Showing 520 open source projects for "wavelet neural network"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Financial reporting cloud-based software. Icon
    Financial reporting cloud-based software.

    For companies looking to automate their consolidation and financial statement function

    The software is cloud based and automates complexities around consolidating and reporting for groups with multiple year ends, currencies and ERP systems with a slice and dice approach to reporting. While retaining the structure, control and validation needed in a financial reporting tool, we’ve managed to keep things flexible.
    Learn More
  • 1
    Neural Tangents

    Neural Tangents

    Fast and Easy Infinite Neural Networks in Python

    Neural Tangents is a high-level neural network API for specifying complex, hierarchical models at both finite and infinite width, built in Python on top of JAX and XLA. It lets researchers define architectures from familiar building blocks—convolutions, pooling, residual connections, and nonlinearities—and obtain not only the finite network but also the corresponding Gaussian Process (GP) kernel of its infinite-width limit.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Bumblebee

    Bumblebee

    Pre-trained Neural Network models in Axon

    Bumblebee provides pre-trained Neural Network models on top of Axon. It includes integration with Models, allowing anyone to download and perform Machine Learning tasks with few lines of code. The best way to get started with Bumblebee is with Livebook. Our announcement video shows how to use Livebook's Smart Cells to perform different Neural Network tasks with a few clicks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NeuralOperators.jl

    NeuralOperators.jl

    DeepONets, Neural Operators, Physics-Informed Neural Ops in Julia

    Neural operator is a novel deep learning architecture. It learns an operator, which is a mapping between infinite-dimensional function spaces. It can be used to resolve partial differential equations (PDE). Instead of solving by finite element method, a PDE problem can be resolved by training a neural network to learn an operator mapping from infinite-dimensional space (u, t) to infinite-dimensional space f(u, t).
    Downloads: 0 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 5
    Penzai

    Penzai

    A JAX research toolkit to build, edit, & visualize neural networks

    Penzai, developed by Google DeepMind, is a JAX-based library for representing, visualizing, and manipulating neural network models as functional pytree data structures. It is designed to make machine learning research more interpretable and interactive, particularly for tasks like model surgery, ablation studies, architecture debugging, and interpretability research. Unlike conventional neural network libraries, Penzai exposes the full internal structure of models, enabling fine-grained inspection and modification after training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Netron

    Netron

    Visualizer for neural network, deep learning, machine learning models

    Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX, Keras, TensorFlow Lite, Caffe, Darknet, Core ML, MNN, MXNet, ncnn, PaddlePaddle, Caffe2, Barracuda, Tengine, TNN, RKNN, MindSpore Lite, and UFF. Netron has experimental support for TensorFlow, PyTorch, TorchScript, OpenVINO, Torch, Arm NN, BigDL, Chainer, CNTK, Deeplearning4j, MediaPipe, ML.NET, scikit-learn, TensorFlow.js.
    Downloads: 57 This Week
    Last Update:
    See Project
  • 7
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs.
    Downloads: 22 This Week
    Last Update:
    See Project
  • 8
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    Predicting stock prices can be a challenging task as it often does not follow any specific pattern. However, deep neural learning can be used to identify patterns through machine learning. One of the most effective techniques for series forecasting is using LSTM (long short-term memory) networks, which are a type of recurrent neural network (RNN) capable of remembering information over a long period of time. This makes them extremely useful for predicting stock prices. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    This software was previously known as Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) and Deep Neural Network Library (DNNL). oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance library of basic building blocks for deep learning applications. oneDNN is part of oneAPI. The library is optimized for Intel(R) Architecture Processors, Intel Processor Graphics and Xe Architecture graphics. oneDNN has experimental support for the following architectures: Arm* 64-bit Architecture (AArch64), NVIDIA* GPU, OpenPOWER* Power ISA (PPC64), IBMz* (s390x), and RISC-V. oneDNN is intended for deep learning applications and framework developers interested in improving application performance on Intel CPUs and GPUs. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Failed Payment Recovery for Subscription Businesses Icon
    Failed Payment Recovery for Subscription Businesses

    For subscription companies searching for a failed payment recovery solution to grow revenue, and retain customers.

    FlexPay’s innovative platform uses multiple technologies to achieve the highest number of retained customers, resulting in reduced involuntary churn, longer life span after recovery, and higher revenue. Leading brands like LegalZoom, Hooked on Phonics, and ClinicSense trust FlexPay to recover failed payments, reduce churn, and increase customer lifetime value.
    Learn More
  • 10
    XNNPACK

    XNNPACK

    High-efficiency floating-point neural network inference operators

    XNNPACK is a highly optimized, low-level neural network inference library developed by Google for accelerating deep learning workloads across a variety of hardware architectures, including ARM, x86, WebAssembly, and RISC-V. Rather than serving as a standalone ML framework, XNNPACK provides high-performance computational primitives—such as convolutions, pooling, activation functions, and arithmetic operations—that are integrated into higher-level frameworks like TensorFlow Lite, PyTorch Mobile, ONNX Runtime, TensorFlow.js, and MediaPipe. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    TensorFlow.js

    TensorFlow.js

    TensorFlow.js is a library for machine learning in JavaScript

    ...Comfortable with concepts like Tensors, Layers, Optimizers and Loss Functions (or willing to get comfortable with them)? TensorFlow.js provides flexible building blocks for neural network programming in JavaScript.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used across DeepMind. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SKORCH

    SKORCH

    A scikit-learn compatible neural network library that wraps PyTorch

    A scikit-learn compatible neural network library that wraps PyTorch.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    NNlib.jl

    NNlib.jl

    Neural Network primitives with multiple backends

    This package provides a library of functions useful for neural networks, such as softmax, sigmoid, batched multiplication, convolutions and pooling. Many of these are used by Flux.jl, which loads this package, but they may be used independently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging and compilation model. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    MIVisionX

    MIVisionX

    Set of comprehensive computer vision & machine intelligence libraries

    MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open-source implementation of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    OpenFace Face Recognition

    OpenFace Face Recognition

    Face recognition with deep neural networks

    OpenFace is a Python and Torch implementation of face recognition with deep neural networks and is based on the CVPR 2015 paper FaceNet: A Unified Embedding for Face Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin at Google. Torch allows the network to be executed on a CPU or with CUDA. This research was supported by the National Science Foundation (NSF) under grant number CNS-1518865.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    SentencePiece

    SentencePiece

    Unsupervised text tokenizer for Neural Network-based text generation

    SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo.]) with the extension of direct training from raw sentences. SentencePiece allows us to make a purely end-to-end system that does not depend on language-specific pre/postprocessing. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    SponsorBlock

    SponsorBlock

    Skip YouTube video sponsors (browser extension)

    SponsorBlock is an open-source crowdsourced browser extension and open API for skipping sponsor segments in YouTube videos. Users submit when a sponsor happens from the extension, and the extension automatically skips sponsors it knows about using a privacy-preserving query system. It also supports skipping other categories, such as intros, outros, and reminders to subscribe, and skipping to the point with highlights. The extension also features an upvote/downvote system with a weighted...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 23
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of this (4) without having to re-engineer their models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    ...It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next