EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.

Features

  • Supports highly parallelized RL environment execution
  • Uses C++ backend for ultra-fast simulation
  • Compatible with Gym/Gymnasium and RLlib APIs
  • Asynchronous stepping and reset for better throughput
  • Supports a variety of classic control, Atari, and custom environments
  • Easy integration with existing RL libraries for training

Project Samples

Project Activity

See All Activity >

License

Apache License V2.0

Follow EnvPool

EnvPool Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of EnvPool!

Additional Project Details

Programming Language

C++

Related Categories

C++ Reinforcement Learning Libraries

Registered

2025-03-13