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The Internet of Things (IoT) comprises a vast number of interconnected devices that generate and share enor-
mous amounts of data. Traditional machine learning approaches, which rely on the exchange of raw data, are
impractical for real-world applications with extremely high data volumes due to challenges such as energy
constraints and node mobility. To mitigate these overheads in IoT, Federated Learning (FL) can be employed,
decentralizing the learning process to various devices without the need for centralized data collection or sharing.
In this paper, we propose a new energy-efficient decentralized federated learning framework aimed at reducing
energy consumption in mobile IoT. This framework utilizes a Master/Slave clustering method and a dynamic
sleep/wake-up strategy, ensuring that the Base Station (BS) does not interfere with the aggregation of learning
models and only supervises the clustering process. To rigorously evaluate the results of the proposed approach,
we initially present a Linear Programming (LP) mathematical model designed to optimize energy consumption
costs. Simulation results demonstrate that the proposed scheme improves energy consumption by up to 52 %
compared to the star scheme and 41 % compared to the hierarchical method. Additionally, the proposed
approach achieves a high accuracy performance of approximately 98 %, significantly surpassing standard
schemes. These quantitative results highlight the effectiveness of our approach in optimizing energy use and
enhancing model performance in mobile IoT environments.

1. Introduction

The Internet of Things (IoT) is rapidly gaining traction, with forecasts
indicating that approximately 125 billion smart devices will be inter-
connected by 2030 [1]. The pervasive integration of IoT across various
applications has become so significant that meeting sustainable devel-
opment goals, particularly in reducing energy consumption, is unat-
tainable without incorporating IoT. As a result, vast amounts of data are
generated and exchanged within these networks by devices like robots,
sensors, smart devices, and mobile phones. This substantial volume of
data must be analyzed and processed to serve the intended application
[2].

In many applications, raw information gathered from the network is
analyzed using intelligent, machine learning-based approaches to derive
final results and data. Traditionally, data is sent from personal devices or
organizational data centers to a server for processing, where the final
analysis is conducted centrally [3]. This method incurs several costs,
including increased risk of data leakage during transmission, creating
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network traffic, and significantly increasing the server’s computational
load [4].

To address these concerns, new alternative approaches are being
developed in the IoT environment, aiming to perform as much of the
learning process locally on the devices as possible. This minimizes the
need to transfer data to a central server. One such innovative machine
learning approach is federated learning [5].

In federated learning, the majority of the learning process is
distributed and performed on the end devices, eliminating the need to
exchange and share datasets. Instead, only "learning model updates”
need to be exchanged [6]. In this approach, the learning model com-
putations are conducted locally on the end devices, and the learning
parameters are then sent to the server for aggregation. While federated
learning initially seems like an excellent approach, its implementation in
practical environments is not straightforward and comes with chal-
lenges [7]. These challenges include the need for computational power
at the end stations, energy constraints at these nodes, the requirement
for sufficient data samples to achieve the desired accuracy, and the
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necessity to exchange learning parameters between devices and the
server during each learning round [8].

In general, based on the strategies for information exchange between
devices and the server, federated learning approaches are divided into
two main types: Centralized Federated Learning (CFL) and Decentral-
ized Federated Learning (DFL) [9]. In the centralized federated learning
approach, the central server plays a relatively more active role in the
learning process. Devices train their models with local data and then
send their local models to the server. The server aggregates these
models, updates the global learning model, and sends it back to the
devices. The main challenge with this approach is that, in practice,
nodes must continuously communicate with the server to exchange
learning parameters, significantly increasing energy consumption in
these networks. Additionally, this approach still relies on a central server
with high reliability and processing power [10].

In contrast, to overcome the limitations of centralized federated
learning methods, decentralized approaches have been introduced to
eliminate dependency on a central server. These approaches use device-
to-device (D2D) communications, exchanging learning parameters with
neighboring devices without the need for a base station (BS), enabling
the learning process to be distributed and completed within the network.
In this approach, each node executes the learning process using local
data and then aggregates its learning model by receiving updates from
its neighbors [11].

The use of decentralized federated learning in mobile IoT also pre-
sents challenges, and given the nature of devices in these networks,
reducing energy consumption remains the primary challenge in this
approach [12]. IoT devices are generally mobile and use wireless com-
munications, have limited energy, and thus are often reluctant to
participate in the learning process. Additionally, factors such as the
increasing number of devices participating in the learning process, un-
stable and weak bandwidth in wireless environments, node mobility,
and the low speed of model parameter exchange disrupt the learning
process in these methods, making it harder to achieve a final and uni-
versal learning model in decentralized federated learning methods.

To overcome the issues of decentralized federated learning in IoT
networks, several solutions have been proposed. One approach focuses
on reducing the communication overhead related to learning model
parameters, where each device calculates its local updates and sends
them to a central server based on conventional topologies [13]. Some
approaches concentrate on improving D2D communications, enabling
devices to exchange data directly without the support of a central
coordinator [14]. Other approaches focus on compression schemes to
reduce the volume of exchanged data [15]. Conversely, some methods
aim to reduce the communication rounds needed for parameter ex-
change [16]. Additionally, several approaches focus on utilizing clus-
tering ideas during the learning process [17].

In this paper, a new hybrid approach for utilizing decentralized
federated learning in IoT-based networks is presented. In the proposed
approach, the base station does not get involved in the aggregation of
federated learning model parameters. Instead, the base station is solely
responsible for the clustering process and the selection of cluster heads.
The aggregation of learning model parameters is performed by edge
devices in a decentralized manner, with the goal of minimizing the
involvement of the base station and central server in the learning pro-
cess. For the clustering process, the proposed approach employs a hybrid
method based on the geographical location and availability time of the
devices, unlike previous approaches. This means that devices located
geographically close to each other and available within a certain time-
frame are grouped into the same cluster.

The proposed approach uses an unscheduled scheme; thus, the tasks
of the devices within the cluster are not predetermined. This approach
offers devices substantial flexibility and adaptability, allowing them to
respond dynamically to various conditions such as device availability,
energy levels, and network connectivity. As a result, it enables the
seamless integration of a broader array of devices into a federated
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learning system. This integration provides multiple benefits in terms of
energy consumption and accuracy in learning models, which will be
discussed in Section 5. Initially, the clustering process and selection of
appropriate cluster heads for each cluster are performed. Subsequently,
the clusters are divided into two main types: master and slave, based on
the number of devices participating in the learning process within each
cluster. The master cluster, having a higher number of participating
devices and therefore collecting more data, provides better model pa-
rameters and becomes the core of the network. Slave clusters, using their
local data and the parameters received from the master cluster, perform
local learning and send their results back to the master cluster,
enhancing and optimizing the final model.

To further reduce energy consumption, a sleep/wake-up mechanism
is introduced for the clusters. In this mechanism, clusters with insuffi-
cient devices for effective collaborative learning can enter a sleep mode.
During this time, they receive appropriate parameters from a master
cluster, which has suitable conditions for learning. Additionally, the
parameters generated by the devices involved in the learning process are
transmitted to the cluster head using the local FedProx algorithm [18,
19].

An important point here is that in the initial phase of learning,
processing the data in slave-clusters is inefficient due to the low number
of participating devices in those clusters. Therefore, devices in slave
clusters enter a sleep mode until new parameters are received from the
master cluster. This mechanism also applies to devices in the master
cluster, which remain in sleep mode until a new model needs to be
trained. Asynchronous communications are used for intra-cluster device
communication; in this mechanism, if a device moves out of its cluster
during the learning process, other devices continue the learning process
independently without waiting, reducing the wandering effect [20].

In this research, a mathematical model based on Linear Program-
ming (LP) is used to formulate and evaluate the mentioned mechanisms,
and mathematical and conceptual modeling is performed to describe all
the variables in the problem-solving process. To precisely evaluate the
proposed framework, its performance is compared with both the opti-
mized mathematical model and existing approaches in Section 4.

The key contributions of this research can be summarized as follows:

Proposing a decentralized federated learning framework for mobile
IoT based on asynchronous D2D communications.

Introducing a dynamic clustering method with the assistance of the
base station, suitable for implementing decentralized federated
learning in mobile IoT.

Developing a sleep/wake-up mechanism to reduce energy con-
sumption in clusters formed for implementing decentralized feder-
ated learning in mobile IoT.

Modeling the proposed framework using linear programming to
optimize energy consumption in mobile IoT.

Evaluating the performance of the proposed framework in compar-
ison with similar approaches and the optimized state based on a
mathematical model.

The structure of this paper is organized as follows: The second
chapter reviews related research. The third chapter outlines the system
model, while the fourth chapter discusses the proposed framework in
detail. In the fifth chapter, numerical results are presented. Finally, the
sixth chapter offers a summary and conclusions of the study.

2. Related work

In this chapter, we will first review the concept of federated learning.
Subsequently, recent studies utilizing centralized federated learning in
the Internet of Things will be examined, followed by an exploration of
recent research on decentralized federated learning in IoT. Finally, to
provide a comprehensive view of the research path in this field and to
compare the achievements of previous works with the proposed
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approach, a general comparison of the existing approaches has been
presented.

2.1. Introduction to federated learning

Federated learning, also known as collaborative learning, is a
distributed machine learning approach where model parameters are
shared only between network devices and a central server [21]. In this
paradigm, the process unfolds in three stages: each device initially re-
ceives an initial model from the server, trains it with its private data, and
sends the updated model parameters back to the central server. Once
these parameters are aggregated, a global model is created by the server.
This iterative process continues until the global model achieves the
required accuracy for the subsequent training rounds across all nodes.
This approach allows computations to be performed closer to the data,
addressing critical issues such as privacy preservation and data locality
efficiently [22].

Federated learning finds diverse applications such as autonomous
vehicles [23], traffic prediction [24], telecommunications [25], IoT [26]
and Industrial IoT (IIoT) [27], Al-driven healthcare [28] and security
issues [29]. Its implementation in IoT offers advantages such as pre-
serving privacy, reducing data exchange latency, improving scalability,
enhancing learning models, and reducing energy consumption [30].

Today, federated learning in IoT is broadly categorized into two
types: centralized federated learning with a central server and decen-
tralized federated learning without a server [31]. Centralized federated
learning involves a central server and a set of devices that communicate
concurrently with the server to aggregate and update learning param-
eters. In contrast, decentralized federated learning typically operates
without a central server to mitigate existing bottlenecks. In this
approach, devices connect peer-to-peer (P2P) and receive the aggre-
gated model through neighboring devices. Thus, each node performs
local learning based on its data and aggregates its model based on up-
dates received from its peers. The key advantage of this approach lies in
enhancing scalability for applications where access to a central server is
either unavailable or impractical.

2.2. Centralized federated learning in IoT

Several studies explore advanced techniques and algorithms to
optimize centralized federated learning across diverse IoT and mobile
networks. In [32], a two-step communication protocol and dynamic
resource allocation strategy enhance centralized federated learning by
maximizing bandwidth allocation among clients, selecting participants,
and appointing leaders to improve global model accuracy. This
approach outperforms FedAvg in terms of communication cost and
model accuracy.

In [33], Li et al. introduce a data compression scheme, FT-LSGD-DB,
tailored for edge wireless devices, which integrates local stochastic
gradient algorithms and gradient reduction strategies. This scheme
significantly reduces communication rounds and sizes, achieving sub-
stantial energy savings. Additionally, hierarchical federated learning is
explored in [34], demonstrating EARA’s effectiveness in resource allo-
cation for heterogeneous IoT systems, improving classification accuracy
by accommodating non-iid. data distributions.

Luo et al. [35] propose a time-sharing scheduling scheme for feder-
ated learning in edge mobile networks, optimizing client participation
and local iterations to reduce training time and energy consumption.
Furthermore, MUCSC, introduced in [36], utilizes model compression
techniques like B-MUCSC to enhance communication efficiency by
grouping minor updates within super-clusters, thereby reducing overall
communication traffic.

In [37], a dual-level incentive mechanism mitigates node failures
through evolutionary game theory, allowing clusters to reward user
participation and compete for model services. Yang et al. [38] address
energy and computational resource efficiency in wireless federated
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learning with algorithms optimizing time, bandwidth, power, and fre-
quency allocation.

In [39], a weighted Proximal learning-based algorithm minimizes
energy consumption and completion time for federated learning in
wireless IoT, demonstrating superior efficiency compared to traditional
methods.

The studies by Wu et al. [40,41], Gong et al. [42,43], and Yu et al.
[44] introduce various approaches such as semi-asynchronous federated
averaging, Semi-SynFed for Internet of Vehicles, clustered federated
learning, Hierarchical Federated Edge Learning (HFEL), and ELASTIC
algorithm for wireless IoT, each focusing on specific challenges and
optimizations in federated learning environments.

2.3. Decentralized federated learning in IoT

Recently, extensive research has been conducted on the application
of decentralized federated learning in the Internet of Things, and we will
review some of these studies below. In [45], a Distributed Federated
Learning (DBFL) approach is introduced, aiming to achieve scalable and
energy-efficient exchange of trained models. This approach focuses on
the heterogeneity of data and their feature spaces, employing autoen-
coders for model aggregation. Reported results demonstrate that this
approach outperforms centralized federated learning approaches in
terms of accuracy and energy efficiency.

In [46], a new Federated Learning approach called TT-HF is pro-
posed as a semi-decentralized federated learning method. In this
approach, Device-to-Device (D2D) communications are utilized for
federated learning between end devices and a server. During each global
aggregation round, devices send their local model parameters via D2D
communications within local clusters. Experiments show that TT-HF
offers improvements in model accuracy and network energy consump-
tion under various statistical heterogeneity scenarios.

In [47], a FL-EOCD framework is proposed for decentralized feder-
ated learning, aiming to reduce energy consumption using D2D com-
munications and overlapping clustering. In this method, a cluster is
defined as a coverage area for an end device, and devices overlapping in
cluster areas are termed Bridge Devices (BDs). Clusters are inter-
connected via BDs either in a star or hierarchical topology, allowing for
decentralized deployment of cluster-specific models without the need
for a central server. Results indicate that the proposed approach en-
hances energy consumption and learning time compared to similar hi-
erarchical and star-based approaches.

In [48], focused and distributed learning approaches for Internet of
Drones (IoD) have been proposed using graph theory computations. The
proposed federated learning approach for IoD utilizes a decentralized
distribution of local parameters among drones in network overlap re-
gions to enable aggregation of a global model. Results show that the
decentralized approach provides comparable performance in terms of
privacy preservation and energy consumption compared to centralized
approaches among drones.

In [49], leveraging edge-to-cloud distributed training using Feder-
ated Edge Learning (DFEL), an intelligent model training process is
distributed across nodes from edge devices to cloud servers. This method
considers a multi-layered heterogeneous device framework with added
local network topology structures, synchronized via D2D communica-
tions. This approach is expected to be beneficial for latency-sensitive
applications such as intelligent factory automation, transitioning from
star topologies to distributed topologies to significantly reduce network
resource costs. Horizontal/vertical communication optimization,
resource allocation, clustering issues, and network dynamics are not
adequately addressed in this scheme.

In [50], a clustered federated learning approach is presented for
vehicular networks. This approach utilizes Vehicle-to-Vehicle (V2V)
communication to overcome federated learning communication bottle-
necks. In each round, a subset of vehicles is selected to act as a cluster
head, and other vehicles are matched with them. Non-iid is employed to
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converge learning models, creating new models for non-participating
individuals and new vehicles. Finally, a greedy algorithm for selecting
and allocating cluster head resources and a two-part matching algorithm
with maximum weight for cluster formation are proposed.

In [51], a hybrid approach combining Decentralized Federated En-
ergy Learning (DFEL) and Multi-Principal Single-Agent (MPOA)
contract-based methods is proposed for Electric Vehicle (EV) networks
to increase profit for Charging Stations (CSs). The proposed approach
allows CSs to locally train their energy transactions for accurate demand
prediction while ensuring data privacy preservation. On the other hand,
using MPOA, maximizing the profitability of CS is formulated as a
non-collaborative energy contract problem, allowing each desirable CS
to increase its appeal under common constraints of the Smart Grid
Provider (SGP). The results show that the proposed method increases
energy demand prediction accuracy and reduces communication
overhead.

2.4. Comparison of existing approaches

In this section, to clarify the position of the proposed approach in the
field of research, we’ve made an effort to provide a straightforward
analysis of previous research that relates to the proposed solution in this
paper. To achieve this and offer a more comprehensive view, earlier
centralized and decentralized approaches are briefly summarized in
Table 1. Through this comparison, the contributions and innovations of
the proposed approach are highlighted, particularly in combining the
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sleep/wake mechanism with the federated learning process, which helps
improve energy efficiency in a meaningful way. Moreover, the table
provides a good overview of recent research trends in using federated
learning for IoT and makes the connection between the proposed
approach and earlier studies more clear. The last row of this table
compares the proposed approach of this paper based on the same
comparative framework.

3. System model

In this chapter, the system model and assumptions considered for
implementing the proposed framework are delineated, including
network model, communication model, mobility model, and learning
model. The system model outline is presented in Fig. 1.

3.1. Network model

In this proposed framework, the edge network consists of [oT devices
along with a base station. End devices include smart sensors, smart-
phones, etc., within the IoT environment, providing raw data for ma-
chine learning algorithms. These devices are typically mobile and have
specific constraints such as processing power, memory, and battery life.
On the other hand, the base station plays a crucial role in clustering and
assigning primary and secondary roles based on the number of partici-
pating devices in a cluster. Selecting an appropriate device as a cluster
head is based on factors like device energy and mobility.

Evaluation

Addressing scalability issues in federated learning by enhancing model accuracy and
communication efficiency.

Focusing on energy efficiency in edge computing environments, ensuring relevance for real-
world applications with resource constraints.

Emphasizing user assignment in heterogeneous settings to broaden the applicability of
federated learning across various scenarios.

Balancing client participation and resource management to improve efficiency in mobile
federated learning systems.

Minimizing bandwidth usage through compression strategies, addressing communication
bottlenecks in federated learning.

Enhancing user engagement and participation through an incentive mechanism, while
exploring practical implementation challenges in diverse environments.

Reducing energy consumption to enable more sustainable federated learning systems.
Addressing real-world constraints with a pragmatic approach, contributing to environments
with limited resources.

Advancing client-server dynamics management through the semi-asynchronous federated
averaging (SAFA) protocol.

Improving efficiency in IoV systems, showcasing the importance of adaptive federated learning
protocols in transport applications.

Solving data heterogeneity challenges with AdaCFL to enhance model performance in
recommender systems.

Addressing communication challenges in edge computing with the HFEL framework to improve
federated learning efficiency.

Optimizing resource management and energy efficiency in IoT with the ELASTIC algorithm
while maintaining model performance.

Tackling data heterogeneity while enhancing accuracy and energy efficiency with DBFL,
suitable for real-world applications.

Improving accuracy and energy utilization by incorporating D2D communications in federated
learning systems.

Enabling decentralized model distribution through cluster connections via bridge devices,
reducing energy consumption and learning time.

Offering a balanced solution by combining centralized and decentralized methods for IoD
applications.

Coordinating D2D communications in heterogeneous devices with a multi-layer hybrid
learning structure for latency-sensitive applications.

Enhancing communication efficiency by selecting cluster heads based on update similarity,
accelerating learning in Non-IID settings.

Maximizing utility for charging stations while ensuring data privacy through local training,
improving energy demand forecasting and reducing communication overhead.

Table 1
Summary of key contributions and frameworks for improving FL in IoT and mobile networks.
Approache Refs. Key Solutions Mobility
Compression  Clustering D2D S/
w

Centralized [32] x v v x v
[33] x v x x x
[34] x x x x v
[35] x v x x x
[36] v v x x x
[37] x v x x x
[38] x x x x v
[39] v x x x v
[40] x x x x v
[41] x x x x v
[42] x v x x v/
[43] x 4 x x x
[44] x x x x v

Decentralized  [45] x v x x x
[46] x x v x x
[47] x v v x v
[48] x v v x v
[49] x v v x x
[50] x v x x v
[51] x v x x v
Our x v v v v

paper

Utilizing a dynamic sleep/wake mechanism and asynchronous communications to
address energy and mobility challenges in federated learning.
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Fig. 1. An overview of the proposed system model.

The base station and IoT devices are essential components in this
system, where devices form a set D= {Dj, Dy, ..., Dy} within the coverage
area of the base station denoted by B. Dp C D represents devices
communicating with BS. Each device d; in D has a geographical location
defined by coordinates (x; y;), indicating its position in the environment.

The base station leverages clustering informed by device statuses,
combining geographic location approaches and device availability.
Clusters are formed with devices that are simultaneously available and
physically close to each other, facilitating possible D2D links. Similar to
the approach in research [47], it is assumed that each device cannot
transmit and receive data simultaneously, making the D2D channel
half-duplex. RRBs are employed as communication protocol models for
parameter transmission, minimizing bandwidth interference and link
failures caused by mobility.

3.2. Communication model

In this study, both Device-to-Device (D2D) and cellular communi-
cations are considered. D2D communication is utilized when devices are
within each other’s coverage range, improving energy efficiency
compared to traditional infrastructure-based communications.
Conversely, if devices are outside each other’s coverage, cellular com-
munications are used, providing connectivity beyond D2D coverage
limits. Finally, parameters are relayed to respective cluster heads
through neighboring devices (relays), enabling devices outside the
cluster coverage to transmit their parameters for final aggregation.

3.3. Mobility model

In this framework, we use a simple mobility model to make it easier
to understand while still capturing the essential dynamics relevant to
our study. The mobility model used in this system assumes that the
movement of each device is determined solely based on its geographical
position, without considering the device’s speed [52]. These assump-
tions allow us to focus on the key aspects of federated learning optimi-
zation without introducing unnecessary complexity.

At each time step, their positions are updated according to their
current coordinates and a simplified mobility model. The new position
of device d; at time t is represented as (x'i. i), calculated based on (1)
and (2):

Xi=x;+At (€]
_y/l- =Y+ At 2)

where At represents the time interval between updates. The mathe-
matical description of the mobility model is also defined according to

3):
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(x:.yi)—= (Xi.y1) = (3, + At.y; + At) 3
where (x; y;) represents the initial position of the device, and (x’;, y’;)

denotes its updated position.

3.4. Learning model

In the proposed framework, collected data are not sent to a central
location; instead, final devices, aided by federated learning principles,
train their models based on local data. This approach employs a feder-
ated learning algorithm called FedProx, particularly advantageous for
heterogeneous data environments compared to other algorithms like
FedAvg, especially when dealing with non-IID data distributions [19].

The FedProx algorithm is an improved version of the FedAvg algo-
rithm, specifically designed to handle and address non-IID data and
heterogeneous models, especially in IoT environments [53]. This algo-
rithm introduces a "proximal term," which adds a regularization term
proportional to the distance between the updated local model and the
global model, to keep devices closer to the global model. This approach
prevents devices with highly heterogeneous data from diverging too far
from the global model and ensures better convergence [54].

The regularization parameter A controls the permissible deviation
between local and global models; a higher 1 results in more restricted
updates, leading to greater homogeneity, while a lower A allows for
more heterogeneity. Generally, 1 should be carefully adjusted to balance
between fitting local data and maintaining proximity to the global
model [55]. The value of 1 will be determined and discussed in the
performance evaluation section.

4. Proposed framework

In this section, the details of the proposed framework are outlined,
including the clustering mechanism, the sleep/wake-up mechanism, and
the federated learning mechanism. Subsequently, the proposed frame-
work is formulated. Table 2 summarizes the main notations used in this
part.

4.1. Clustering mechanism

The clustering operations in the proposed framework are centered
around the base station. In this approach, the base station first identifies
the set of devices within a specific time slot ty, and a geographical radius
rp; this resulting set is represented as follows:

Table 2
Summary of symbols.
Notation Description
My Mobility of a device, indicating how much it has moved
Minreshold A threshold value to assess low mobility
M Devices in the master cluster
Hy Cluster head of the master cluster
Si Devices in the slave cluster i
Hj, Cluster head of the slave cluster i
Xm Data set in the master cluster
Xs, Data set in the slave cluster i
S; Device state in sleep/wake mode
M, Global parameter/model
f(w) Initial model based on the master cluster data
g(w) Learning process with the device dataset and creating a local parameter
h (w) Aggregation of local parameters by the master cluster head
A (Mg) Difference between new and previous model/parameters
threshold Control of changes in parameters
I\/Ig Previous model/parameter
f0;0) Global model across the dataset
o; Current local parameter for device
A Regularization parameter
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C (tsp. 1p) = {di|tsy € A; && distance (d;. (xp.yp)) <Tp} 4)

where (xp, yp) are the coordinates of the base station. In this approach,
each device d; has a set of available time slots denoted as A;, which is
represented as A; = {tsy, tsa, ...}, where tsi is a specific time slot available
to d;. Based on this, the base station defines a cluster for each time slot
ts, referred to as Cy, which includes the devices for which that time slot
is available, defined as follows:

Ci (tsx) = {d; | tsx € A} ®)

After this, based on the defined cluster, a location-based cluster is
established. This cluster includes all devices located within a specified
geographic radius R, defined as follows:

C = {di‘distance (dld}) < R. Y dld} S Cl} 6)

A location-based cluster C; is defined, encompassing devices within a
specified geographic radius R, each device has a limited coverage area,
representing its service area as a circle with radius R. Subsequently, by
intersecting C, and C; as C= C, (tsg) N Cj, a cluster C is formed,
comprising devices that are both temporally and geographically proxi-
mate. Ultimately, all devices are divided into k clusters using this
method: C= {Cq, C2, ..., Cx}.

In the proposed approach, the clustering details are handled using
the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm [56]. This method can identify points that are close
to each other by considering the updated positions of devices due to
mobility [57]. To achieve this, the density of data points within a
specified radius is denoted by e, and the minimum number of points
required to form a cluster is denoted by m. Specifically, e is a distance
parameter that sets the maximum permissible distance between two
data points for them to be considered neighbors, indicating how close
devices must be to each other to be grouped in the same cluster. Addi-
tionally, m determines the minimum number of devices that must exist
within the e-neighborhood for a point to be considered a core point.

DBSCAN is chosen here over other clustering methods, such as k-
means, because of its robustness to noise and its ability to identify
clusters without prior knowledge of their number. This flexibility is
critical in environments where device distribution and density can vary
significantly. In addition, DBSCAN is particularly effective for mobile
devices because it can adapt to real-time changes in location and den-
sity, making it an ideal choice for implementing our proposed clustering
approach in the federated learning framework [56,57].

4.1.1. Determining master and slave clusters

After completing the first stage of the clustering process and identi-
fying the set of clusters as C= {Cj, Cy, ..., Cx}, the cluster with the most
members is designated as the master cluster. Formally, this is expressed
as:

Master = Cywhere Cy ... =max(C,,...)forallC;inC @

For subsequent periods, if the cluster still has the most devices, it will
continue to be selected as the Master due to the higher participation of
devices. If the cluster loses its devices due to mobility or weak connec-
tions (based on a threshold T, which is defined as a percentage of the
master cluster size D, and given by T= yxDp,, where 0<y<1), then
dynamically, the cluster with the highest score will be selected as the
new Master.

In the meantime, the remaining clusters are considered as slave
clusters, defined as slaves(t)=C—{master(t)}, until a slave cluster grows
and becomes the master cluster, and the former master cluster takes on
the role of a slave. Overall, the cluster with the most devices is always
selected as the master cluster. It is worth noting that during the learning
process, the devices within a cluster are allowed to communicate with
each other to collect local parameters for updating the global model.
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4.1.2. Selecting master and slave cluster heads

After performing the clustering operation and determining the pri-
mary and Slave clusters, the next step is to designate the cluster head for
each cluster. To select an appropriate cluster head for the master cluster,
the proposed approach first considers the remaining energy levels of the
devices, followed by their mobility.

In the first step, the device with the highest remaining energy among
all devices is selected as the cluster head. This ensures that the chosen
device has sufficient energy to function effectively as the cluster head.
Once a device is selected as the cluster head, its mobility is assessed
based on the parameter My. If Mg<Mnreshold, it indicates that the device
has low mobility and can continue to serve as the cluster head.

For selecting the slave cluster heads, the connection to the master
cluster head is of significant importance. A device is chosen as the slave
cluster head based on its ability to act as a bridge to the master cluster.
Specifically, the distance between each device in the slave cluster and
the master cluster head is calculated, and the device with the minimum
distance is selected as the bridge device and the slave cluster head. By
incorporating periodic checks of the cluster heads, it can be ensured that
slave cluster heads are updated in case of device mobility or unstable
connections. This approach guarantees that the cluster heads operate
effectively and maintain a robust network topology.

4.2. Sleep/wake-up mechanism
The sleep/wake-up mechanism operates as follows:

1. Initially, all devices in the slave clusters are in sleep mode, while all
devices in the master cluster are awake. In other words, S; = 0 for all
jeSiand S; =1 forallj € M.

2. The master cluster head creates an initial model by collecting and
aggregating parameters from the devices within the cluster accord-
ing to (8):

Mg = f (Xm[Hu]) €))

3. The initial model is sent to all the slave cluster heads within its
overlap region according to (9):

Hy NHy # @ ©

Hj, receives Mg from Hy. This condition in the sleep/wake mech-
anism is implemented considering that the slave cluster heads
overlap with the master cluster head.

4. The slave cluster heads wake up their devices and send the initial
model to their member devices. Specifically, Hs, sends M, to S;, and S;
is set to 1 for all jeS;.

5. Each device in the slave clusters performs the learning process with
its dataset, creating a local parameter as described in (10):

S = g(Xs) (10)

6. Each slave cluster head sends its local parameter to the master cluster
head, meaning Hy receives S; from Hg,.

7. The master cluster head aggregates the parameters to create a new
global model (for each slave cluster) as described by (11), denoted by
M,

M, = h(S) 1n

8. According to (12), if the new global model significantly differs from
the previous model, the master cluster head sends the new model to
all slave cluster heads, and the process repeats from step 4:
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A(Mg) > threshold. Hs, N\Hy # @ 12)

where Hs, receives M, through Hy,.

9. Conversely, if the new global model does not show significant dif-
ferences, the master cluster head sends a sleep signal to all devices in
the system, as described in (13):

A(Mg) < threshold.Vj e M => S; =0 (13)

In steps 8 and 9, the threshold A is a parameter that determines when
the global model parameters have changed sufficiently to wake up the
devices in the system. It is defined as a function of the difference be-
tween the current global model and the previous global model, as
described in (14):

A=ax|Mg —Mg|| a4+

In this framework, the threshold A is a parameter that determines
when the global model parameters have changed sufficiently to wake up
the devices in the system. It is defined as a function of the difference
between the current global model (M) and the previous global model
(M’g), with ||x|| representing the L2 norm, indicating the magnitude of
change between the two models. The parameter a controls the sensi-
tivity of the threshold and can be set to a high value (e.g., 0.1) to ensure
rapid convergence, considering the energy constraints of the devices.
This approach measures convergence based on the difference between
the current and previous models. If the difference is below the threshold,
devices can enter a sleep state since there is no significant new data to
learn from. Conversely, if the difference exceeds the threshold, devices
should remain awake to learn from the new data. This strategy balances
energy efficiency and learning performance.

10. If a device moves out of its current cluster and joins another
cluster due to mobility, the mechanism must adapt accordingly. This
means that once it is assigned to a new slave cluster or master cluster,
it sends the parameters to the adjacent device in the master cluster
(M) or slave cluster (S;). Then, the process resumes from step 4,
updating the parameters using the new device’s data, as shown in
(15).

Mg =h (SI‘M Xnew) (15)

where X, represents the dataset of the new device. The process repeats
from step 3, ensuring that the new device can participate in the learning
process.

11. If a device exits the system due to depleted energy or unstable
connectivity, its tasks are redistributed among the remaining devices
in the corresponding cluster. When the device becomes available
again, it receives the current parameters from a neighboring device.
Consequently, depending on whether it is a member of a primary or
slave cluster, it will repeat steps 5 or 7 respectively.

4.3. Federated learning mechanism

In the proposed framework, each device D at the edge of the network
has a local dataset ({x;. y;}), where x; is the input sample i and y; is the
output sample i. It is assumed that X represents the data distribution
across a set of devices D = {D1, Do, ..., D¢}. Each device D; maintains a
subset X; of the data, as described by (16).

X =UX; (16)
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4.3.1. Learning method in the master cluster

The objective of this task is to train a global model f (x; ) across the
entire dataset X, where 6 represents the model parameters. Here, the
process is carried out in a decentralized manner. Devices in the master
cluster M= {M;, My, ..., My} train their local parameters f; (x; ;) using
their local data X;. Through communication with each other, they up-
date their local parameters and coordinate the training of the global
model. Each device sends its parameters to its neighbor, or if it is close to
the cluster head, it sends them directly to the cluster head for aggrega-
tion. The aggregated model is then sent to the slave cluster heads and
finally to the member devices of the master cluster. The steps for this
process are as follows [58]:

- fi (0 67 is considered the local model parameter of device M; at time
t.

- In each iteration t, the devices in the master cluster update their local
parameters according to (17):

A 1
5 X HH - 91:”24‘ <H>

0. 11 = argming n a7)

<3 Lu (£ (x: 0). X;)

=1

where 4 is the regularization parameter, ¢; is the current local parameter
for a device D; trained on the corresponding local dataset X;. § represents
the global model parameter, which embodies the collective knowledge
of all devices. n is the number of devices, and Ly, is the local loss function
for device Dj, measured with f; (x; 6) and local data Xj. To obtain the
global loss function (a sum of local loss functions from slave clusters and
the master cluster) on the device’s dataset, common examples like linear
regression are used, as described in (18) [59]:

o= ()= [ () 2030+ ()

> { (mi> x Z(y — — ?k)z} 18)

k

and y; is the actual target value, y; is the predicted value, n; is the total
number of training samples, and N is the number of slave clusters.
Similarly, in the second term, M represents the total number of devices
in the master cluster, my is the total number of training samples, yy is the
actual target value, and Yy is the predicted value. The overall accuracy
calculation based on the loss function is given by (19):

EG([) = 1 — (LGJF LM) (19)

- After updating the parameters, the devices in this cluster sequentially
send and receive the updated parameters. Device M; sends its
parameter to the neighboring device M; and device M; receives it to
aggregate their local parameters.

- Finally, the local parameters of the devices are aggregated at the
cluster head using (20):

k
f(x; 0= (ﬁ) X Zfi(x; 0;. t) (20)

{i=1)

- In this equation, |M| represents the number of devices in the master
cluster. The aggregated parameters are sent to the slave cluster heads
and their member devices for further training.

4.3.2. Learning method in the slave cluster
The initial global model f (x; 6) is sent by the master cluster head to
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the slave cluster heads, following these steps:

- Let S= {83, Sa, ..., Sk} be a set of slave clusters. Each slave cluster S;
has a local dataset Xj and a local model f;  (x; 6)) at time t. The local
loss function is given by:

L— (%) < 5(y--3) @1

Additionally, (22) computes the local accuracy [60]:
el(t) =1 - Lj (22)

- In each iteration t, the devices in each slave cluster S; update their
local parameters using (2.3):

A 1
5 <l = oyl + (3)

0 . i es1y = argming N (23)
x 0 Lo (f (x: 0). X {j. k})

k=1

where 4 is the regularization parameter, N is the number of devices, Ly is
the local loss function for device D, and Xy;x; is the local data set for
device Dy in the slave cluster.

- Each device Dy in slave cluster S; sends its local model 61 to a

neighboring device if it is nearby. The slave cluster head aggregates
the parameters from the devices using (24).

1 N
'9{j, t+1} = (N) X Z e{j. i t+1} 24)
{i=1}

in which 6j.. represents the aggregated model parameters for slave
cluster S; at time t+1. f;j (x; 6j..1) is sent to the master cluster head for

Master
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.. e
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Cluster . ‘

Sleep .~ .-
Head Station

a) Initial clustering and sleep/wake mechanism in the proposed system
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aggregation with parameters from other slave clusters and the previous
global model [58]. The master cluster head aggregates the parameters
from the slave clusters according to (25).

1 m
flx 0) = <m> X |:f (x; 0) + ; fj(x;ej.:ﬂ) (25)

m is the number of slave clusters, and ¢ represents the aggregated pa-
rameters, which are returned to the slave clusters for further training in
the next iteration and distributed among the devices. Similarly, in the
master cluster, this process continues until the convergence criteria
outlined in Section 5 and the desired accuracy are met. Generally, in this
approach, the stages of updating local parameters, transmission,
reception, and aggregation are repeated so that over time, the local
parameters converge to a common global model.

Egs. (17) and (23) also represent an optimization problem, where the
goal is to minimize the regularization term and the average loss from the
local datasets of devices in the clusters. Fig. 2 presents a schematic view
of the proposed federated learning approach to provide a better un-
derstanding of the clusters, the base station, and the key features of
decentralized learning. In this figure, part (a) illustrates the initial
clustering and the sleep/wake mechanism in the proposed system, while
part (b) depicts the proposed federated training method for global
iteration.

Fig. 3 provides an overall view of the steps in the proposed learning
process from start to finish, while Fig. 4 summarizes this approach in
more detail using pseudocode.

4.4. Formulation

In this section, the proposed framework will be examined from the
perspective of energy consumption in computations (energy expended
by the device during parameter aggregation) and communications
(parameter exchange with neighboring devices or cluster heads). The
total energy consumption and execution time will be formulated. It is
noteworthy that in the proposed framework, the issue of improving
energy consumption in the use of federated learning in the Internet of
Things is considered. This includes clustering, selecting appropriate
cluster heads, and managing computational and communication energy
consumption, practically implemented using concepts like primary/
Slave clusters and the sleep/wake mechanism.

Master

—— -

.: ~:= Wakeup Station

Initial parameters for
generating the initial model

Slave cluster heads

Sending the final local model
to the Master cluster head

O]
@ Sending the model to the
®

b) Proposed FL training method for One global iteration

Fig. 2. Schematic view of the proposed approach.
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Performing initial clustering by the base
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v
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secondary clusters

e Local models of the devices within the
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Fig. 3. Proposed FL training method.

4.4.1. Computational and communication energy consumption

In the proposed framework, each device belongs to a cluster (primary
or secondary). The Slave clusters are responsible for collecting local
parameters from their devices and sending them to the master cluster for
aggregation and updating the global model. The following equations
present the computational and communication energy consumption for
each component in the proposed scheme, along with the total energy
consumption.

4.4.1.1. Active devices in the master cluster energy consumption. Compu-
tational energy consumption: The active devices in this cluster perform
computations on the collected data according to [61], which is calcu-
lated using (26):

Ecom,pi

= Pcompi X Ai (26)
where Pcomp, is the computational power of device i and A; is its active
time.

Communication energy consumption: Devices that communicate with
neighboring devices within the same cluster. Based on [47,61], it is
calculated using (27):
Ecomm; ; = (ij x D x T,«j) + (P,xij x Dy % Ti,.) @7)
where P, (transmission power) and Py, (reception power) represent the
parameters between two active devices i and j, and Dj is the distance,
and Tj is the transmission time between them. Any device that com-
municates with the master cluster head uses (28) to determine its energy
consumption:
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Ecomm, 1ea = <P CORR Dy % Tihead) + (P i Dy % Tihead) (28)

This equation also calculates the transmission and reception power
between device i and the master cluster head. Additionally, D;,, head
represents the distance and T;_, head the transmission time between
them.

4.4.1.2. Master cluster head energy consumption. Computational Energy
Consumption: The master cluster head performs computations on the
received parameters. Its energy consumption is determined by (29):

E Pcomphead X Ahead (29)

COMPhead —
where Peomp,,., is the power required for computations and Apeqq is the
active time.

Communication Energy Consumption: The cluster head communicates
with its member devices to send updated parameters. The energy con-
sumption is determined by (30):

ECommheudi = (P Xhead; < Dhead; % Tlxheud[) + (P Xhead, < Dhead; % fohmd,-) (30)

This equation is similar to (27); however, the process occurs between
the cluster head and device i. Subsequently, the energy consumption
calculation for communication between the cluster head and the slave
cluster heads is provided by (31):

Ecommheadslﬂve = (Ptxheads]ﬂve X Dheadyye X Theadslave>
+ (Prxheadslave X Dheadge X Theadslave) (3D
where Pry,,, ~and Py,,, represent the power required for parameter
save save

exchange between cluster heads, and Dpeqq denote the

slave

distance and time between them, respectively.

and Thead

slave

4.4.1.3. Slave cluster heads energy consumption. Computational Energy
Consumption: Each slave cluster head performs computations on the
received parameters and its own local parameters. The energy con-
sumption is calculated using (32):

E =P COMPgiaye;. X Aslaveji (32)

COMPtavg
where Pco,,%mji is the power of device i and Astave; is the active time of
device i in cluster j.

Communication Energy Consumption: Each device sends its local pa-
rameters to the cluster head, and its energy consumption is calculated
using (33):

Ecamms,m,ejl = <P D(Slﬂveji X Dslavejx. X Txlaveji) + (P rxslaveji X Dslavejx. X Txlaveji)
(33)

where Pryy, 1 the transmission power and Preype, 18 the reception
power. The distance and time between them are represented by Dyave;
and Tqqy, respectively. To calculate the energy consumption for sending
parameters from device i to its neighboring device, (34) is used:

Ecomm, = (ij x Dyx T

y) + (P, % Dy x Tang,) (34)
where ij and Prx,]. represent the transmission and reception power,
respectively, for the communication, while D;, denotes the distance and
T; the time between the devices. Equation (35) shows the energy
consumed by each slave cluster head for sending parameters to the
master cluster head:

E = (P X Dygaye, % T,
comMyaye;, ( D(Shvefhead slavey,, slavey,
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Input:
M: Master cluster devices, S: Slave cluster devices, X: Dataset, Threshold value, a: Sensitivity parameter
Output:
M,: Final global model parameters
Procedure:
// Initializing:
1. Assign devices to Master Cluster M and Slave Clusters S, ensuring overlap between cluster heads
2. Set sleep state S; = 0 for all devices in Slave Clusters and awake state S; = 1 for all devices Master Cluster
// Master Cluster Learning:
3. Collect the parameters from devices in the Master cluster head
4. Initialize the global model M, at the Master cluster head:
5. For each iteration:
6. Calculate the gradient difference: 4g = 4 * (Mj— Mg)
7. Update the global model: M;= M,-1 * (gj + Ag)
8. Send the initial M, to all overlapping Slave cluster heads
9. Slave cluster heads wake up their devices and send the initial M, to their member device
// Local Learning in Slave Clusters:
10. | For each device in Slave Clusters:
11. Perform the learning process with its own data using the received global M,
12. Send the updated local parameters to the Master cluster head
13. End for
/I Global Model Aggregation
14. | Master cluster head aggregates the local parameters to
create a new global model
15. | Compute the difference between the new and previous  global models: 4 = a X | |Mg— My ||
// Sleep/Wake Mechanism Updates:
16. If A > threshold:
17. | Send the new model M, to all Slave cluster and go to step S
18. Else If A < threshold:
19. | Send a sleep signal to all devices in the system: S; =0 for all j € M and waiting for new parameters
20. End if
// Sleep/Wake Mechanism Updates (Continued):
21. If a device joins a cluster:
22. Send its parameters to neighboring devices in master or slaves
23. Repeat from step 5 to update parameters
24, End if
25. If a device leaves a cluster:
26. Distribute its work among the remaining devices in the corresponding cluster (Slave or Master)
27. Repeat according to the appropriate cluster (step 10 for Slave, step 3 for Master)
28. End if
29. If a previously disconnected device becomes available again:
30. Receive the current model from nearby devices
31. Re-learn with its own dataset and send the generated parameters to the corresponding adjacent devices
32. Repeat according to the appropriate cluster (step 10 for Slave, step 3 for Master)
33. End if
34. Repeat steps 5-9 until the learning process converges
35. Return M,

Fig. 4. Learning process in clusters with sleep/wake-up mechanism.

+<Prxslavejhead X Dslavejhca d X Tslavejhc_d d) (35)

4.4.1.4. Total energy consumption. By analyzing the energy consump-
tion of each computational and communicational component and sum-
ming them up, the total energy consumption of the proposed system
(excluding the energy consumption of the base station) is obtained using
(36):

10

+ X (Emmmiheﬂ d) + Z(Ecomm,.,e‘,dﬂm> +z (Ecomms,avejh 4 )

+ 2 (B, )
(36)
With this introduction, to minimize the total energy consumption of
the system, an optimization problem has been formulated by adding

constraints and an objective function, which will be discussed in Section
IV-D-4.
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4.4.2. Federated learning time

The time for Federated Learning includes the computation time for
training local parameters and the time to send them to the cluster head
or neighboring devices in each iteration. In the learning process, device
d trains its local parameters until it reaches a local accuracy (¢) and
updates them [47]. It is assumed that Cy represents the number of CPU
cycles required to process a data sample on device d. The total number of
CPU cycles required for one local iteration across all data samples is
CgxDgq. Thus, the computation time for one local iteration on an IoT
device is calculated using (37):
peme _ .G Da

fa

where Tj is the number of local iterations required to achieve local ac-
curacy, and f; is the CPU computational speed of the device in cycles per
second [62].

The time required for each global iteration is also estimated using
(38), considering the longest duration for receiving parameters among
all devices and the time for sending them within the clusters.

37)

S
omm __
™ =pa

dn.2

(38)

where s is the size of the data transferred from one device to another
during parameter transfer. Ri.z denotes the transfer rate between

neighboring devices in the z-th RRB.

Additionally, the system requires applying a time constraint to
ensure that the entire learning process, including computations, com-
munications, timely model updates, and coordination between compo-
nents, is completed within the specified time frame [63]. This issue is
known as the federated learning time constraint, defined as Tr;, and is
formulated according to (39):

TFL Z Tcomp + Tcamm (39)
where Teonyp is the total time required for model computations within the
clusters, and T¢omm calculates the overall time spent on communication
between cluster devices and between the cluster heads.

4.4.3. Optimizing energy consumption

The optimization problem revolves around resource allocation to
minimize energy consumption while meeting performance re-
quirements. The goal is to strike a balance between computational tasks
and communication needs to achieve energy efficiency. However, there
are constraints that must be considered. For further details, the objective
function and its constraints are provided based on works:

Po: Minimize: Ea

s.t.:

Cl: 2(Ai) < Reora, Vi € compute set

€2:2(Ty x Dy ) < Buow, Vi.j € 8

C3: A > Pwmplmmﬂi € compute set

C4: Anead = Peompyeyq,,,

C5: Aﬂavej > PCOmPslavejm* Vj € Hg,

C6: Asl‘.,“,eji > Pcompslﬂvejimin, j € Hs. Vi € Hg
C7:Ty=Ty ,Vije Sy

C8: T, >T , Vi e M

fhead =  lheady,

11
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C9 : Theady,, >

slave —

Theadslavemi“7 V_] € I_IS1

C10: Tiwe, > Towe, - ¥j € H, Vi € Hg
Cll: T, > 0, Vi.j e M|S;

Cl2: T, = Ty, ¥i.j € MJS;

Cl3: Taq, < Ty, ¥ij € MIS;

Cl4: TdZdij + Tij < Tihead, Vi € Hy

C15 Vi € § (40)

slave 7

Tazgy + Ty < Theaq

The problem Py in (40) is recognized as a Linear Programming (LP)
problem, where both the objective function and constraints are linear, as
they involve linear relationships between variables (the linear combi-
nation of energy consumption terms and constraints of inequalities or
equalities).

The optimization problem P, defined in (40), is identified as a linear
programming (LP) problem. This classification is based on the charac-
teristics of LP problems, which include an objective function, decision
variables (values to optimize), and constraints. In this case, the goal is to
minimize the total energy consumption (Et), which is expressed in
(36) as the sum of various energy components. These components can be
represented as linear functions of the decision variables: A; for compu-
tational energy and Tj; for communication time, defined as (41):

Etotal = ZCiAi + CheadAhead + chluvejAsluvej + ZdjTij + dheadThead
i j ij

+ dheadyyye Theadare
(41)

Here, c, and d, are constants that represent the energy costs associ-
ated with each decision variable. These variables are continuous and can
take any non-negative value, aligning with the requirements of an LP
problem. Additionally, the constraints in this problem, which will be
discussed later, are represented as linear inequalities or equalities. For
example, constraints C; to Cyg are all inequalities involving the decision
variables A; and Tj;, ensuring they are greater than or equal to certain
minimum values. They also enforce the non-negativity of the corre-
sponding decision variables. As a result, the presented optimization
problem satisfies all the criteria for classification as a linear program-
ming problem. It is worth noting that this problem is solved using PuLP,
an open-source linear programming modeling library in Python, and the
results will be presented in the performance evaluation section.

The above constraints ensure that each computational component
and communication link meets or exceeds the minimum performance
requirements, thereby maintaining the expected quality of service. The
expressions specified as C1 to C10 impose constraints on the allocation
of computational and communication resources and C11 to C15 pertain
to issues related to semi-duplex and asynchronous D2D communica-
tions. Below, we provide a brief explanation of these conditions.

Cl ensures that the total computational load assigned to all
computational components does not exceed the available system ca-
pacity. C2 stipulates that the total communication resources used by
devices within the cluster should not exceed the available communica-
tion bandwidth. This constraint accounts for both the duration and
distance between devices. C3 ensures that the power of each computa-
tional component is greater than or equal to the minimum required
power, guaranteeing that each component operates within the specified
power range without energy deficiency.

C4 indicates that the power of the master cluster head is greater than
or equal to the minimum required power, setting a lower bound for the
energy consumption of the cluster head. C5 guarantees that each slave



N. Taheri Javan et al.

cluster head performs computations equal to or greater than its mini-
mum required performance. C6 ensures that the power of each device in
the cluster head is greater than or equal to the minimum required power,
ensuring that each device consumes at least the minimum amount of
energy.

C7 sets the minimum communication time between devices within a
cluster and ensures that communication between devices in the cluster
occurs for the specified duration. C8 establishes the minimum commu-
nication time between devices and the master cluster head, ensuring
that communication between devices lasts for the specified duration. C9
specifies the minimum communication time between the master cluster
head and slave cluster heads. C10 determines the communication time
between a device in the Slave clusters and its adjacent device, which
should be equal to or greater than the minimum required performance.

C11 ensures that communication time is non-negative. C12 guaran-
tees that communication delay between two devices is the same
regardless of the direction of transmission. C13 ensures that direct
communication time between devices is equal to or less than commu-
nication time via alternative methods (through a centralized entity),
demonstrating that D2D communication can be faster. Finally, C14 and
C15 ensure that the total communication time should not exceed the
communication time with the main or Slave clusters.

5. Simulation and evaluation

This section presents the evaluation results of the proposed frame-
work. The implementation was carried out using Python 3.9 in the
PyCharm development environment. Libraries such as Scikit-learn were
used for clustering algorithms, and TensorFlow was employed for tasks
related to federated learning. The MNIST dataset and a Deep Neural
Network (DNN) model were utilized for data classification tasks. Addi-
tionally, the PuLP library was used to solve the LP optimization problem
of the mathematical model.

5.1. Simulation setup

5.1.1. Simulation environment and settings

In this simulation, a base station is considered at the center of a circle
with a radius of 1 km, accompanied by 40 devices randomly distributed
within this area with varying geographical positions and access times
(between 1 to 120 s). Each device has a random coverage radius between
10 to 500 m, defining its service area.

For the implementation of the D2D communication channel, pa-
rameters such as path loss with a value of 148+40 log;¢ (dis. [km]) and
cellular path loss with a value of 128.1+37.6 logjo (dis. [km]) are
configured. Table 3 presents the allocated values for the network model
parameters and the federated learning model parameters.

5.1.2. Comparison approaches
In this section, five approaches are compared from different

Table 3

Summary of parameters for the simulation environment.
Parameter Value
Time Slot for BS 1-120 sec
IoT Device Coverage Radius 10-500 m
Number of IoT Devices 10-70
Radius of BS 1 km
Maximum Power of IoT Device 3w
Maximum Bandwidth of BS 10 Mb/s
Number of data samples 200 - 1000
Learning rate 0.001
Convergence threshold rate (a) 0.1
Learning algorithm Fedprox
Regularization parameter (1) 0.01
FL time threshold 2 sec
Total Energy Capacity of IoT Devices 500-2000 j
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perspectives:

Star Topology: In this method, devices send their models directly to
the base station for global aggregation.

Hierarchical Topology: In this method, the transfer and reception
of model parameters first occur at the intermediate cluster head, and
then they are sent to the base station for final aggregation. After
global aggregation, each device receives the global model through
the same intermediate cluster head.

e FL-EOCD approach presented in [47].

Proposed Framework (Optimal).

Proposed Framework (Simulation).

5.2. Results and discussion

In this section, numerical results obtained from the simulation are
presented. To compare the proposed framework, we selected three
performance metrics: (1) Energy Consumption, (2) Learning Accuracy,
(3) Federated Learning Time.

5.2.1. Energy consumption

Fig. 5 shows the total energy consumption of the network as the
number of Slave clusters increases in the proposed framework. In this
scenario, 40 devices are distributed across the environment. As can be
observed, with an increase in the number of Slave clusters (and conse-
quently a decrease in the size of each cluster), the energy consumption in
the proposed framework decreases.

Fig. 6 illustrates the energy consumption of the five evaluated ap-
proaches as a function of the number of devices in the network. As
shown in the figure, for lower numbers of devices, the FL-EOCD
approach performs slightly better than the proposed framework. How-
ever, in networks with a higher number of devices, the proposed
framework demonstrates superior performance in terms of energy
consumption.

Fig. 7 shows the energy consumption versus the number of data
samples for the five compared approaches. As the sample size increases,
the energy consumption also rises. The proposed framework demon-
strates lower energy consumption compared to existing methods for all
sample sizes. This is primarily because the proposed approach reduces
communication overhead due to the connections between neighboring
devices. In contrast, the star and hierarchical approaches generally
consume higher energy due to higher communication and computa-
tional costs. However, the hierarchical approach, compared to the star
approach, benefits from its structure, providing more efficient param-
eter aggregation and thereby reducing energy consumption.

5.2.2. Learning accuracy
Fig. 8 illustrates the accuracy of the proposed learning approach

700
600
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400
300
200

100

Energy Consumption (j)

1 2 3 4 5
Number of Clusters

Fig. 5. Energy consumption analysis relative to the number of slave-clusters.
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Fig. 8. Evaluation of learning accuracy against the number of slave-clusters.

against different numbers of slave clusters. As shown, the accuracy of the
proposed approach decreases with an increase in the number of clusters.
This decline in accuracy can be attributed to two main reasons. First, as
the number of clusters increases and consequently the size of each
cluster decreases, the amount of training data within each cluster also
decreases. Second, there is an increase in feature diversity among
diff8erent clusters, which can negatively impact the overall accuracy.
Fig. 9 displays the accuracy of the compared approaches. It can be
observed that the main/slave clustering mechanism used in the pro-
posed framework results in improved accuracy. In contrast, the star and
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Fig. 9. Comparison of learning accuracy against the number of

global iterations.

hierarchical approaches with centralized structures demonstrate lower
accuracy. The FL-EOCD approach, with its chain-like clustering and use
of SGD, achieves higher accuracy compared to the star and hierarchical
methods. However, it still falls short of the accuracy achieved by the
proposed approach.

The observed drop in the accuracy of existing approaches can be
linked to several key factors, such as suboptimal model configurations
and experimental setups (as shown in Table 3). Specifically, decisions
related to hyperparameters (like learning rate, convergence threshold,
and regularization techniques) and even insufficient training iterations
play a big role in influencing model performance. These factors often
lead to challenges like poor convergence or overfitting. Additionally, the
centralized structures commonly used in star and hierarchical models
may disrupt effective communication between devices, worsening issues
related to data heterogeneity, which overall impacts model accuracy. On
the other hand, the proposed approach takes a decentralized structure
and incorporates a specific clustering mechanism. This facilitates better
collaboration within clusters, effectively addressing the limitations of
centralized models. As a result, it improves communication efficiency,
speeds up model convergence, and ultimately enhances accuracy and
overall performance.

5.2.3. FL time

In Fig. 10, the learning times of the methods are compared. Here, the
FL-EOCD method requires the least amount of time for a lower number
of devices. This is due to the presence of scheduled devices and coor-
dinated RRB resource allocation, which streamline the learning process.
These features are not relied upon by the three approaches of the
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Fig. 10. Comparison of FL time in a global iteration.
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proposed method, star topology, and hierarchical topology, where
communications are asynchronous. However, as the number of devices
increases, due to differences in the clustering approach between the FL-
EOCD method and the proposed method, the learning time in the pro-
posed approach slightly improves. In summary, the unscheduled design
in the proposed scheme may cause initial inefficiencies in learning time,
but it ultimately fosters greater adaptability to changing network con-
ditions and allows devices to adjust their contributions based on real-
time availability.

6. Conclusions and future works

In this research, a comprehensive framework has been proposed to
leverage the benefits of decentralized federated learning in the Internet
of Things (IoT) environment, focusing on improving energy consump-
tion. In this approach, devices can exchange model information and
learning parameters by utilizing Device-to-Device (D2D) communica-
tions without the need for a central server. In the proposed framework,
by implementing a sleep/wake-up mechanism, clusters with a number of
devices not suitable for collaborative learning can enter a sleep mode
and receive suitable parameters from a cluster with appropriate condi-
tions, referred to as the master cluster. Subsequently, they update their
local parameters and send them to the master cluster. Overall, these
mechanisms contribute to energy efficiency and can address mobility
challenges in this environment. Finally, to evaluate the proposed
approach, the results obtained from implementing and running the
method are compared with the optimal values obtained from LP, as well
as star, hierarchical, and FL-EOCD methods in terms of energy effi-
ciency, learning time, and accuracy. The results indicate that the pro-
posed method, with its distinct structure and parameters, effectively
reduces energy consumption and demonstrates superiority in accuracy
compared to other evaluated methods. However, its learning time in-
creases based on specific features in the given scenario.

For future work on optimizing energy consumption within the pro-
posed framework, two main areas have been identified:

e Compression Methods: Future research should investigate advanced
IoT-focused compression techniques, such as quantization and model
compression algorithms like Distillation. Efficient data compression
can substantially reduce communication energy demands and
enhance overall energy efficiency.

Energy-Aware Learning Parameters: Optimizing learning parameters
for energy efficiency is crucial. Future studies could develop energy-
aware optimization techniques that adjust learning parameters based
on energy availability and device constraints. For example, algo-
rithms could dynamically modify the learning rate, convergence
threshold, or regularization parameters to minimize energy con-
sumption. Addressing these areas could lead to reduced energy usage
and shorter learning times.

Additionally, future research should address the limitations of the
proposed framework, including potential scalability challenges in large-
scale deployments, such as expanding the mobility model, and the need
for robust security measures, to gain a better understanding of the
practical implications of this approach.
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