
Static Analysis Techniques for
Testing Application Security

Trinity University
February 18th, 2008

Dan Cornell – dan@denimgroup.comDan Cornell dan@denimgroup.com

Agenda

• What is Application Security?
• What is Static Analysis?

– Static versus Dynamic
– Overview

• Different Approaches
• Examples of Static Analysis Tools

– FindBugs (Java)
– PMD (Java)
– FxCop (.NET)
– XSSDetect (.NET)

• Process Implications
• Questions

What is Application Security?

• Ensuring that applications behave as expected under the entire
range of possible inputs

• Really a subset of software correctness/QA – however…
• More typically focused on what an application is NOT supposed

to do rather than what it IS supposed to do

What is Static Analysis?

• Analyzing software artifacts in order to gain information about
the software

– Source code
– Binaries
– Configuration files

Anal ing soft are “at rest”• Analyzing software “at rest”
• Also called “white box testing” and “source code review”

• PLEASE NOTE: Unless otherwise discussed, Static Analysis
will refer to Static Analysis being performed by an automated
tool

Dynamic Analysis

• Examining running software to see how it behaves under
different stimuli

– Analyzing request and response patterns
– Checking remotely-detectable configuration settings

Which to Use?

• Static Analysis
– Advantages
– Disadvantages

• Dynamic Analysis
– Advantages

Di d t– Disadvantages

• Actually Making a Decision

Static Analysis Advantages

• Have access to the actual instructions the software will be
executing

– No need to guess or interpret behavior
– Full access to all of the software’s possible behaviors

Static Analysis Disadvantages

• Require access to source code or at least binary code
– Typically need access to enough software artifacts to execute a build

• Typically require proficiency running software builds
• Will not find issues related to operational deployment

environments

Dynamic Analysis Advantages

• Only requires a running system to perform a test
• No requirement to have access to source code or binary code
• No need to understand how to write software or execute builds

– Tools tend to be more “fire and forget”

• Tests a specific, operational deploymentp , p p y
– Can find infrastructure, configuration and patch errors that Static Analysis

tools will miss

Dynamic Analysis Disadvantages

• Limited scope of what can be found
– Application must be footprinted to find the test area
– That can cause areas to be missed
– You can only test what you have found

• No access to actual instructions being executed
T l i i i th li ti– Tool is exercising the application

– Pattern matching on requests and responses

Actually Making a Decision

• No access to source or binaries? Dynamic

• Not a software developer, don’t understand software builds?
Dynamic

• Performing a “pen test” or other test of an operational
environment? Dynamic

• None of the previous problems? Static

R ll t t d th j b i ht? B th (d th)• Really want to do the job right? Both (and then some…)

Actually Making a Decision

• In our experience:
• Information Security practitioners are more comfortable with

the Dynamic Analysis tools
– Analog to scanners such as Nessus or ISS

• Software Development practitioners are comfortable with both
Static and Dynamic Analysis tools, but can get the most value
out of Static Analysis tools

– More complete view of the software
I t ti ith IDE i l– Integration with IDEs is a plus

• Understand that there are things that tools can find, and things
tools can’t find. Running a tool doesn’t make you “secure”

Overview

• General Approach
• Source or Binary?

General Approach

Source or Binary?

• Access to source typically provides more information to the
analysis tool than only having access to the binaries

• Advantages of binaries:
– More commonly available
– If you dynamically generate binaries based on database schema, etc

Source or Binary – C/C++

• “Vanilla” C can be reasonably easy to decompile, but…
• C++ and C compiled with compiler optimizations can be

challenging to decompile sensibly

Source or Binary – Java or .NET

• These environments are pretty easy to decompile
– “Source” recovery is typically pretty easy

• Most .NET tools actually use binaries and disassemble them
into IL

– Thus they only have to have one parser to process IL rather than one for
every NET languageevery .NET language

Different Approaches

• Increasing the scope of analysis increases the capability of the
tool to find potential errors

• As scope increases, tools must either effectively prioritize
analysis options or risk having excessive runtimes

Scope and Capability

5
Scope of Analysis versus Capability of Tool

3

4

2

3

0

1

Line Function Module Program System

Line Focus

• Like using “grep” to identify banned or suspect function calls
• This was the approach taken by early tools
• Good way to make a quick pass for potential vulnerabilities

– Good for targeting manual review

• Challenging to use on large codebasesg g g
• The more “signatures” that are included, the higher the noise to

signal ratio will be
– Just looking for specific functionsg p

Line Focus Example

• Rule: gets() is BAD

• Input:
my_str = gets();

• Result: Flag this line for review

P tt b i b t b tt th thi• Pretty basic, but better than nothing

Line Focus: C/C++

• Known “bad” APIs:
– strcpy()
– gets()
– scanf()
– sprintf()

Line Focus: Java

• SQL injection
– [Connection].createStatement()

• XSS
– <%=

• More general parameter tampering:
– [HttpServletRequest].getParameter()
– [HttpServletRequest].getParameterValue()
– [HttpServletRequest].getCookies()

[HttpServletRequest] getHeader()– [HttpServletRequest].getHeader()

Line Focus: .NET

• SQL Injection:
– SqlCommand

• XSS
– <%=

• More general parameter tampering
– Request[
– Request.Cookies[
– Request.Headers[

Two (Crappy) Scripts I Wrote

• dotnetcheck.sh and javacheck.sh
• Implement the checks I mentioned above

Function and Module Focus

• At this point the tool needs to be acting as a compiler
– Parse into tokens, determine lexical structure

• This allows for much more sophisticated analysis
– State machines
– Control flow

D t fl– Data flow

Function and Module Focus
Examplep
• Rule: Memory should only be freed once

• Input:
void f()
{

ll (256)my_mem = malloc(256);
free(my_mem);
free(my_mem);

}

• Result:
– my_mem is marked as allocated
– my_mem is marked as freed
– Flag the second call to free(my_mem) as an issue

Program and System Focus

• Expanding the scope of inquiry allow tools to find more and
more subtle flaws

• Also helps avoid false positives

Dataflow and Taint Tracking

• Track dataflows through the system
– Sources and Sinks

• Attach taint flags to inputs
– Web parameters and cookies
– Data read from files
– Environment variablesEnvironment variables
– Data read from databases
– Data read from web services

• What type of taint?
– From the network
– From a configuration setting
– From a database
– And so on

• Identify “cleaning” functions

Program and System Focus
Examplep
• Rule:

– User-supplied data should never be included in a SQL query without being
l dproperly escaped

Program and System Focus
Example (continued)p ()
• Input:
public void doGet(HttpServletReqest req, HttpServlet Response resp)
{{

String user = req.getParameter(“username”);
logStuff(user, “my_page”);
// Render out HTML…

}

private logStuff(String user, String location)
{

Connection con = getConnection();
Statement stmt = con createStatement();Statement stmt = con.createStatement();
String sql

= “INSERT INTO log (user, location) VALUES (‘” + user + “’, ‘” + location + “’”
stmt.executeUpdate(sql);

}

Program and System Focus
Example (continued)p ()
• Result:

– Input from getParameter() call is marks user variable as tained (Source)
– Flow of data is traced into the logStuff() method
– sql variable is also marked as tainted when it is concatenated with

username parameter
– executeUpdate() is marked as a security issue because it received taintedexecuteUpdate() is marked as a security issue because it received tainted

data (Sink)

Examples of Static Analysis Tools

• FindBugs (Java)
• PMD (Java)
• FxCop (.NET)
• XSSDetect (.NET)

FindBugs (Java)

• Java-based static analysis tool
• LGPL-licensed
• Originally developed by Dr. Bill

Pugh from the University of
Maryland

• Intended to find correctness
issues, also identifies some
security issues

findbugs.sourceforge.net

PMD (Java)

• Java-based static analysis tool
• BSD-licensed
• Lead developers are David Dixon-

Peugh and Tom Copeland
• Intended to find correctness and

complexity issues, also finds some
security issues

pmd.sourceforge.netp g

FxCop (.NET)

• Microsoft-provided tool for .NET static analysis
• Freely available
• Enforces coding standards (variable naming, etc)
• Similar to FindBugs in its security capabilities
www gotdotnet com/Team/FxCop/www.gotdotnet.com/Team/FxCop/

XSSDetect (.NET)

• Microsoft-provided tool for .NET static analysis
• Freely available (BETA!)
• Performs data flow analysis to identify Cross Site Scripting

(XSS) defects

blogs.msdn.com/ace_team/archive/2007/10/22/xssdetect-public-beta-now-available.aspx

• Based on the Microsoft Research Phoenix framework
– For software analysis and optimization
– research.microsoft.com/phoenix/

Limitations

• Static Analysis tools are a starting point for code review. Not a
complete solution.

• Static Analysis tools (like all automated tools) do not understand
what your application is supposed to do

– Out of the box rules are for general classes of security defects
– Applications can still have issues with authorization and other trust issues
– Only cover 50% of security defects (Dr. Gary McGraw)

• False positives can be time consuming to address
• Solutions?

– Custom rules can help to add some application specific context

Process Implications

• Static Analysis tools can provide tremendous benefits
• It is easier to start a new project using a tool than to impose one

on an existing system
• I have found that using a Static Analysis tool while developing

helps to improve my coding skills
– Immediate feedback when mistakes are made
– Learn more about language and platform internals

Process Implications: Questions

• Who is going to run the tool?
• When is the tool going to be run?
• What will be done with the results?

• Until you can answer these questions you should not assumeUntil you can answer these questions, you should not assume
that a Static Analysis tool will help you improve security

Additional Resources

• Book: Secure Programming With Static Analysis (Brian Chess
and Jacob West)

• Blog: Microsoft Code Analysis and Code Metrics Team Blog
– blogs.msdn.com/fxcop/

• Website: FindBugs publications page
– findbugs.sourceforge.net/publications.html

• Various commercial vendors…

Questions

Dan Cornell
dan@denimgroup.com

(210) 572-4400

Website: www.denimgroup.com
Blog: denimgroup.typepad.com

