

Wirtschaften und Leben im geschlossenen System

Schlüsseltechnologien: Klimaneutrale Energieversorgung und Biotechnologie

Executive Summary

Der Moonshot zum »Wirtschaften und Leben im geschlossenen System« zielt darauf ab, Lösungen für extreme Herausforderungen zu entwickeln, die sich von der Raumfahrt bis hin zu globalen Krisensituationen erstrecken. Dieser Anspruch erfordert einen grundlegenden Paradigmenwechsel hin zu einer vollständigen stofflichen Kreislaufwirtschaft, die alle Aspekte der Ressourcennutzung, Produktentwicklung und -sicherheit integriert. Angesichts der jährlichen Entnahme von über 100 Millionen Tonnen Rohstoffen, die zu einer erheblichen Überschreitung planetarer Grenzen führt, ist die Implementierung der Circular Economy (CE) als nachhaltige Alternative unerlässlich.

Für rohstoffarme Regionen wie Deutschland und die EU ist es wichtig, die Abhängigkeit von externen Lieferanten von Rohstoffen zu verringern und die Resilienz der produzierenden Industrie zu stärken. Dieser Prozess erfordert nicht nur einen sicheren Zugang zu essenziellen Rohstoffen, sondern auch innovative Produktions-methoden, die mit begrenzten Wasserressourcen und einer nachhaltigen Energieversorgung auskommen und gleichzeitig die Produktsicherheit gewährleisten. Insbesondere stehen wiederverwendete Materialien im Fokus, die oft unbekannte Zusammensetzungen aufweisen, was neue Ansätze in der Sicherheitsbewertung erfordert.

Fraunhofer verfügt über die notwendigen Strukturen, Ressourcen und das Know-how, um die Trans-formation zu zirkulären Wirtschaftsmodellen aktiv voranzutreiben. Durch die bestehende enge Vernetzung von Wissenschaft, Industrie, Politik und Gesellschaft, z. B. in CIRCONOMY Hubs, wird die gemeinsame Entwicklung von Lösungen in vielen Bereichen der Gesellschaft gefördert. Diese integrierte Herangehensweise ermöglicht eine effektive Zusammenarbeit und dem raschen Austausch von Wissen zwischen den Disziplinen, was die Umsetzung innovativer Ideen enorm beschleunigt.

Um die komplexen Herausforderungen erfolgreich zu bewältigen, sind **nachhaltige Förderinstrumente** – auch über klassische Projektlaufzeiten hinaus – sowie **starke Netzwerke** erforderlich. Diese Strukturen wer-den entscheidend sein, um die Transformation zur Circular Economy in Europa und Deutschland voranzutreiben und kreative Ansätze zur Ressourcennutzung und -verwertung zu entwickeln.

Motivation für das Thema

»Wirtschaften und Leben im geschlossenen System« eröffnet Lösungsmöglichkeiten für extreme Anforderungen. Das **geschlossene System ist skalierbar**, von der Raumkapsel über ein abgeschottetes oder isoliertes Wirtschaftssystem, sei es extraterrestrisch oder im Konfliktfall, bis zum gesamten Planeten mit seinen planetaren Grenzen. Das geschlossene System erfordert eine **vollständige stoffliche Kreislaufwirtschaft** und damit einen **Paradigmenwechsel** für den Begriff »Wirtschaften«. Dies gilt insbesondere für die Bereiche Ressourcenallokation und -nutzung, Produktherstellung, Produktsicherheitsbewertung und Produktnutzung.

Geschlossene Systeme und/oder Kreisläufe sind für Resilienz und Krisenbeherrschung auf unterschiedlichen Skalen unerlässlich. Sie sind der nächste konsequente Entwicklungsschritt der Circular Economy. Über 100 Millionen Tonnen Rohstoffe werden jährlich der Umwelt entnommen – und zu ca. 93 % linear bewirtschaftet, d. h. menschlichen Materiallagern zugeführt oder als Emissionen in die Umwelt entlassen. Dieses Wirtschaftsmodell ist ökonomisch sehr erfolgreich, überschreitet jedoch die planetaren Grenzen (vgl. auch »Earth Overshoot Day«). Zum nachhaltigen Management von Ressourcen ist das Konzept des »zirkulären Wirtschaftens« (Circular Economy – CE) global zurzeit die einzige Lösung. Ziel der Circular Economy ist es, die Rohstoffentnahme aus der Umwelt so zu steuern, dass Quellen und Senken maximal

geschont und das aus dem Bevölkerungswachstum resultierende Konsum- und Wohlstandswachstum dauerhaft befriedigt werden kann. Daher ist ein Wandel des bisherigen linearen hin zu einem zirkulären Wirtschaftssystem unumgänglich. Aus diesem Grunde betrachtet Circular Economy die Produktions-, Konsum- sowie Entsorgungsphase integriert.

Bedeutung des Themas im Außenraum, externer Bedarf

Deutschland und die EU sind als rohstoffarme Regionen stark abhängig von externen Kohlenstoffquellen, was geopolitisch riskante Abhängigkeiten schafft. Der am 8. Juli 2025 veröffentlichte »Action Plan« der EU-Kommission adressiert diese Problematik durch Maßnahmen zur Stärkung der Resilienz der chemischen Industrie, darunter die Gründung einer Allianz für kritische Chemikalien und die Analyse von Lieferketten und Produktionsstandorten.

Für eine zirkuläre und ressourcenschonende Wirtschaftsweise - vergleichbar mit geschlossenen Systemen wie im Weltall sind drei sektorenübergreifende Voraussetzungen zentral:

- Zugang zu Rohstoffen und Intermediaten zur Herstellung essenzieller Chemikalien und Materialien
- Realisierung von Produktionsprozessen mit **begrenzten** Wasserressourcen und einer nachhaltigen Energieversorgung
- Produktsicherheit für Mensch, Tier und Umwelt

Die Umsetzung dieses Konzepts erfordert Technologien zur Nutzung nachhaltiger Kohlenstoffquellen sowie ein neues Verständnis von Produktsicherheit: In der Kreislaufwirtschaft stehen wiederverwendete Produkte mit oft unbekannter Zusammensetzung im Fokus, nicht mehr einzelne Ausgangsstoffe. Die klassische Risikobewertung stößt an Grenzen, da Einzelstofftests nicht ausreichen. Stattdessen braucht es neue Testverfahren auf Produktebene, die bislang weder etabliert noch validiert sind. Das vorhandene Wissen über molekulare Stoffwirkungen muss gebündelt werden, um tierversuchsfreie, human- und ökotoxikologisch relevante Testsysteme zu entwickeln. Diese sollen eine chargenweise Bewertung ermöglichen, unterstützt durch KI-gestützte Analyse von Wirkstoffdatenbanken.

Neben Kohlenstoff ist Wasser eine weitere kritische Ressource, die für Leben und industrielle Prozesse – vor allem für Reinigungsprozesse – unverzichtbar ist. Derzeit fehlen jedoch skalierbare, automatisierte und digitalisierte Lösungen für eine wasserfreie bzw. effiziente Produktion und Anlagenreinigung. Konventionelle Verfahren sind personal- und energieintensiv. Für eine zukunftsfähige Versorgung sind daher smarte, kreis-lauffähige Produktionstechnologien mit kontrolliertem, geringem Wasserbedarf erforderlich. Der Fokus liegt auf Wasserkreislaufführung, Wasserrückgewinnung und der Nutzung von Brauchwasser inkl. der dafür erforderlichen nachhaltigen Energieversorgung (Nexus).

Bedeutung des Themas für Fraunhofer

Wirtschaften und Leben in geschlossenen Systemen erfordert ein neuartiges systemisches Denken und Umsetzen von **Projekten** – vor allem, wenn Dimensionen von der Raumkapsel bis zur Volkswirtschaft adressiert werden. Fraunhofer verfügt über umfassendes Know-how, technische Infrastrukturen auf allen Skalierungsebenen (Labore, Technika) sowie eigene Technologien (TRL bis 8), um zirkuläres Wirtschaften für nahezu alle Branchen in die Praxis umzusetzen. Fraunhofer hat zugleich die Schlagkraft, seine Kapazitäten flexibel für große, systemische FuE-Vorhaben zu bündeln und zu managen. Dafür sind regionale und überregionale Strukturen etabliert und optimiert.

Wirtschaften und Leben in geschlossenen Systemen erfordert systemische Forschung für die Bereitstellung von Grundstoffen, Lebensmitteln und Arzneien sowie für sichere Produktwelten – unter Einsatz möglichst weniger, knapper und/oder kritischer Ressourcen wie Wasser, Kohlenstoff und Biomasse. Das Moonshot-Thema integriert daher auch die strategischen Forschungsfelder der Hightech-Agenda Gesundheitsforschung und Nachhaltigkeitsforschung, liefert Lösungen für die Raumfahrt und das Konfliktmanagement. Mit dem Fraunhofer-eigenen CIRCONOMY ® Hub-Ansatz legt Fraunhofer einen Vorschlag vor, um verteilte Innovationsökosysteme erfolgreich zu etablieren. CIRCONOMY® Hubs vernetzen kooperierende Akteure aus Wissenschaft, Wirtschaft, Politik, Administration und Gesellschaft. Sie bilden das Fundament für die langfristige Ver-wertung von Forschungsergebnissen und das rasche Umsetzen in Zukunftsmärkten, Förderstruktur und Sub-Themen.

Für die erfolgreiche Bearbeitung solch komplexer und systemischer Herausforderungen bedarf es eines Paradigmenwechsels im wirtschaftlichen und förderrechtlichen Sinne. So werden die von Fraunhofer vorgeschlagenen CIRCONOMY Hubs nicht als Projekte, sondern als zukunftsgestaltende Infrastrukturen verstanden, die eine »Dekade der zirkulären Transformation« begleiten. Sie stellen die Anschlussfähigkeit an europäische und globale Initiativen sicher. Dafür ist eine auf mindestens zehn Jahre angelegte Förderschiene mit einem Volumen von insgesamt 150 bis 200 Mio. € erforderlich (Systemforschungsförderung).

Zur Bündelung der Schwarmintelligenz aus allen angrenzenden Technologiebereichen unter Einbezug der »Silent Stakeholder« (NGOs, Jugend, etc.) bedarf es neutraler, technologieoffener und ergebnisfokussierter Handlungs- und Transferräume (z. B. Reallabore, Zukunftswerkstätten/Transformationszentren, Cluster und Hubs). Erst so wird die Einbeziehung von unterschiedlichen. impact-relevanten Perspektiven möglich. Die Realisierung kann durch ein Multi-Stakeholder-Governance-Modell unter Nutzung von KI-Systemen als »neutrale Moderatoren« komplexer Datenlagen sowie unter Federführung von interministeriellen Taskforces oder Zukunftsräten erfolgen. Spezifisch kann der Moonshot ein »Important Project of Common European Interest IPCEI« (z. B. derzeit in Vorbereitung im Bereich Biotechnologie und ggf. folgend für die chemische Industrie) vorbereiten, wofür nationale Unterstützung aus der Politik sehr hilfreich ist.

Partnernetzwerk

Die Europäische Union treibt mit dem »Clean Industrial Deal«, dem »Circular Economy Action Plan« sowie dem für 2026 geplanten »Circular Economy Act« gezielt Prozessinnovationen zur Circular Economy voran. Dies wird von zahlreichen Circular-Economy-Strategien auf nationaler Ebene (u. a. der Nationalen Kreislaufwirtschaftsstrategie in Deutschland NKWS) unterstützt. Dabei ist Resilienz und Ressourcenunabhängigkeit auch auf europäischer Ebene prioritär. Fraunhofer hat durch Mitwirkung in den verschiedensten Gremien, Netzwerken und strategischen Partnerschaften, wie z. B. Biobased Industries Consortium BIC, SusChem und der Processes4Planet Partnerschaft A.SPIRE die Möglichkeit, die in Deutschland entwickelten Technologien auf Europa zu skalieren. Politisch ist Fraunhofer über sein Büro in Brüssel in alle Konsultationen und Vorbereitungen eingebunden. Auf Projekt- und Gremienebene gibt es intensiven Austausch mit der Stoffregulation (UBA, BfR, ECHA, EFSA) und Beteiligung an der Richtlinienentwicklung (VDI, DIN/ISO, OECD).

Fraunhofer hat bereits 2021 in einem Projektkonsortium von 16 Fraunhofer-Instituten erarbeitet, wie souveräne Wertschöpfungszyklen und die Transformation zum zirkulären Wirtschaften mittels missionsorientierter CIRCONOMY Hubs in der Praxis umgesetzt werden. Diese Strukturen fokussieren jeweils ein spezifisches Forschungsthema der

Circular Economy (z. B. nachhaltige Chemie, industrielle Biotechnologie) und sind über eine gemeinsame Plattform miteinander vernetzt. Die Hubs schaffen und nutzen einen gemeinsamen Datenraum, der schnelles Lernen innerhalb und zwischen CIRCONOMY Hubs ermöglicht sowie die besten Lösungen vernetzt. Ein erster Hub wird auf Landesebene in Bayern zum Thema »Circular Carbon Technologies CCT« bereits gefördert, ein zweiter Hub zum Thema »Stoffkreisläufe im Bausektor« befindet sich im Aufbau. Ziel ist es, deutschlandweit eine Architektur aus missionsorientierten CIRCONOMY Hubs aufzubauen, welche direkt an die aktuell erarbeiteten Innovationsstrategien und Roadmaps auf EUund Landesebenen anschlussfähig ist und diese rasch in die Praxis umsetzt.

Warum Deutschland JETZT handeln muss

Deutschland muss jetzt handeln, um seine ökologische Stabilität, wirtschaftliche Souveränität und technologische Führungsrolle zu sichern – im europäischen und globalen Kontext. Der Moonshot bildet die Grundlage dafür. Er zielt auf die Entwicklung skalierbarer Lösungen für extreme Herausforderungen – von Raumfahrt bis Klimakrise – durch den Aufbau geschlossener, zirkulärer Systeme.

- Planetare Notwendigkeit: Über 100 Mio. Tonnen Rohstoffe werden jährlich entnommen, 93 % davon jedoch ausschließlich linear verwertet – das überschreitet planetare Grenzen (»Earth Over-shoot Day«).
- Geopolitische Relevanz: Deutschland und die EU sind rohstoffarm und es bestehen große Risiken bei Importen kritischer Ressourcen (z.B. Metalle, Kohlenstoff, Biomasse wegen der Begrenzung von nutzbaren Flächen, Wasser bei langanhaltenden Trockenzeiten) – geschlossene Systeme stärken die Resilienz.

- Technologische Disruption: Neue Produktdesigns für Wiederverwendung und Recycling, KI-gestützte Sicherheitsbewertungen für komplexe Materialströme, Wasserund energieeffiziente Produktionstechnologien, Digitalisierung durch Produktpässe, IoT und Automatisierung sind erforderlich
- Fraunhofer als Enabler: Mit CIRCONOMY® Hubs, TRL-8-Technologien und interdisziplinärer Forschung kann Fraunhofer die Transformation systemisch vorantreiben.

Warum ein disruptiver Wandel erforderlich ist

Der Moonshot steht für einen disruptiven Entwicklungssprung technologisch, wirtschaftlich und gesellschaftlich. Er fordert einen radikalen Wandel in Wirtschaft und Industrie, weg vom linearen »Take-Make-Waste«-Modell hin zu einer vollständig stofflichen Kreislaufwirtschaft. Er sichert Deutschlands Zukunftsfähigkeit und globale Führungsrolle:

- Neue Geschäftsmodelle und gesteigerte Wertschöpfung: Produkte werden für Wiederverwendung, Reparatur und Recycling entwickelt (zirkuläres Produktdesign): Von Produktion zu Nutzung, Rückführung und Service z. B. durch »Product-as-a-Service«-Modelle, regionale Stoffkreisläufe schaffen neue Wertschöpfungslogiken.
- Ressourceneffiziente Produktion: bei einer Defossilisierung der chemischen Industrie stehen nur noch drei Kohlenstoffquellen zur Verfügung: Rezyklate, Biomasse und CO₂ – Technologien für die industrielle Produktion mit diesen Stoffen existieren bisher nicht. Die Nutzung alternativer Kohlenstoff-quellen, der Einsatz von Wasser- und energiearmen Prozesse sowie die vollständige Kreislaufführung müssen zum Standard werden.

Fraunhafar	Moonshot Inn	overtion Drief
Fraunhoter	N/IOONSHOT Inni	ovation Brief

»Wirtschaften und Leben im geschlossenen System«

- Neue Sicherheitsstandards: KI-gestützte, produktbasierte Testverfahren ersetzen klassische Einzelstoffbewertungen und schaffen größere Sicherheit für Industrie und Verbraucher.
- Digitalisierung & Automatisierung: Digitale Produktpässe, IoT und KI steuern Materialflüsse, verlängern Produktlebenszyklen und reduzieren Kosten.

Über die Fraunhofer-Gesellschaft

Die Fraunhofer-Gesellschaft mit Sitz in Deutschland ist eine der führenden Organisationen für anwendungsorientierte Forschung. Im Innovationsprozess spielt sie eine zentrale Rolle – mit Forschungsschwerpunkten in zukunftsrelevanten Schlüsseltechnologien und dem Transfer von Forschungsergebnissen in die Industrie zur Stärkung unseres Wirtschaftsstandorts und zum Wohle unserer Gesellschaft. Seit ihrer Gründung als gemeinnütziger Verein im Jahr 1949 nimmt sie eine einzigartige Position im Wissenschafts- und Innovationssystem ein.

Knapp 32 000 Mitarbeitende an 75 Instituten und selbstständigen Forschungseinrichtungen in Deutschland erarbeiten das jährliche Finanzvolumen von 3,6 Mrd. €. Davon entfallen 3,1 Mrd. € auf das zentrale Geschäftsmodell von Fraunhofer, die Vertragsforschung. Im Vergleich zu anderen öffentlichen Forschungseinrichtungen bildet die Grundfinanzierung durch Bund und Länder lediglich das Fundament des jährlichen Forschungshaushalts. Sie ist die Basis für wegweisende Vorlaufforschung, die in den kommenden Jahren für Wirtschaft und Gesellschaft bedeutend wird. Das entscheidende Alleinstellungsmerkmal ist der hohe Anteil an Wirtschaftserträgen, der Garant ist für die enge Zusammenarbeit mit Wirtschaft und Industrie und die stetige Marktorientierung der Fraunhofer-Forschung: 2024 beliefen sich die Wirtschaftserträge auf 867 Mio. € des laufenden Haushalts. Ergänzt wird das Forschungsportfolio durch im Wettbewerb eingeworbene öffentliche Projektmittel, wobei eine ausgewogene Balance zwischen öffentlichen und wirtschaftlichen Erträgen angestrebt wird.

Kontakt

Herausgeber

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Hansastraße 27 c, 80686 München https://www.fraunhofer.de

Ansprechpersonen

Prof. Dr. Constantin Häfner Vorstand für Forschung und Transfer Constantin.haefner@zv.fraunhofer.de

Dr. Markus Wolperdinger Vorsitzender des Verbunds Ressourcentechnologien und Bioökonomie Markus.wolperdinger@igb.fraunhofer.de

© Fraunhofer-Gesellschaft e. V., München 2025