EnvPool is a fast, asynchronous, and parallel RL environment library designed for scaling reinforcement learning experiments. Developed by SAIL at Singapore, it leverages C++ backend and Python frontend for extremely high-speed environment interaction, supporting thousands of environments running in parallel on a single machine. It's compatible with Gymnasium API and RLlib, making it suitable for scalable training pipelines.
Features
- Supports highly parallelized RL environment execution
- Uses C++ backend for ultra-fast simulation
- Compatible with Gym/Gymnasium and RLlib APIs
- Asynchronous stepping and reset for better throughput
- Supports a variety of classic control, Atari, and custom environments
- Easy integration with existing RL libraries for training
Categories
Reinforcement Learning LibrariesLicense
Apache License V2.0Follow EnvPool
Other Useful Business Software
Our Free Plans just got better! | Auth0
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of EnvPool!