Pinecone
The AI Knowledge Platform.
The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles.
Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval.
Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results.
Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
Learn more
IBM Watson Discovery
Find specific answers and trends from documents and websites using search powered by AI. Watson Discovery is AI-powered search and text-analytics that uses innovative, market-leading natural language processing to understand your industry’s unique language. It finds answers in your content fast and uncovers meaningful business insights from your documents, webpages and big data, cutting research time by more than 75%. Semantic search is much more than keyword search. Unlike traditional search engines, when you ask a question, Watson Discovery adds context to the answer. It quickly combs through content in your connected data sources, pinpoints the most relevant passage and provides the source documents or webpage. A next-level search experience with natural language processing that makes all necessary information easily accessible. Use machine learning to visually label text, tables and images, while surfacing the most relevant results.
Learn more
Superlinked
Combine semantic relevance and user feedback to reliably retrieve the optimal document chunks in your retrieval augmented generation system. Combine semantic relevance and document freshness in your search system, because more recent results tend to be more accurate. Build a real-time personalized ecommerce product feed with user vectors constructed from SKU embeddings the user interacted with. Discover behavioral clusters of your customers using a vector index in your data warehouse. Describe and load your data, use spaces to construct your indices and run queries - all in-memory within a Python notebook.
Learn more
Asimov
Asimov is a foundational AI-search and vector-search platform built for developers to upload content sources (documents, logs, files, etc.), auto-chunk and embed them, and expose them via a single API to power semantic search, filtering, and relevance for AI agents or applications. It removes the burden of managing separate vector-databases, embedding pipelines, or re-ranking systems by handling ingestion, metadata parameterization, usage tracking, and retrieval logic within a unified architecture. With support for adding content via a REST API and performing semantic search queries with custom filtering parameters, Asimov enables teams to build “search-across-everything” functionality with minimal infrastructure. It is designed to handle metadata, automatic chunking, embedding, and storage (e.g., into MongoDB) and provides developer-friendly tools, including a dashboard, usage analytics, and seamless integration.
Learn more