A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard. Expectation-Maximization, pseudo-marginal and ABC methods, and message passing algorithms.

Features

  • Directed graphical models
  • Neural networks (via libraries such as tf.layers and Keras)
  • Implicit generative models
  • Bayesian nonparametrics and probabilistic programs
  • Black box variational inference
  • Generative adversarial networks

Project Samples

Project Activity

See All Activity >

License

Apache License V2.0

Follow Edward

Edward Web Site

Other Useful Business Software
Auth0 for AI Agents now in GA Icon
Auth0 for AI Agents now in GA

Ready to implement AI with confidence (without sacrificing security)?

Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
Start building today
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Edward!

Additional Project Details

Registered

2021-11-19