We are currently experiencing technical difficulties. Some features may not work well or at all. Please bear with us as we are working hard to restore full service.

Results for 'Mathematics'

985 found
Order:
  1. Mathematics Intelligent Tutoring System.Nour N. AbuEloun & Samy S. Abu Naser - 2017 - International Journal of Advanced Scientific Research 2 (1):11-16.
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  2. ON MATHEMATICAL LITERACY AND PHILOSOPHY OF MATHEMATICS EDUCATION.Syahrullah Asyari - 2025 - Journal of Arts, Humanities and Social Sciences 2 (6):42-49.
    This conceptual meta-synthesis explores the intersections between mathematical literacy and the philosophy of mathematics education, revealing how these two fields mutually enrich the theoretical and practical dimensions of mathematics teaching and learning. Mathematical literacy, traditionally understood as the ability to use mathematics for solving real-world problems, has evolved into a multidimensional construct encompassing reasoning, communication, reflection, and ethical awareness. Meanwhile, the philosophy of mathematics education interrogates the epistemological, ontological, and axiological foundations of mathematics, emphasizing its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. (1 other version)Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  5. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are vulnerable (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  6. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which are essential (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  7. Mathematics as language.Adam Morton - 1996 - In Adam Morton & Stephen P. Stich, Benacerraf and His Critics. Blackwell. pp. 213--227.
    I discuss ways in which the linguistic form of mathimatics helps us think mathematically.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  8. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  9. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1 (7):1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. What mathematical explanation need not be.Elijah Chudnoff & Silvia De Toffoli - 2025 - Journal of Mathematical Behavior 79 (101255):1-12.
    Recent works in the philosophy of mathematical practice and mathematical education have challenged orthodox views of mathematical explanation by developing Understanding-first accounts according to which mathematical explanation should be cashed out in terms of understanding. In this article, we explore two arguments that might have motivated this move, (i) the context-sensitivity argument and (ii) the inadequacy of knowing why argument. We show that although these arguments are derived from compelling observations, they ultimately rest on a misunderstanding of what Explanation-first accounts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    By analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are imagined objects, some of which, at least approximately, exist in our internal world of activities or we can realize (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  12. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  13. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the Polish (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart, Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The great French mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. From Mathematical Fictionalism to Truth-Theoretic Fictionalism.Bradley Armour-Garb & James A. Woodbridge - 2014 - Philosophy and Phenomenological Research 88 (1):93-118.
    We argue that if Stephen Yablo (2005) is right that philosophers of mathematics ought to endorse a fictionalist view of number-talk, then there is a compelling reason for deflationists about truth to endorse a fictionalist view of truth-talk. More specifically, our claim will be that, for deflationists about truth, Yablo’s argument for mathematical fictionalism can be employed and mounted as an argument for truth-theoretic fictionalism.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  17. Mathematical undecidability, quantum nonlocality, and the question of the existence of God.Alfred Driessen & Antoine Suarez (eds.) - 1997 - Springer.
    The title of the present book suggests that scientific results obtained in mathematics and quantum physics can be in some way related to the question of the existence of God. This seems possible to us, because it is our conviction that reality in all its dimensions is intelligible. The really impressive progress in science and technology demonstrates that we can trust our intellect, and that nature is not offering us a collection of meaningless absurdities. We first of all intend (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  18. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. (1 other version)Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. Rethinking inconsistent mathematics.Franci Mangraviti - 2023 - Dissertation, Ruhr University Bochum
    This dissertation has two main goals. The first is to provide a practice-based analysis of the field of inconsistent mathematics: what motivates it? what role does logic have in it? what distinguishes it from classical mathematics? is it alternative or revolutionary? The second goal is to introduce and defend a new conception of inconsistent mathematics - queer incomaths - as a particularly effective answer to feminist critiques of classical logic and mathematics. This sets the stage for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Mathematical Thinking Undefended on The Level of The Semester for Professional Mathematics Teacher Candidates. Toheri & Widodo Winarso - 2017 - Munich University Library.
    Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. Qualitatively, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Comparative Mathematical Analyses Between Different Building Typology in the City of Kruja, Albania.Klodjan Xhexhi, Andrea Maliqari & Paul Louis Meunier - 2020 - Test Engineering and Management 83 (March-April 2020):17225-17234.
    The city of Kruja dates back to its existence in the 5th and 6th centuries. In the inner city are preserved great historical, cultural, and architectural values that are inherited from generation to generation. In the city interact and coexist three different typologies of dwellings: historic buildings that belong to the XIII, XIV, XV, XIII, XIX centuries (built using the foundations of previous buildings); socialist buildings dating back to the Second World War until 1990; and modern buildings which were built (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. Mathematics, Narratives and Life: Reconciling Science and the Humanities.Arran Gare - 2024 - Cosmos and History 20 (1):133-155.
    The triumph of scientific materialism in the Seventeenth Century not only bifurcated nature into matter and mind and primary and secondary qualities, as Alfred North Whitehead pointed out in Science and the Modern World. It divided science and the humanities. The core of science is the effort to comprehend the cosmos through mathematics. The core of the humanities is the effort to comprehend history and human nature through narratives. The life sciences can be seen as the zone in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  26. History & Mathematics: Trends and Cycles.Leonid Grinin & Andrey Korotayev - 2014 - Volgograd: "Uchitel" Publishing House.
    The present yearbook (which is the fourth in the series) is subtitled Trends & Cycles. It is devoted to cyclical and trend dynamics in society and nature; special attention is paid to economic and demographic aspects, in particular to the mathematical modeling of the Malthusian and post-Malthusian traps' dynamics. An increasingly important role is played by new directions in historical research that study long-term dynamic processes and quantitative changes. This kind of history can hardly develop without the application of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The Anxiety Levels and Mathematical Literacy of the Eighth Grade Indonesian Students on Quantity Content.Syahrullah Asyari, Nasrullah Nasrullah, Hisham Barakat Hussein & Nuraeni Nuraeni - 2024 - Lentera Pendidikan: Jurnal Ilmu Tarbiyah Dan Keguruan 27 (2):348-369.
    Mathematical literacy is essential for students’ academic success and real-life problem-solving. However, math anxiety remains a significant barrier affecting students' performance, particularly in the “quantity” content of mathematical literacy. Despite extensive research, limited studies have explored how varying levels of math anxiety influence students’ mathematical literacy in specific content domains. This qualitative descriptive study investigates the impact of math anxiety on the mathematical literacy of the eighth-grade students in the “quantity” content. Using purposive sampling, six students from State Junior High (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Why Mathematics Cannot Be Merely Invented Nor Purely Hypothetico-Deductive.Beppe Brivec - manuscript
    This paper argues that mathematics cannot be regarded as either a mere invention or a purely hypothetico-deductive enterprise. By extending Goodman’s “grue” problem into the mathematical domain, it is shown that definitional interequivalence between predicates does not preserve epistemic properties such as decidability. Even when two predicates are formally interdefinable, only one may be epistemically admissible within a consistent formal system. This constraint reveals that mathematical language is not a free invention but is shaped by deeper semantic and computational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  30. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  31. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Mathematics as a Time Loop - Closed Timelike Curves and the Transmission of Timeless Truths.Eslami Abolhassan - unknown
    This paper introduces an innovative philosophical framework that redefines mathematics as a negotiation between conflicting ontological domains—the ideal and the real—mediated through a recursive metaphysical loop of energy and information. By incorporating insights from theoretical physics, information theory, and mathematical philosophy, we illustrate how Closed Timelike Curves (CTCs) provide the scientific framework that permits timeless truths to permeate temporal reality without breaching causality. This framework is defined by three crucial characteristics: non-linearity, entropy mediation, and Gödelian limitation. We propose that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Mathematical Needs of Laura Vicuña Learners.Jupeth Pentang, Ronalyn M. Bautista, Aylene D. Pizaña & Susana P. Egger - 2020 - WPU Graduate Journal 5 (1):78-81.
    An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  35. Mathematical Structure of the Emergent Event.Kent Palmer - manuscript
    Exploration of a hypothetical model of the structure of the Emergent Event. -/- Key Words: Emergent Event, Foundational Mathematical Categories, Emergent Meta-system, Orthogonal Centering Dialectic, Hegel, Sartre, Badiou, Derrida, Deleuze, Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Mathematical Evaluation Methodology Among Residents, Social Interaction andEnergy Efficiency, For Socialist Buildings Typology,Case of Kruja (Albania).Klodjan Xhexhi, Andrea Maliqari & Paul Louis Meunier - 2020 - Test Engineering and Management 83 (March-April 2020):17005-17020.
    Socialist buildings in the city of Kruja (Albania) date back after the Second World War between the years 1945-1990. These buildings were built during the time of the socialist Albanian dictatorship and the totalitarian communist regime. A questionnaire with 30 questions was conducted and 14 people were interviewed. The interviewed residents belong to a certain area of the city of Kruja. Based on the results obtained, diagrams have been conceived and mathematical regression models have been developed which will serve as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  39. A Mathematical Framework for the Emergence of Life: Revisiting Fundamental Constants and Numerical Harmony.Likhith Reddy Kaliki - manuscript
    The emergence of life is commonly approached from a probabilistic and biochemical perspective. However, this paper presents an alternative hypothesis: that the origin of life may be governed not solely by random chance, but by an underlying mathematical structure embedded within fundamental constants and natural proportions. This study explores the correlation between the golden ratio (φ ≈ 1.618), perfect numbers such as 6 and 28, and the gravitational acceleration constant on Earth (g ≈ 9.8 m/s²). Notably, 6 × φ yields (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science 91 (4):887-905.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by appealing to what (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Mathematical and Non-causal Explanations: an Introduction.Daniel Kostić - 2019 - Perspectives on Science 1 (27):1-6.
    In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory and in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  43. Imagination in mathematics.Andrew Arana - 2016 - In Amy Kind, The Routledge Handbook of the Philosophy of Imagination. New York: Routledge. pp. 463-477.
    This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  44. Mathematics for Preschoolers. Handboook for parents and educators.Boris Culina - manuscript
    In this handbook, I put into practice my philosophical views on children's mathematics. The handbook contains brief instructions and examples of mathematical activities. In the INSTRUCTIONS section, instructions are given on how, and in part why that way, to help preschool children in their mathematical development. In the ACTIVITIES section, there are examples of activities through which the child develops her mathematical abilities.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Alternative mathematics and alternative theoretical physics: The method for linking them together.Antonino Drago - 1996 - Epistemologia 19 (1):33-50.
    I characterize Bishop's constructive mathematics as an alternative to classical mathematics, which makes use of the actual infinity. From the history an accurate investigation of past physical theories I obtianed some ones - mainly Lazare Carnot's mechanics and Sadi Carnot's thermodynamics - which are alternative to the dominant theories - e.g. Newtopn's mechanics. The way to link together mathematics to theoretical physics is generalized and some general considerations, in particualr on the geoemtry in theoretical physics, are obtained.that.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  46. Mathematical Models in Integrated Psychotherapy: Toward Consilience in Psychological Science.Olivier Boether - manuscript
    This paper proposes a mathematical framework for understanding the integration of psychotherapeutic approaches, with the goal of achieving consilience between philosophical and psychological perspectives on human behavior. Building on Wilson's (1998) concept of consilience—the unity of knowledge across disciplines—this work presents the core equation HB = Φ × Ψ(E × M × G), where human behavior emerges from the multiplicative interaction of philosophy and psychology, with psychology itself containing existential, metaphysical, and Gestalt components. The framework addresses the fragmentation in psychotherapy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. The directionality of distinctively mathematical explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  48. Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  49. Why pure mathematical truths are metaphysically necessary: a set-theoretic explanation.Hannes Leitgeb - 2020 - Synthese 197 (7):3113-3120.
    Pure mathematical truths are commonly thought to be metaphysically necessary. Assuming the truth of pure mathematics as currently pursued, and presupposing that set theory serves as a foundation of pure mathematics, this article aims to provide a metaphysical explanation of why pure mathematics is metaphysically necessary.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  50. Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
1 — 50 / 985