Compare the Top Query Engines in South America as of January 2026

What are Query Engines in South America?

Query engines are software tools designed to retrieve and process data from databases or large datasets in response to user queries. They efficiently interpret and execute search requests, optimizing the retrieval process to deliver accurate and relevant results quickly. Query engines can handle structured, semi-structured, and unstructured data, making them versatile for various applications such as data analytics, business intelligence, and search engines. They often support complex query languages like SQL and can integrate with multiple data sources to provide comprehensive insights. By optimizing data retrieval, query engines enhance the performance and usability of data-driven applications and decision-making processes. Compare and read user reviews of the best Query Engines in South America currently available using the table below. This list is updated regularly.

  • 1
    Apache Impala
    Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Impala is integrated with native Hadoop security and Kerberos for authentication, and via the Ranger module, you can ensure that the right users and applications are authorized for the right data. Utilize the same file and data formats and metadata, security, and resource management frameworks as your Hadoop deployment, with no redundant infrastructure or data conversion/duplication. For Apache Hive users, Impala utilizes the same metadata and ODBC driver. Like Hive, Impala supports SQL, so you don't have to worry about reinventing the implementation wheel. With Impala, more users, whether using SQL queries or BI applications, can interact with more data through a single repository and metadata stored from source through analysis.
    Starting Price: Free
  • 2
    PuppyGraph

    PuppyGraph

    PuppyGraph

    PuppyGraph empowers you to seamlessly query one or multiple data stores as a unified graph model. Graph databases are expensive, take months to set up, and need a dedicated team. Traditional graph databases can take hours to run multi-hop queries and struggle beyond 100GB of data. A separate graph database complicates your architecture with brittle ETLs and inflates your total cost of ownership (TCO). Connect to any data source anywhere. Cross-cloud and cross-region graph analytics. No complex ETLs or data replication is required. PuppyGraph enables you to query your data as a graph by directly connecting to your data warehouses and lakes. This eliminates the need to build and maintain time-consuming ETL pipelines needed with a traditional graph database setup. No more waiting for data and failed ETL processes. PuppyGraph eradicates graph scalability issues by separating computation and storage.
    Starting Price: Free
  • Previous
  • You're on page 1
  • Next