. To obtain the 
global loss function (a sum of local loss functions from slave clusters and 
the master cluster) on the device’s dataset, common examples like linear 
regression are used, as described in (18) [59]: 

LG =

(
1
N

)

× Σ
[ (

1
ni

)

× Σ
(

yj − − ŷj

)2
]

+

(
1
M

)

× Σ
[ (

1
mk

)

× Σ(yk − − ŷk)
2
]

(18) 

and yj is the actual target value, ŷj is the predicted value, ni is the total 
number of training samples, and N is the number of slave clusters. 
Similarly, in the second term, M represents the total number of devices 
in the master cluster, mk is the total number of training samples, yk is the 
actual target value, and ŷk is the predicted value. The overall accuracy 
calculation based on the loss function is given by (19): 

∈G(t) = 1 − (LG + LM) (19) 

- After updating the parameters, the devices in this cluster sequentially 
send and receive the updated parameters. Device Mi sends its 
parameter to the neighboring device Mj and device Mi receives it to 
aggregate their local parameters.

- Finally, the local parameters of the devices are aggregated at the 
cluster head using (20): 

f (x; θ) =
(

1
|M|

)

×
∑k

{i=1}

fi(x; θi. t) (20) 

- In this equation, ∣M∣ represents the number of devices in the master 
cluster. The aggregated parameters are sent to the slave cluster heads 
and their member devices for further training.

4.3.2. Learning method in the slave cluster
The initial global model f (x; θ) is sent by the master cluster head to 
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the slave cluster heads, following these steps: 

- Let S= {S1, S2, …, Sk} be a set of slave clusters. Each slave cluster Sj 
has a local dataset Xj and a local model fj (x; θj) at time t. The local 
loss function is given by: 

Lj =

(
1
n

)

× Σ
(

yj − − ŷj

)2
(21) 

Additionally, (22) computes the local accuracy [60]: 

∈l(t) = 1 − Lj (22) 

- In each iteration t, the devices in each slave cluster Sj update their 
local parameters using (23): 

θ {j. i. t+1} = argminθ

⎡

⎢
⎢
⎢
⎢
⎣

λ
2

×
⃒
⃒
⃒
⃒θ − θ{j. i. t}

⃒
⃒
⃒
⃒2 +

(
1
N

)

×
∑N

k=1

Lk (f (x; θ). X {j. k})

⎤

⎥
⎥
⎥
⎥
⎦

(23) 

where λ is the regularization parameter, N is the number of devices, Lk is 
the local loss function for device Dk, and X{j.k} is the local data set for 
device Dk in the slave cluster. 

- Each device Dk in slave cluster Sj sends its local model θj.k.t+1 to a 
neighboring device if it is nearby. The slave cluster head aggregates 
the parameters from the devices using (24). 

θ{j. t+1} =

(
1
N

)

×
∑N

{i=1}

θ{j. i. t+1} (24) 

in which θj.t+1 represents the aggregated model parameters for slave 
cluster Sj at time t+1. fj (x; θj.t+1) is sent to the master cluster head for 

aggregation with parameters from other slave clusters and the previous 
global model [58]. The master cluster head aggregates the parameters 
from the slave clusters according to (25). 

fʹ(x; θʹ) =

(
1

(m + 1)

)

×

[

f (x; θ) +
∑m

j=1
fj(x;θj .t+1)

]

(25) 

m is the number of slave clusters, and θ′ represents the aggregated pa
rameters, which are returned to the slave clusters for further training in 
the next iteration and distributed among the devices. Similarly, in the 
master cluster, this process continues until the convergence criteria 
outlined in Section 5 and the desired accuracy are met. Generally, in this 
approach, the stages of updating local parameters, transmission, 
reception, and aggregation are repeated so that over time, the local 
parameters converge to a common global model.

Eqs. (17) and (23) also represent an optimization problem, where the 
goal is to minimize the regularization term and the average loss from the 
local datasets of devices in the clusters. Fig. 2 presents a schematic view 
of the proposed federated learning approach to provide a better un
derstanding of the clusters, the base station, and the key features of 
decentralized learning. In this figure, part (a) illustrates the initial 
clustering and the sleep/wake mechanism in the proposed system, while 
part (b) depicts the proposed federated training method for global 
iteration.

Fig. 3 provides an overall view of the steps in the proposed learning 
process from start to finish, while Fig. 4 summarizes this approach in 
more detail using pseudocode.

4.4. Formulation

In this section, the proposed framework will be examined from the 
perspective of energy consumption in computations (energy expended 
by the device during parameter aggregation) and communications 
(parameter exchange with neighboring devices or cluster heads). The 
total energy consumption and execution time will be formulated. It is 
noteworthy that in the proposed framework, the issue of improving 
energy consumption in the use of federated learning in the Internet of 
Things is considered. This includes clustering, selecting appropriate 
cluster heads, and managing computational and communication energy 
consumption, practically implemented using concepts like primary/ 
Slave clusters and the sleep/wake mechanism.

Fig. 2. Schematic view of the proposed approach.
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4.4.1. Computational and communication energy consumption
In the proposed framework, each device belongs to a cluster (primary 

or secondary). The Slave clusters are responsible for collecting local 
parameters from their devices and sending them to the master cluster for 
aggregation and updating the global model. The following equations 
present the computational and communication energy consumption for 
each component in the proposed scheme, along with the total energy 
consumption.

4.4.1.1. Active devices in the master cluster energy consumption. Compu
tational energy consumption: The active devices in this cluster perform 
computations on the collected data according to [61], which is calcu
lated using (26): 

Ecompi = Pcompi × Ai (26) 

where Pcompi is the computational power of device i and Ai is its active 
time.

Communication energy consumption: Devices that communicate with 
neighboring devices within the same cluster. Based on [47,61], it is 
calculated using (27): 

Ecommi. j =
(

Ptxij
× Dij × Tij

)
+

(
Prxij

× Dij × Tij

)
(27) 

where Ptx (transmission power) and Prx (reception power) represent the 
parameters between two active devices i and j, and Dij is the distance, 
and Tij is the transmission time between them. Any device that com
municates with the master cluster head uses (28) to determine its energy 
consumption: 

Ecommi. head =
(

Ptxihead
× Dihead × Tihead

)
+

(
Prxihead

× Dihead × Tihead

)
(28) 

This equation also calculates the transmission and reception power 
between device i and the master cluster head. Additionally, Dihead head 
represents the distance and Tihead head the transmission time between 
them.

4.4.1.2. Master cluster head energy consumption. Computational Energy 
Consumption: The master cluster head performs computations on the 
received parameters. Its energy consumption is determined by (29): 

Ecomphead = Pcomphead × Ahead (29) 

where Pcomphead is the power required for computations and Ahead is the 
active time.

Communication Energy Consumption: The cluster head communicates 
with its member devices to send updated parameters. The energy con
sumption is determined by (30): 

Ecommheadi
=

(
Ptxheadi

× Dheadi × Ttxheadi

)
+
(

Prxheadi
× Dheadi × Trxheadi

)
(30) 

This equation is similar to (27); however, the process occurs between 
the cluster head and device i. Subsequently, the energy consumption 
calculation for communication between the cluster head and the slave 
cluster heads is provided by (31): 

Ecommheadslave
=

(
Ptxheadslave

× Dheadslave × Theadslave

)

+
(

Prxheadslave
× Dheadslave × Theadslave

)
(31) 

where Prxheadslave 
and Ptxheadslave 

represent the power required for parameter 
exchange between cluster heads, and Dheadslave and Theadslave denote the 
distance and time between them, respectively.

4.4.1.3. Slave cluster heads energy consumption. Computational Energy 
Consumption: Each slave cluster head performs computations on the 
received parameters and its own local parameters. The energy con
sumption is calculated using (32): 

Ecompslaveji
= Pcompslaveji

× Aslaveji
(32) 

where Pcompslaveji 
is the power of device i and Aslaveji 

is the active time of 
device i in cluster j.

Communication Energy Consumption: Each device sends its local pa
rameters to the cluster head, and its energy consumption is calculated 
using (33): 

Ecommslaveji
=

(
Ptxslaveji

× Dslaveji
× Tslaveji

)
+
(

Prxslaveji
× Dslaveji

× Tslaveji

)

(33) 

where Ptxslaveji
is the transmission power and Prxslaveji 

is the reception 
power. The distance and time between them are represented by Dslaveji 

and Tslaveji 
respectively. To calculate the energy consumption for sending 

parameters from device i to its neighboring device, (34) is used: 

Ecommij
=

(
Ptxij

× Dij × Tij

)
+

(
Prxij

× Dij × Td2dij

)
(34) 

where Ptxij 
and Prxij 

represent the transmission and reception power, 
respectively, for the communication, while Dij denotes the distance and 
Tij the time between the devices. Equation (35) shows the energy 
consumed by each slave cluster head for sending parameters to the 
master cluster head: 

Ecommslavejhead
=

(
Ptxslavejhead

× Dslavejhead
× Tslavejhead

)

Fig. 3. Proposed FL training method.
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+
(

Prxslavejhead
× Dslavejhead

× Tslavejhead

)
(35) 

4.4.1.4. Total energy consumption. By analyzing the energy consump
tion of each computational and communicational component and sum
ming them up, the total energy consumption of the proposed system 
(excluding the energy consumption of the base station) is obtained using 
(36): 

Etotal = Σ
(
Ecompi

)
+ Ecomphead + Σ

(
Ecompslavej

)
+ Σ

(
Ecompslaveji

)
+ Σ

(
Ecommij

)

+ Σ
(

Ecommihead

)
+ Σ

(
Ecommheadslave

)
+ Σ

(
Ecommslavejhead

)

+ Σ
(

Ecommslaveji

)

(36) 

With this introduction, to minimize the total energy consumption of 
the system, an optimization problem has been formulated by adding 
constraints and an objective function, which will be discussed in Section 
IV-D-4.

Fig. 4. Learning process in clusters with sleep/wake-up mechanism.
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4.4.2. Federated learning time
The time for Federated Learning includes the computation time for 

training local parameters and the time to send them to the cluster head 
or neighboring devices in each iteration. In the learning process, device 
d trains its local parameters until it reaches a local accuracy (εl) and 
updates them [47]. It is assumed that Cd represents the number of CPU 
cycles required to process a data sample on device d. The total number of 
CPU cycles required for one local iteration across all data samples is 
Cd×Dd. Thus, the computation time for one local iteration on an IoT 
device is calculated using (37): 

Tcomp
d = Tl

Cd Dd

fd
(37) 

where Tl is the number of local iterations required to achieve local ac
curacy, and fd is the CPU computational speed of the device in cycles per 
second [62].

The time required for each global iteration is also estimated using 
(38), considering the longest duration for receiving parameters among 
all devices and the time for sending them within the clusters. 

Tcomm
d =

s
Rd

dn .z
(38) 

where s is the size of the data transferred from one device to another 
during parameter transfer. Rd

dn .z denotes the transfer rate between 
neighboring devices in the z-th RRB.

Additionally, the system requires applying a time constraint to 
ensure that the entire learning process, including computations, com
munications, timely model updates, and coordination between compo
nents, is completed within the specified time frame [63]. This issue is 
known as the federated learning time constraint, defined as TFL, and is 
formulated according to (39): 

TFL ≥ Tcomp + Tcomm (39) 

where Tcomp is the total time required for model computations within the 
clusters, and Tcomm calculates the overall time spent on communication 
between cluster devices and between the cluster heads.

4.4.3. Optimizing energy consumption
The optimization problem revolves around resource allocation to 

minimize energy consumption while meeting performance re
quirements. The goal is to strike a balance between computational tasks 
and communication needs to achieve energy efficiency. However, there 
are constraints that must be considered. For further details, the objective 
function and its constraints are provided based on works:

P0: Minimize: Etotal
s.t.: 

C1 : Σ(Ai) ≤ Rtotal, ∀i ∈ compute set 

C2 : Σ
(

Tij × Dij

)
≤ Btotal, ∀i. j ∈ Si|j 

C3 : Ai ≥ Pcompimin
, ∀i ∈ compute set 

C4 : Ahead ≥ Pcompheadmin 

C5 : Aslavej ≥ Pcompslavejm
, ∀j ∈ HSi 

C6 : Aslaveji
≥ Pcompslavejimin

, j ∈ HSi . ∀i ∈ HSj 

C7 : Tij ≥ Tijmin
, ∀i. j ∈ Si|j 

C8 : Tihead ≥ Tiheadmin
, ∀i ∈ M 

C9 : Theadslave ≥ Theadslavemin
, ∀j ∈ HSi 

C10 : Tslaveji
≥ Tslavejimin

, ∀j ∈ HSi , ∀i ∈ HSj 

C11 : Tij ≥ 0, ∀i. j ∈ M|Si 

C12 : Tij = Tji , ∀i. j ∈ M|Si 

C13 : Td2dij
≤ Tij , ∀i. j ∈ M|Si 

C14 : Td2dij
+ Tij ≤ Tihead , ∀i ∈ HM 

C15 : Td2dij
+ Tij ≤ Theadslave , ∀i ∈ Si (40) 

The problem P0 in (40) is recognized as a Linear Programming (LP) 
problem, where both the objective function and constraints are linear, as 
they involve linear relationships between variables (the linear combi
nation of energy consumption terms and constraints of inequalities or 
equalities).

The optimization problem P0, defined in (40), is identified as a linear 
programming (LP) problem. This classification is based on the charac
teristics of LP problems, which include an objective function, decision 
variables (values to optimize), and constraints. In this case, the goal is to 
minimize the total energy consumption (Etotal), which is expressed in 
(36) as the sum of various energy components. These components can be 
represented as linear functions of the decision variables: Ai for compu
tational energy and Tij for communication time, defined as (41): 

Etotal =
∑

i
CiAi + cheadAhead +

∑

j
Cslavej Aslavej +

∑

i.j
djTij + dheadThead

+ dheadslave Theadslave

(41) 

Here, cx and dx are constants that represent the energy costs associ
ated with each decision variable. These variables are continuous and can 
take any non-negative value, aligning with the requirements of an LP 
problem. Additionally, the constraints in this problem, which will be 
discussed later, are represented as linear inequalities or equalities. For 
example, constraints C1 to C10 are all inequalities involving the decision 
variables Ai and Tij, ensuring they are greater than or equal to certain 
minimum values. They also enforce the non-negativity of the corre
sponding decision variables. As a result, the presented optimization 
problem satisfies all the criteria for classification as a linear program
ming problem. It is worth noting that this problem is solved using PuLP, 
an open-source linear programming modeling library in Python, and the 
results will be presented in the performance evaluation section.

The above constraints ensure that each computational component 
and communication link meets or exceeds the minimum performance 
requirements, thereby maintaining the expected quality of service. The 
expressions specified as C1 to C10 impose constraints on the allocation 
of computational and communication resources and C11 to C15 pertain 
to issues related to semi-duplex and asynchronous D2D communica
tions. Below, we provide a brief explanation of these conditions.

C1 ensures that the total computational load assigned to all 
computational components does not exceed the available system ca
pacity. C2 stipulates that the total communication resources used by 
devices within the cluster should not exceed the available communica
tion bandwidth. This constraint accounts for both the duration and 
distance between devices. C3 ensures that the power of each computa
tional component is greater than or equal to the minimum required 
power, guaranteeing that each component operates within the specified 
power range without energy deficiency.

C4 indicates that the power of the master cluster head is greater than 
or equal to the minimum required power, setting a lower bound for the 
energy consumption of the cluster head. C5 guarantees that each slave 
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cluster head performs computations equal to or greater than its mini
mum required performance. C6 ensures that the power of each device in 
the cluster head is greater than or equal to the minimum required power, 
ensuring that each device consumes at least the minimum amount of 
energy.

C7 sets the minimum communication time between devices within a 
cluster and ensures that communication between devices in the cluster 
occurs for the specified duration. C8 establishes the minimum commu
nication time between devices and the master cluster head, ensuring 
that communication between devices lasts for the specified duration. C9 
specifies the minimum communication time between the master cluster 
head and slave cluster heads. C10 determines the communication time 
between a device in the Slave clusters and its adjacent device, which 
should be equal to or greater than the minimum required performance.

C11 ensures that communication time is non-negative. C12 guaran
tees that communication delay between two devices is the same 
regardless of the direction of transmission. C13 ensures that direct 
communication time between devices is equal to or less than commu
nication time via alternative methods (through a centralized entity), 
demonstrating that D2D communication can be faster. Finally, C14 and 
C15 ensure that the total communication time should not exceed the 
communication time with the main or Slave clusters.

5. Simulation and evaluation

This section presents the evaluation results of the proposed frame
work. The implementation was carried out using Python 3.9 in the 
PyCharm development environment. Libraries such as Scikit-learn were 
used for clustering algorithms, and TensorFlow was employed for tasks 
related to federated learning. The MNIST dataset and a Deep Neural 
Network (DNN) model were utilized for data classification tasks. Addi
tionally, the PuLP library was used to solve the LP optimization problem 
of the mathematical model.

5.1. Simulation setup

5.1.1. Simulation environment and settings
In this simulation, a base station is considered at the center of a circle 

with a radius of 1 km, accompanied by 40 devices randomly distributed 
within this area with varying geographical positions and access times 
(between 1 to 120 s). Each device has a random coverage radius between 
10 to 500 m, defining its service area.

For the implementation of the D2D communication channel, pa
rameters such as path loss with a value of 148+40 log10 (dis. [km]) and 
cellular path loss with a value of 128.1+37.6 log10 (dis. [km]) are 
configured. Table 3 presents the allocated values for the network model 
parameters and the federated learning model parameters.

5.1.2. Comparison approaches
In this section, five approaches are compared from different 

perspectives: 

• Star Topology: In this method, devices send their models directly to 
the base station for global aggregation.

• Hierarchical Topology: In this method, the transfer and reception 
of model parameters first occur at the intermediate cluster head, and 
then they are sent to the base station for final aggregation. After 
global aggregation, each device receives the global model through 
the same intermediate cluster head.

• FL-EOCD approach presented in [47].
• Proposed Framework (Optimal).
• Proposed Framework (Simulation).

5.2. Results and discussion

In this section, numerical results obtained from the simulation are 
presented. To compare the proposed framework, we selected three 
performance metrics: (1) Energy Consumption, (2) Learning Accuracy, 
(3) Federated Learning Time.

5.2.1. Energy consumption
Fig. 5 shows the total energy consumption of the network as the 

number of Slave clusters increases in the proposed framework. In this 
scenario, 40 devices are distributed across the environment. As can be 
observed, with an increase in the number of Slave clusters (and conse
quently a decrease in the size of each cluster), the energy consumption in 
the proposed framework decreases.

Fig. 6 illustrates the energy consumption of the five evaluated ap
proaches as a function of the number of devices in the network. As 
shown in the figure, for lower numbers of devices, the FL-EOCD 
approach performs slightly better than the proposed framework. How
ever, in networks with a higher number of devices, the proposed 
framework demonstrates superior performance in terms of energy 
consumption.

Fig. 7 shows the energy consumption versus the number of data 
samples for the five compared approaches. As the sample size increases, 
the energy consumption also rises. The proposed framework demon
strates lower energy consumption compared to existing methods for all 
sample sizes. This is primarily because the proposed approach reduces 
communication overhead due to the connections between neighboring 
devices. In contrast, the star and hierarchical approaches generally 
consume higher energy due to higher communication and computa
tional costs. However, the hierarchical approach, compared to the star 
approach, benefits from its structure, providing more efficient param
eter aggregation and thereby reducing energy consumption.

5.2.2. Learning accuracy
Fig. 8 illustrates the accuracy of the proposed learning approach 

Table 3 
Summary of parameters for the simulation environment.

Parameter Value

Time Slot for BS 1–120 sec
IoT Device Coverage Radius 10–500 m
Number of IoT Devices 10–70
Radius of BS 1 km
Maximum Power of IoT Device 3 w
Maximum Bandwidth of BS 10 Mb/s
Number of data samples 200 - 1000
Learning rate 0.001
Convergence threshold rate (α) 0.1
Learning algorithm Fedprox
Regularization parameter (λ) 0.01
FL time threshold 2 sec
Total Energy Capacity of IoT Devices 500–2000 j Fig. 5. Energy consumption analysis relative to the number of slave-clusters.
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against different numbers of slave clusters. As shown, the accuracy of the 
proposed approach decreases with an increase in the number of clusters. 
This decline in accuracy can be attributed to two main reasons. First, as 
the number of clusters increases and consequently the size of each 
cluster decreases, the amount of training data within each cluster also 
decreases. Second, there is an increase in feature diversity among 
diff8erent clusters, which can negatively impact the overall accuracy.

Fig. 9 displays the accuracy of the compared approaches. It can be 
observed that the main/slave clustering mechanism used in the pro
posed framework results in improved accuracy. In contrast, the star and 

hierarchical approaches with centralized structures demonstrate lower 
accuracy. The FL-EOCD approach, with its chain-like clustering and use 
of SGD, achieves higher accuracy compared to the star and hierarchical 
methods. However, it still falls short of the accuracy achieved by the 
proposed approach.

The observed drop in the accuracy of existing approaches can be 
linked to several key factors, such as suboptimal model configurations 
and experimental setups (as shown in Table 3). Specifically, decisions 
related to hyperparameters (like learning rate, convergence threshold, 
and regularization techniques) and even insufficient training iterations 
play a big role in influencing model performance. These factors often 
lead to challenges like poor convergence or overfitting. Additionally, the 
centralized structures commonly used in star and hierarchical models 
may disrupt effective communication between devices, worsening issues 
related to data heterogeneity, which overall impacts model accuracy. On 
the other hand, the proposed approach takes a decentralized structure 
and incorporates a specific clustering mechanism. This facilitates better 
collaboration within clusters, effectively addressing the limitations of 
centralized models. As a result, it improves communication efficiency, 
speeds up model convergence, and ultimately enhances accuracy and 
overall performance.

5.2.3. FL time
In Fig. 10, the learning times of the methods are compared. Here, the 

FL-EOCD method requires the least amount of time for a lower number 
of devices. This is due to the presence of scheduled devices and coor
dinated RRB resource allocation, which streamline the learning process. 
These features are not relied upon by the three approaches of the 

Fig. 6. Comparison of energy consumption in a global iteration.

Fig. 7. Comparison of energy consumption against the number of devices.

Fig. 8. Evaluation of learning accuracy against the number of slave-clusters.

Fig. 9. Comparison of learning accuracy against the number of 
global iterations.

Fig. 10. Comparison of FL time in a global iteration.
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proposed method, star topology, and hierarchical topology, where 
communications are asynchronous. However, as the number of devices 
increases, due to differences in the clustering approach between the FL- 
EOCD method and the proposed method, the learning time in the pro
posed approach slightly improves. In summary, the unscheduled design 
in the proposed scheme may cause initial inefficiencies in learning time, 
but it ultimately fosters greater adaptability to changing network con
ditions and allows devices to adjust their contributions based on real- 
time availability.

6. Conclusions and future works

In this research, a comprehensive framework has been proposed to 
leverage the benefits of decentralized federated learning in the Internet 
of Things (IoT) environment, focusing on improving energy consump
tion. In this approach, devices can exchange model information and 
learning parameters by utilizing Device-to-Device (D2D) communica
tions without the need for a central server. In the proposed framework, 
by implementing a sleep/wake-up mechanism, clusters with a number of 
devices not suitable for collaborative learning can enter a sleep mode 
and receive suitable parameters from a cluster with appropriate condi
tions, referred to as the master cluster. Subsequently, they update their 
local parameters and send them to the master cluster. Overall, these 
mechanisms contribute to energy efficiency and can address mobility 
challenges in this environment. Finally, to evaluate the proposed 
approach, the results obtained from implementing and running the 
method are compared with the optimal values obtained from LP, as well 
as star, hierarchical, and FL-EOCD methods in terms of energy effi
ciency, learning time, and accuracy. The results indicate that the pro
posed method, with its distinct structure and parameters, effectively 
reduces energy consumption and demonstrates superiority in accuracy 
compared to other evaluated methods. However, its learning time in
creases based on specific features in the given scenario.

For future work on optimizing energy consumption within the pro
posed framework, two main areas have been identified: 

• Compression Methods: Future research should investigate advanced 
IoT-focused compression techniques, such as quantization and model 
compression algorithms like Distillation. Efficient data compression 
can substantially reduce communication energy demands and 
enhance overall energy efficiency.

• Energy-Aware Learning Parameters: Optimizing learning parameters 
for energy efficiency is crucial. Future studies could develop energy- 
aware optimization techniques that adjust learning parameters based 
on energy availability and device constraints. For example, algo
rithms could dynamically modify the learning rate, convergence 
threshold, or regularization parameters to minimize energy con
sumption. Addressing these areas could lead to reduced energy usage 
and shorter learning times.

Additionally, future research should address the limitations of the 
proposed framework, including potential scalability challenges in large- 
scale deployments, such as expanding the mobility model, and the need 
for robust security measures, to gain a better understanding of the 
practical implications of this approach.
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