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Abstract

We present an approach for building an active agent that
learns to segment its visual observations into individual ob-
jects by interacting with its environment in a completely
self-supervised manner. The agent uses its current segmen-
tation model to infer pixels that constitute objects and re-
fines the segmentation model by interacting with these pix-
els. The model learned from over 50K interactions gen-
eralizes to novel objects and backgrounds. To deal with
noisy training signal for segmenting objects obtained by
self-supervised interactions, we propose robust set loss. A
dataset of robot’s interactions along-with a few human la-
beled examples is provided as a benchmark for future re-
search. We test the utility of the learned segmentation model
by providing results on a downstream vision-based control
task of rearranging multiple objects into target configura-
tions from visual inputs alone. Videos, code, and robotic in-
teraction dataset are available at https://pathak22.
github.io/seg-by-interaction/.

1. Introduction
Objects are a fundamental component of visual percep-

tion. How are humans able to effortlessly reorganize their
visual observations into a discrete set of objects is a ques-
tion that has puzzled researchers for centuries. The Gestalt
school of thought put forth the proposition that humans
use similarity in color, texture and motion to group pixels
into individual objects [1]. Various methods for object seg-
mentation based on color and texture cues have been pro-
posed [2–6]. These approaches are, however, known to
over-segment multi-colored and textured objects.

The current state of the art overcomes these issues by
making use of detailed class-specific segmentation anno-
tations for a large number of objects in a massive dataset

∗Denotes equal contribution
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Figure 1. (a): Overview of our approach: a robotic agent conducts
experiments in its environment to learn a model for segmenting
its visual observation into individual object instances. Our agent
maintains a belief about what groups of pixels might constitute an
object and actively tests its belief by attempting to grasp this set
of pixels (for e.g. attempts a grasp at the location shown by the
yellow circle). Interaction with objects causes motion, whereas
interaction with background results in no motion. This motion cue
is utilized by the agent to train a deep neural network for segment-
ing objects. (b),(c): Visualization of the set of thirty six objects
used for training (b) and sixteen objects used for testing (c). Val-
idation objects can be seen in supp. materials. Separate sets of
backgrounds were used for training, validation and testing.

of web images [7–10]. A typical system first uses 1M
human annotated Imagenet [11] images to pretrain a deep
neural network. This network is then finetuned using over
700K object instances belonging to eighty semantic classes
from the COCO dataset [12]. Such data is laborious and
extremely time consuming to collect. Furthermore, current
systems treat segmentation as an end goal, and do not pro-
vide a mechanism for correcting mistakes in downstream
tasks. In contrast, one of the main challenges an active
agent faces in the real world is adapting to previously un-
seen scenarios, where recovering from mistakes is critical
to success.

Instead of treating segmentation as a passive process, in
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this work, our goal is to equip the learner with the ability to
actively probe its environment and refine its segmentation
model. One of the main findings in developmental psychol-
ogy is that, very early on in development, infants have a
notion of objects and they expect objects to move as wholes
on connected paths, which in turn guides their perception
of object boundaries [13, 14]. While at first entities merely
separated by boundaries might all be the same for an infant,
through interaction it is possible for the infant to learn about
properties of individual entities and correlate these proper-
ties with visual appearance. For example, it is possible to
learn that spherical objects roll, a smaller object can be con-
tained inside a larger one, objects with rugged surfaces are
harder to push etc. This progression of knowledge start-
ing from delineating the visual space into discrete entities
to learning about their detailed physical and material prop-
erties naturally paves the path for using this representation
for control and eventually categorizing different segmented
wholes into different “object classes.”

In this work, we take the first step towards putting this
developmental hypothesis to test and investigate if it is pos-
sible for an active agent to learn class agnostic instance seg-
mentation of objects by starting off with two assumptions:
(a) there are objects in the world; (b) principle of common
fate [1], i.e. pixels that move together, group together. To
that end, we set up an agent, shown in Figure 1, to in-
teract with its environment and record the resulting RGB
images. The agent maintains a belief about how images
can be decomposed into objects, and actively tests its be-
lief by attempting to grasp potential objects in the world.
Through such self-supervised interaction, we show that it is
possible to learn to segment novel objects kept on textured
backgrounds into individual instances. We publicly release
the collected data (i.e. over 50K interactions recorded from
four different views) along with a set of 1700 human la-
belled images containing 9.3K object segments to serve as
a benchmark for evaluating self-supervised, weakly super-
vised or unsupervised class agnostic instance segmentation
method 1.

While interaction is a natural way for an agent to learn,
it turns out that training signal for segmentation obtained
via self-supervised interactions is very noisy as compared
to object masks marked by human annotators. For example,
in a single interaction, the agent might move two nearby ob-
jects, which would lead it to mistakenly think of these two
objects as one. Dealing with such noise requires the train-
ing procedure to be robust, analogous to how in regression,
we need to be robust to outliers in the data. However, direct
application of pixel-wise robust loss is sub-optimal because
we are interested in a set-level statistic such as the similarity
between two sets of pixels (e.g. ground-truth and predicted

1Details at https://pathak22.github.io/
seg-by-interaction/

masks) measured for instance using Jaccard index. Such
a measurement depends on all the pixels and therefore re-
quires one to define a robust loss over a set of pixels. In this
work, we propose a technique, “robust set loss”, to handle
noisy segmentation training signal, with the general idea be-
ing that the segmenter is not required to predict exactly the
pixels in the candidate object mask, rather that the predicted
pixels as a set have a good Jaccard index overlap with the
candidate mask. We show that robust set loss significantly
improves segmentation performance and also reduces the
variance in results.

We also demonstrate that the learned model of instance
segmentation is useful for visuo-motor control by show-
ing that our robot can successfully re-arrange objects kept
on a table into a desired configuration using visual inputs
alone. The utility of the learned segmentation method for
control shows that it can guide further learning about prop-
erties of these segments in a manner similar to how human
infants learn about physical and material object properties.
An overview of our approach is shown in Figure 1.

2. Related Work

Our work draws upon the ideas from the active percep-
tion [15–18] to build a self-supervised object segmentation
system. Closest to our work is [19] that makes use of op-
tical flow to generate pseudo ground truth masks from pas-
sively observed videos. We discuss the similarities and dif-
ferences from past work below.

Interactive Segmentation: Improving the result of seg-
mentation by interaction has drawn a lot of interest [20–26].
However, most these works are concerned with using in-
teraction to segment a specific scene. In contrast, our sys-
tem uses interactions to actively gather supervision to train
a segmentation system that can be used to segment objects
in new images. The recent work on SE3 nets [27] learns
to segment and model dynamics of rigid bodies in table-top
environments containing boxes. As opposed to using depth
data, we show object segmentation results from purely RGB
images in visually more complex environment.

Self-Supervised Representation Learning: In this work,
we use a self-supervised method to learn a model for seg-
mentation. A number of recent works have studied self-
supervision, using signals such as ego-motion [28, 29], au-
dio [30], colorization [31], inpainting [32], context [33,34],
temporal continuity [35], temporal ordering [36], count-
ing [37] and adversarial reconstruction [38] for learning vi-
sual features as an alternative to using human-provided la-
bels. As far as we are aware, ours is the first work that aims
to learn to segment objects using self-supervision from ac-
tive robotic interaction.

Self-Supervised Robot Learning: Many recent papers
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Figure 2. Overview of experimental setup and method: (a) Sawyer robot's interactions with objects placed on an arena are recorded by four
cameras. The arena is designed to allow easy modi�cation of background texture. (b) From its visual observation (initial image) the robot
hypothesizes what group of pixels constitute an object (intermediate segmentation hypothesis). It randomly chooses to interact with one
such group by attempting to grasp and place it to a different location on the arena. If the grasped group indeed corresponds to an object,
the mask of the object can be obtained by computing the difference image between the image after and before the interaction. The mask
obtained from the difference image is used as pseudo ground truth for training a neural network to predict object segmentation masks. (c)
Sometimes masks produced by this process are good (�rst image), but they are often imperfect due to movement of multiple objects in the
process of picking one object (second image) or creation of false masks due to lighting changes/shadows.

have investigated use of self-supervised learning for per-
forming sensorimotor tasks. This includes self-supervised
grasping [39–41], pushing [27, 42–44], navigation [45, 46]
and rope-manipulation [45,47]. However, the focus of these
works was geared for an end task. Our goal is different – it
is to a learn robust “segmentation” from noisy interaction
signal. Such segmentation can be a building block for mul-
tiple robotic applications.

3. Experimental Setup

Our setup, shown in Figure 2, consists of a Sawyer robot
interacting with objects kept on a �at wooden arena. The
arena is observed by four cameras placed at different loca-
tions around it. For diversifying the environment, we con-
structed the arena in a manner that the texture of the arena's
surface could be easily modi�ed. At any point in time, the
arena contained 4 to 8 objects randomly sampled from a
set of 36 training objects. We set up the agent to interact
autonomously with objects without any human supervision.
The agent made on average three interactions per minute
using thepick and placeprimitive. We used the pick and
place primitive as the primary mechanism for interaction as
it leads to larger displacement of objects in comparison to
say push actions and thereby provides more robust data for
learning instance segmentation. We now describe each part
of our methodology in detail.

Pick and Place Primitive: The pick action was parameter-
ized by the location (a 2D point on the planar surface of the
arena) and rotation of the agent's end effector (i.e., the grip-
per). The agent approached the pick location from the top
with its gripper perpendicular to the arena, rotated by the
desired angle and kept wide open. At the pick location, the

gripper was closed by a pre-�xed amount to grasp the object
(if any). After the grasp, the gripper was moved to theplace
location and opened. If the gripper held an object, the place
action caused the object to drop on the arena. This pick
and place motion of the robot was enabled by calibrating
the robot's internal coordinate system with the arena kept in
front of it using Kinect sensing.

During the process of pick and place, three images (size
350x430 pixels) of the arena were captured:I t before the
pick action,I 0

t +1 when the grasped object is picked but not
placed on the arena andI t +1 taken after placing the ob-
ject. All images were captured by positioning the agent's
arm in a manner that did not obstruct the view of the arena
from any of the four cameras. Note that every pick and
place action did not lead to displacement of an object be-
cause: (a) either the pick operation was attempted at a lo-
cation where no object was present (and in this case,I t ,
I 0

t +1 ; I t +1 had objects in the same con�guration) or (b) the
grasping failed and the object was not picked, but was possi-
bly displaced due to contact with the gripper. In case of (b),
I t andI 0

t +1 typically had objects in slightly different con-
�gurations whereasI 0

t +1 andI t +1 had objects in the same
con�guration.

Interaction Procedure: Let the agent's current observation
be I t and its belief about group of pixels that constitute an
object bef st

1; st
2::st

K g, wherest
i (a binary mask) indicates

the set of pixels that belong to thei th group among a total
of K groups. The agent interacts to verify ifst

j (j 2 [1; K ])
constitutes an object by attempting to pick and then place
st

j at a randomly chosen location on the arena. If pixels
in st

j move, it con�rms the agent's belief thatst
j is an ac-

tual object. Otherwise, the agent revises its belief to the
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Algorithm 1: Segmentation by Interaction

1 Pre-train network with passive unsupervised data
2 for iteration t= 1 to Tdo
3 Record current observationI t

4 Generate object hypothesis:f st
1; : : : st

K g (
CNN(I t )

5 Randomly choose one hypothesis
st

j 2 f st
1; : : : st

K g
6 Interact with hypothesized object (move(st

j ))
7 Record observationI t +1

8 mask( framedifference(I t ; I t +1 )
9 if mask is emptythen

10 f (x,y), mask,I t g is negative training example
11 else
12 f (x,y), mask,I t g is positive training example
13 end
14 if t % updateinterval== 0 then
15 Update CNN using positive/negative examples
16 end
17 end

contrary. Note that our goal is to show that we can obtain
good instance segmentation by interaction, and hence we
use standard motion planning procedure [48, 49] to simply
hard-code the interaction pipeline. Details are in the sup-
plementary.

Since objects were only moved by agent's interactions,
the collected data is expected to be highly correlated. To
prevent such correlations, the agent executeda fully auto-
matic resetafter every 25 interactions without any human
intervention. In such a reset procedure, the agent moved its
gripper from eight different points uniformly sampled on
the boundaries of the arena to the center to randomly dis-
place objects. To further safeguard against correlations, the
background was periodically changed. Overall, the agent
performed more than 50,000 interactions.

4. Instance Segmentation by Interaction

The primary goal of this work is to investigate if it is pos-
sible for an active learner to separate its visual inputs into
individual foreground objects (i.e., obtain instances) and
background by self-supervised active interaction instead of
human supervision. Broadly the agent moves hypothesized
objects and this motion is used to generate (pseudo ground-
truth) object masks that are used to supervise learning of the
segmentation model.

The major challenge in training a model with such self-
generated masks is that they are far from perfect (Figure 2).
Typical error modes include: (a) false negatives due to com-
plete failure to grasp an object; (b) failure in grasping that
slightly perturb the object resulting in incomplete masks;

(c) in case two objects are located near each other, pick-
ing one object moves the other one, resulting in masks that
span multiple objects; (d) erroneous masks due to varia-
tion in lighting, shadows and other nuisance factors. Any
method attempting to learn object segmentation from in-
teraction must deal with such imperfections in the self-
generatedpseudo ground truthmasks.

When near-perfect human annotated masks are available,
it is possible to directly optimize per-pixel loss determin-
ing whether the pixel belongs to background or foreground.
With noisy masks it is desirable to optimize a robust loss
function that only forces the predictions to approximately
match the noisy ground truth. Since noise in segmentation
masks is a global property of the image, it is non-trivial to
employ pixel-wise robust loss. We discuss this challenge
in more detail and a solution to it by proposingRobust Set
Lossin section 4.2.

While there are many methods in the literature for mak-
ing use of object masks for training instance segmentation
systems, without any loss of generality in this work we use
the state-of-art method known as DeepMask [8] to train a
deep convolution neural network initialized with random
weights (i.e.,from scratch). Note that the use of this method
for training CNN is complementary to our contribution of
learning from active interaction and dealing with challenges
of noisy training signal usingrobust set loss. The Deep-
Mask framework produces class agnostic instance segmen-
tation with the help of two sub-modules: a scoring network
and a mask network. The basic idea is to scan image patches
at multiple scales using the sliding window approach, and
each patch is evaluated by thescoring networkto determine
whether the center pixel of the patch is part of foreground or
background. If the center pixel of the image crop belongs
to the foreground (i.e., the patch is believed to contain an
object), it is passed into themask networkto output the seg-
mentation mask. We use the active interaction data gener-
ated by the agent to train themaskandscoringnetworks.

4.1. Training Procedure

The training procedure is summarized in Algorithm 1.
Let the current image observed by the agent beI t . The
image is �rst re-sized into seven different scales given by
2i � 0:25� 1:25; i 2 [0; 6]. For each scale, the output of
scoring network is computed for image patches of size
192x192 extracted at a stride of 16. All patches that are pre-
dicted by scoring network to contain object segment/masks
f st

1; st
2::st

K g.
The agent randomly decides to interact with one these

object segment hypotheses (sayst
j ) using the pick and place

primitive described in section 3. For ascertaining ifst
j in-

deed corresponds to the object, we compute the difference
imaged0

t = I 0
t +1 � I t . For increasing robustness to noise

we only compute the difference in a square region of size

4



240x240 pixels around the point where robot attempted the
pick action. Additional computations to increase robustness
of difference image are described in the supplementary ma-
terials.

From the difference image, we extract a single mask of
connected pixels (saymt

j ). If the number of non-zero pix-
els in this mask are greater than 1000, we regard the pick
interaction to have found an object (i.e., the image patch
is considered to be a positive example for thescoring net-
work). The correspond maskmt

j is used as training data
point for the mask network. Otherwise, we regard thest

j to
be a part of the background (i.e., negative example for the
scoring network). We generate additional training data by
repeating the same process for image pairs,I 0

t +1 andI t +1

(see section 3).
Furthermore, to account for variance in object sizes, we

augment the positive data points by randomly scaling im-
ages in the range of [2� 0:25; 20:25] and obtain hard nega-
tives by jittering the positive image patches by more than
64 pixels in L1 distance (i.e. combined jittering alongx
andy axes) and randomly jitter negative examples for data
augmentation. We used a neural network with a ResNet-18
architecture to �rst extract a feature representation of the
image. This feature representation is fed into two branches
that predict the score and the mask each. We use a batch
size of 32 and SGD with momentum for training.

4.2. Robust Set Loss

The masks computed by the agent's interaction are quite
noisy to train themask networkusing the standard cross en-
tropy loss that forces the prediction to exactly match the
noise in each training data point. Attempting to �t noise
is adversarial for the learning process, as (a) over�tting to
noise would hamper the ability to generalize to unseen ex-
amples, and (b) inability to �t noise would increase variance
in the gradients and thereby make training unstable.

The principled approach of learning with noisy training
data is to use a robust loss function for mitigating the ef-
fect of outliers. Robust loss functions have been extensively
studied in statistics, in particular, Huber loss [50] applied
to regression problems. However, such ideas have mostly
been explored in the context of regression and classi�cation
for modeling independent outputs. Unfortunately, segmen-
tation mask is a “set of pixels”, where a statistic of inter-
est such as the similarity between two sets of pixels (e.g.,
ground-truth and predicted masks) measured for instance
using Jaccard Index (i.e., intersection over union (IOU)) de-
pends on all the pixels. The dependence of the statistic on
a set of pixels makes it non-trivial to generalize ideas such
as Huber loss in a straightforward manner. We formulate
Robust Set Loss to deal with “set-level” noise.

Before discussing the formulation, we describe the intu-
ition behind our formulation using segmentation as an ex-

ample. Our main insight is that, if the target segmentation
mask is noisy, it is not desirable to force the per-pixel output
of the model to exactly match the noisy target. Instead, we
would like to impose a soft constraint for only matching a
subset of target pixels while ensuring that some (potentially
non-differentiable) metric of interest, such as IOU, between
the prediction and the noisy target is greater than or equal to
a certain threshold. In case the threshold is 1, it reduces to
exactly �tting the target mask. If the threshold is less than
1, it amounts to allowing a margin between the predicted
and the target mask.

The hope is that we can infer the actual (latent) ground-
truth masks by only matching the network's prediction with
the noisy target up to a margin measured by a metric of
interest such as the IOU. Because the network parameters
are optimized across multiple training examples, it is pos-
sible that the network will learn to ignore the noise (as it is
hard to model) and predict the pattern that is common across
examples and therefore easier to learn. The pattern “com-
mon” across examples is likely to correspond to the actual
ground truth. We operationalize this idea behind theRobust
Set Loss(RSL) via a constrained optimization formulation
over the output of the network and the noisy target mask.

Consider the pixel-wise labeling of an imageI as a “set”
of random variablesX = f x0; : : : ; xn g wherex i 2 L ,
where n is total number of pixels andL : f 0; 1g is the
set of possible labels that can be assigned to a pixel. Let
the latent ground truth label corresponding to the imageI
beP(X jI ) and the noisy mask collected by interaction be
M I = f (P(X jI )) , wheref is an arbitrary non-linear func-
tion. Let the predicted mask beQ(X j�; I ), where� are the
parameters of the neural network. We want to minimize
the distance between the prediction and latent ground truth
measured using KL-divergence,D (P(X )kQ(X j� )) =
� EX � P [logQ(X j� )]. Assuming, the latent target mask
is discrete,P(X = X̂ ) = � i

�
x i = x̂ i

�
, whereX̂ is the

prediction.

Given the network outputQ(X j�; I ) and the noisy la-
bel set (i.e., mask collected by interaction)M I , the goal is
to optimize for the latent targetP(X jI ) which is within a
desired margin from the noisy maskM I . The network pre-
dictionQ(X j�; I ) will then be trained to matchP(X jI ).

We assume that the latent target is a mask with values
in the label setL . Hence, we model it as a delta func-
tion P(X ) = [ X = X̂ ] = � i

�
x i = x̂ i

�
. The distance

of this latent target from the predicted distribution is mea-
sured via KL-divergence which in case of delta function re-
duces toD (P(X )kQ(X j� )) = � EX � P [logQ(X j� )] =
�

P
i logqi (x̂ i ). The �nal optimization problem is formu-
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lated as follows:

minimize
�; X̂;�

�
X

i

logqi (x̂ i ) + � T �

subject to IoU(X̂; M I ) � b� �; � � 0 (1)

where� is the slack variable. We optimize the above objec-
tive by approximate discrete optimization [51] in each itera-
tion of training. Details of the optimization procedure are in
the supplementary material. The approximate discrete opti-
mization is fast and takes approximately0:35 seconds for a
batch of 32 examples.

Note that our formulation could be thought of as a gen-
eralization of the CCNN constrained formulation proposed
in Pathak et. al. [52] with several key differences: (a) we
handle non-linear, non-differentiable constraints compared
to only linear ones in CCNN, (b) we propose a discrete for-
mulation compared to a continous one in CNN, and (c) our
main goal is to handle robustness in set data while CCNN's
goal is to learn a pixel-wise ground truth from image level
tags in weakly supervised segmentation setting. (d) More-
over, our optimization procedure is an approximate discrete
solver while CCNN used projected gradient descent, which
would be impractical with Jaccard Index like constraints.

4.3. Bootstrapping the Learning Process Using
Passive Self­Supervision

Without any prior knowledge, the agent's initial beliefs
about objects will be arbitrary, causing it to spend most
of its time interacting with the background. This process
would be very inef�cient. We address this issue by as-
suming that initially our agent can passively observe ob-
jects moving in its environment. For this purpose we use a
prior robotic pushing dataset [42] that was constructed by a
robot randomly pushing objects in a tabletop environment.
We apply the method of [19] to automatically extract masks
from this data, which we use to pre-train our ResNet-18
network (initialized with random-weights). Note that this
method of pre-training is completely self-supervised and
does not rely on any human annotation, and it is quite nat-
ural to combine passive observation and active interaction
for self-supervised learning. This initial model gives around
14%AP at IU of 0.3, while our �nal model with robust set
loss gives mean AP of45:9%.

5. Baselines and Comparisons

We compare the performance of our method against
a state-of-the-art bottom up segmentation method called
Geodesic Object Proposals (GOP) [5], and a top-down in-
stance segmentation method called DeepMask [8] which
is pre-trained on 1M ImageNet and then �netuned in a
class agnostic manner using over 700K strongly supervised
masks obtained from the COCO dataset. We incorporated

Method Supervision AP at IU 0.3 AP at IU 0.5

GOP Bottom up 10.9 04.1
GOP (tuned) Bottom up 23.6 16.3
DeepMask Strong Sup. 44.5 34.3
DeepMask (tuned) Strong Sup. 61.8 47.3

Ours + Human Semi-sup. 43.1� 2.6 21.1� 2.6

Ours Self-sup. 41.1� 2.4 16.0� 2.6
Ours + Robust Set Loss Self-sup. 45.9� 2.1 22.5� 1.3

Table 1. Quantitative comparison of our method with bottom-
up (GOP [5]), learned top-down (DeepMask [8]) segmentation
methods and optimization without robust set loss on the full test
set. We report the mean and standard deviation for our approach.
Note that our approach signi�cantly outperforms GOP, but is out-
performed by DeepMask that uses strong manual supervision of
700K+ COCO segments and 1M ImageNet images. Adding 1470
images (contains 7946 object instances) with clean segmentation
masks labeled by humans improves performance of our base sys-
tem. The robust set loss not only improves the mean performance
over normal cross-entropy loss but also decreases the variance by
handling noise across examples.

NMS (non-max suppression) into DeepMask, which signif-
icantly boosted its performance on our dataset. In order to
reduce the bias from the domain shift of transferring from
web images to images recorded by the robot, we further
removed very large masks that could not possibly corre-
spond to individual objects from the outputs of both meth-
ods. Even after these modi�cations, we found GOP to out-
put proposals that corresponded to other smaller parts of the
arena such as the corners. We explicitly removed these pro-
posals and dubbed this method as GOP-Tuned.

Training/Validation/Test Sets: We used 24 backgrounds
for training, 6 for validation and 10 for testing. We used
36 different objects for training, 8 for validation and 15 for
testing. The validation set consisted of 30 images (5 im-
ages per background), and the test set included 200 images
(20 images per background). We manually annotated ob-
ject masks in these images for the purpose of evaluation.
In addition, we also provide instance segmentation masks
for 1470 training images containing 7946 objects to pro-
mote research directions looking at combining small quan-
tities of high-quality annotations along with larger amounts
of potentially noisy data collected via self-supervision.

Metric: The performance of different segmentation sys-
tems is quanti�ed using the standard mean average-
precision (mAP; [53]) metric at different IoU (intersection
over union) thresholds. Intuitively, the mAP at an IoU
threshold ofth counts generated proposals with an IoU
< th with the ground truth as a false positive and penal-
izes the system for each ground truth proposal that is not
matched by a predicted proposal with IoU> th . Higher
mAP indicates better performance.
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(a) Performance vs. Interactions (b) Successes vs. Interactions (c) Precision vs. Recall

Figure 3. Quantitative evaluation of the segmentation model on the held-out test. (a) The performance of our system measured as mAP
at IoU of 0.3 steadily increases with the amount of data. After 50K iterations our system signi�cantly beats GOP tuned with domain
knowledge (i.e. GOP-Tuned; section 5). (b) The ef�cacy of experimentation performed by the robot is computed as the recall of ground
truth objects that have IoU of more than 0.3 with the group of pixels that the robot believes to be objects. The steady increase in recall
at different precision threshold shows that the robot learns to perform more ef�cient experiments with time. (c) Precision-Recall curves
re-con�rm the results.

6. Results and Evaluations

We compare the performance of our system against GOP
and DeepMask using the AP at IoU 0.3 metric on the held-
out testing set as shown in Figure 3(a). Our system signif-
icantly outperforms GOP even when it is tuned with do-
main knowledge (GOP-tuned), is superior to DeepMask
trained with strong human supervision, but is outperformed
when non-max supression (NMS) thresholds and other do-
main speci�c tunings are applied to DeepMask outputs (i.e.
DeepMask-tuned). These results are re-con�rmed by the
precision-recall curves shown in Figure 3(c). These re-
sults indicate that our approach is able to easily outperform
methods relying on hand-engineered bottom-up segmenta-
tion cues, but there is still a substantial way to go before
matching the performance of a system trained using strong
human-supervision (i.e. DeepMask). However, it is encour-
aging to see from Figure 3(a) that the performance of our
system is steadily increasing with the amount of noisy self-
supervised data collected via interactions.

Results in table 1 further reveal that adding a few images
(i.e. 1470 images containing 7946 object instances) with
clean segmentation masks during training (Ours + Human)
helps improve the performance over our base system possi-
bly due to reduction in noise in training signal. Finally, the
robust set loss signi�cantly improves performance.

While the curves in Figure 3(a) show an overall increase
in performance with increasing amounts of interaction data,
there are few intermediate downward de�ections. This is
not surprising in an active learning system because the data
distribution encountered the agent is continuously chang-
ing. In our speci�c case, when backgrounds that are sig-
ni�cantly different from the existing training backgrounds
are introduced, the existing model has potentially over-�t to
previous training backgrounds and the overall performance
of the system dips. As the agent interacts in its new envi-

Figure 4. The progression of segmentation masks produced by the
method as number of experiments conducted by the report increase
on held-out test dataset (from left to right). The number of false
positives reduce and the quality of masks improve.

ronment, it adapts its model and the performance eventually
recovers and improves beyond what it was prior to the intro-
duction of the new background. Note that passive learning
systems also encounter easy and hard examples, but because
the training is batched, in contrast to an active system these
examples are uniformly sampled throughout the course of
training and therefore such upward/downward �uctuations
in performance with increasing amount of data are almost
never seen in practice.

Qualitative Comparison Visualization of instance seg-
mentation output of various methods on the test set in Fig-
ure 5 shows that our method generalizes and can segment
novel objects on novel backgrounds. Qualitatively, our
method performs similarly to DeepMask, despite receiving
no human supervision. The performance of GOP is signif-
icantly worse due to low recall. While in most cases our
method produces a connected segmentation mask, in some
cases it produces a mask with disconnected jittered pixels
(e.g., row-4 in Figure 5). The improvement in the quality of
segmentation with agent's experience is visualized in Fig-
ure 4. Spurious segmentation of background reduces over
time and the recall of objects increases.
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Figure 5. Visualization of the object segmentation masks predicted by a bottom up segmentation method GOP with Domain Knowledge
(c; GOP tuned), a top down segmentation method trained with strong supervision using more 700K human annotated ground truth object
masks (d; DeepMask) and our method (e). The top three rows show representative examples of cases when our methods predicts good
masks and the bottom two rows illustrate the failure mode of our method. In general GOP has low recall. The performance of our method
and DeepMask is general. Our dominant failure mode is prediction of small disconnected masks (row 4).

6.1. Active Interactions v/s Passive Data Collection

An active agent continuously improves its model and
therefore not only collects more data, but also higher quality
data with time. This suggests that an active agent might re-
quire fewer data points than a passive agent for learning. In
case of object segmentation, higher quality of data collected
by an agent would be re�ected by generation of object hy-
pothesis that have higher recalls at lower false positive rates.
We tested if the quality of data generated by active agent im-
proves over time by computing the recall of the ground truth
objects using object hypothesis generated by our agent in
novelenvironments at different precision thresholds. Fig-
ure 3(b) shows that the recall increases over time indicat-
ing that our agent learns to perform better experiments with
time on the held-out backgrounds and objects.

6.2. Analyzing Generalization

Previous results have shown that the performance of our
system increases with amount of data. A natural question
to ask is, what kind of data would be more useful for agent
to learn a segmentation model that will generalize better. In
order to answer this question, we investigated whether our
system generalized better to new objects or to new back-
grounds. For our investigation we constructed four sets
of images: (A) training objects on training backgrounds;
(B) training objects on test backgrounds; (C) test objects
on training backgrounds; and (D) test objects on test back-
grounds. If our system generalizes to objects better than
background, then changing from training to test objects (but
keeping the training backgrounds) should lead to a smaller
drop in performance as compared to changing from training

8



Figure 6. Fine-grained generalization analysis of our model. The
y-axis denotes the drop in performance (i.e., lower the better) due
to the change scenarios speci�ed on the x-axis. When the perfor-
mance is measured at IoU 0.3, the generalization of our model is
better to novel objects as compared to novel backgrounds. How-
ever, when the quality of masks is more heavily penalized (i.e.
IoU 0.5) the generalization is better to backgrounds as compared
to novel objects.

to test backgrounds (but keeping the training objects).
When mAP is computed at IoU threshold of 0.3, we �nd

this indeed to be the case. However, when mAP is com-
puted at a threshold of 0.5 we �nd the reverse trend to hold
true. These results suggest that if the quality of mask is not
critical (i.e. IoU of 0.3 is suf�cient), using larger number
of backgrounds is likely to result in better generalization.
Alternatively, in use cases where the mask quality is criti-
cal, (i.e. IoU of 0.5) using a larger set of objects is likely to
result in better generalization.

6.3. Using Segmentation for Downstream Tasks

Until now, we have shown results on object segmenta-
tion. Next we evaluated if the segmentation returned by our
system could be used for downstream tasks by perception
or control systems. Towards this end we evaluated perfor-
mance on the task rearranging objects kept on a table into a
desired con�guration.

6.3.1 Object Rearrangement

We tasked the system to rearrange the objects in its current
visual observation into the con�guration of objects show in
a target image. We did not provide any other information to
the agent. 1-3 objects were displaced between the current
observation of the agent and the target image. Our robot
is equipped with a pick and place primitive as described in
section 3. If the quality of segmentation is good, it should
be possible to match the objects between current and tar-
get image and use the pick/place primitive to displace these
objects. Since our goal in this work is not to evaluate the
matching system, we use off the shelf features extracted
from AlexNet trained for classifying Imagenet images.

Our overall pipeline looks as following: (a) obtain a list
of object segments produced by our method from current
and target image; (b) crop a tight window around the object

Figure 7. The agent was tasked to displace objects in the initial im-
age to their con�guration shown in the target image. The �nal im-
age obtained after manipulation performed by our system is shown
in the middle column. Our system made use of the object segmen-
tation learned using active interaction and a hand-designed con-
troller described in section 6.3.1 to perform this task. The majority
of failures in our system were due to failures in feature matching
or object grasping.

segments from the original image and pass it into AlexNet
to compute feature representation per segment; (c) match
the segments between current and target image to determine
to what locations the objects in current should be moved to;
(d) use the pick/place primitive to move the match objects
one by one until the matched objects are within 15 pixels of
each other. The robot is allowed a maximum of ten inter-
actions. Qualitative results depicting the performance our
system at the rearrangement task are shown in Figure 7.
While our system is successful sometimes, it fails at many
occasions. However most of these failures are a result of
failures in feature matching or object grasping. Our sys-
tem outperforms the inverse model method of [42] for re-
arranging objects that doesnot make use of explicit instance
segmentation.

7. Discussion

In this work, we presented a method for using active self-
supervision to reorganize visual inputs into object instances.
The performance of our system is likely to bene�t from ob-
taining better pseudo ground truth masks by the use of better
grasping techniques, use of other interaction primitives and
joint learning of perceptual and control systems where the
interaction mechanism also improves with time.
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To build general purpose sensorimotor learning systems,
it is critical to �nd ways to transfer knowledge across tasks.
While one approach is to come up with better algorithms for
transfer learning, the other is to make use of more structured
representations of sensory data than obtained using vanilla
feed-forward neural networks. This work, builds upon the
second view, in proposing a method for segmenting an im-
age into objects in the hope that object-centric representa-
tions might be an important aspect of future visuo-motor
control systems. Our system is only the �rst step towards
the grander goal of creating agents that can self-improve
and continuously learn about their environment.
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