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Abstract

An increasing number of decisions are guided by machine learning algorithms.
But when consequential decisions are encoded in algorithms, individuals may
strategically alter their behavior to achieve desired outcomes. This paper
develops an empirical approach that adjusts decision algorithms to anticipate
manipulation. By explicitly modeling incentives to manipulate, our approach
produces decision rules that are stable under manipulation, even when the
rules are fully transparent. We stress test this approach through a large field
experiment in Kenya. When implemented, linear strategy-robust decision rules
outperform standard linear models such as LASSO.
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1 Introduction

An increasing number of important decisions are now made by machine learning
algorithms. Algorithms determine what information we see online; who is hired, fired,
and promoted; who gets a loan; and whether to grant bail and parole. In many of
these applications, an individual’s observed behavior is used as input to a decision
rule.

However, when algorithms are used to make consequential decisions, they create
incentives for people to ‘game’ the decision rule. When agents understand how their
behavior affects decisions, they may alter their behavior to achieve the outcome they
desire. Gamed decision rules can yield decisions that are arbitrarily poor or even
unsafe. This problem arises because the standard machine learning approach to
training decision rules assumes that the relationship between outcomes and behavior
will remain stable. But this assumption often fails once a decision rule is implemented
and agents have incentives to change their behavior (Lucas, 1976; Goodhart, 1975).

Economists traditionally address the problem of manipulation by modeling be-
havioral responses when designing policies, an approach that is central in canonical
settings like taxation and mechanism design (Mirrlees, 1971; Akerlof, 1978; Ramsey,
1927; Agarwal and Budish, 2021). However, this insight is not commonly applied when
training the modern decision rules that are now common in society, which typically
rely on atheoretic estimators to uncover high-dimensional correlations in data.

Instead, real-world applications of machine learning commonly use one of two
alternate approaches to deal with manipulation. The first is to restrict the decision
rule to only include features that are thought to be more stable — effectively adopting
a dogmatic prior that behaviors are either impossible to manipulate (for included
features) or arbitrarily manipulable (for excluded features). Yet in reality, people can
manipulate most behaviors at some cost, and those costs may be heterogeneous and
difficult to assess in modern contexts that can have thousands of features.

The second approach relies on secrecy and retraining. First, decision rules are not
revealed in order to make them more difficult for people to game (i.e., ‘security through
obscurity’” (NIST 2008)). However, such secrecy is at odds with the societal demand
for a ‘right to explanation’ about how algorithmic decisions are made (Goodman and

Flaxman, 2016). And even when rules are not disclosed, people may still figure out



how to game them, which can cause great harm at unanticipated times in high-stakes
settings like finance or governance. Thus, secrecy is often coupled with some degree of
re-training to respond to the changing relationship between features and outcomes
(Bruckner and Scheffer, 2011). However, each training iteration typically computes
a myopic best response; as a result, the process may not converge or may lead to a
suboptimal equilibrium. The limits of this approach have become central to policy
debates about the regulation of machine learning and artificial intelligence.

This paper considers an alternate approach, which integrates an economic model
of behavior into machine learning algorithms. This approach has been explored in
computer science (Hardt et al., 2016; Perdomo et al., 2020), but the focus of prior
work is on theory. We construct an empirical model that can be estimated from data,
and use it to derive an estimator. We then — to our knowledge for the first time —
implement, deploy, and evaluate this approach in a real-world setting. Through a field
experiment in Kenya, we illustrate how machine learning models trained to anticipate
manipulation can lead to better decisions.

The paper is organized into two main parts. The first part explores how this esti-
mator can produce ‘strategy-robust’ decision rules that are stable under manipulation.
We consider a policymaker who seeks a decision rule 7(-) that produces a decision for
individual 7 based on features x;. The policymaker obtains loss equal to the square of
the difference between the decision 7(x;) and a label y;, which represents the optimal
decision from the perspective of the policymaker. Labels may be observed for a subset
of individuals in training instances but not in implementation instances when the rule
is deployed. Whereas the standard approach selects a decision rule that is optimal for
the distribution (x;, ;) observed in training, a strategy-robust approach anticipates
how individuals will adjust behavior in response to the incentives generated by a
decision rule; that is, it models x;(7(+)). Characterizing how behavior will respond to
the rule requires a structural model, which we embed within the machine learning
estimator. This leads to a ‘Stackelberg’ solution which obtains better performance by

allowing the policymaker to commit to a decision rule. While this general approach

'For example, the European Union’s General Data Protection Regulation mandates that ‘mean-
ingful information about the logic’ of automated systems be available to data subjects (European
Union, 2016). The White House’s Blueprint for an AI Bill of Rights (OSTP, 2022) calls for such
explanations as well as for risks to be anticipated and mitigated before deployment.



can be applied to arbitrary estimators, we focus primarily on linear decision rules of
the form 7m(x) = a + Bx and assume manipulation costs are quadratic in x.

The second major part of the paper shows how the framework can be applied in a
real-world setting, through a field experiment in Kenya that we designed specifically
to stress-test strategy-robust decision rules. This experiment enables us to train
strategy-robust and standard decision rules, and evaluate their performance when
implemented. Specifically, we built a smartphone app that passively collects data
on how people use their phones, and disburses rewards based on predictions formed
from the data collected. The app was designed to mimic ‘digital credit’ products that
have transformed consumer credit in the developing world (Bharadwaj and Suri, 2020;
Bjorkegren et al., 2022). Digital credit products similarly collect user data and use
machine learning algorithms to convert that data into a credit score. However, as
these systems have scaled, they increasingly face fraud resulting from manipulation,
as borrowers learn which behaviors will increase their credit limits (Bloomberg, 2015;
Crosman, 2017).

The field experiment produces several results. First, consistent with prior work
showing that mobile phone data can predict credit repayment (Bjorkegren, 2010;
Bjorkegren and Grissen, 2020) and socioeconomic status (Blumenstock et al., 2015;
Blumenstock, 2018), we find that the data collected through our smartphone app
can predict phone owners’ characteristics such as income and intelligence. Second,
in a training sample, we structurally estimate the cost parameters that determine
each x;(m(-)) in our model; that is, how behaviors would shift if a decision rule 7(-)
were implemented. We construct these estimates using a series of experiments that
randomly assign decision rules, offering financial rewards based on behaviors observed
through the app. For example, participants faced decision rules that reward them
based on frequency of outgoing calls in a given week, or the number of text messages
they receive. Average weekly payouts were similar in size to typical digital credit loans
in Kenya at the time ($4.80 in Bharadwaj and Suri (2020)). The shifts in behavior
that we estimate are intuitive: for instance, outgoing communications are less costly
to manipulate than incoming communications, and text messages, which are relatively
cheap to send, are more easily manipulated than calls. Complex behaviors (such as

the standard deviation of talk time) are harder to manipulate than simpler behaviors



(such as the average duration of talk time). We also find substantial heterogeneity in
manipulation ability; much of this heterogeneity arises from unobservables, but people
who self-identified as tech-savvy found it easier to manipulate behavior.

Third, we evaluate the trained decision rules 7(-) in an implementation phase
of the experiment where we observe only participants’ incentivized behavior. When
implemented on real decisions that affect people, strategy-robust decision rules per-
formed substantially better than LASSO decision rules, which do not account for
manipulation. We make this comparison by exposing participants to decision rules
that offered financial rewards if they used their phones like a particular type of person.
For instance, some people received a message stating, ‘Earn up to 1000 Ksh if the app
guesses that you are a high income earner, based on how you use your phone,” while
others received messages that offered rewards for acting like an ‘intelligent’ person,
and so forth. Using a variety of such decision rules, we find that classifications made
by the algorithm trained with the strategy-robust approach were more accurate on
average than classifications made with the standard approach.

Finally, we estimate the performance cost of algorithmic transparency: the loss
from disclosing the details of the decision rule. In the experiment, we experimentally
varied how much information subjects had about the decision rule 7(-). Transparency
reduced the performance of standard decision rules by 23% (s.e. 5.9 p.p.). However,
when the strategy-robust rule was transparently disclosed, the performance decline
was only 9.3% (s.e. 4.2 p.p.). Thus, switching to strategy-robust decision rules reduced
the performance cost of transparency by 59% (s.e. 18.7 p.p.).

Taken as a whole, our paper provides a framework for implementing empirical
decision rules that are robust to manipulation. We expect similar approaches will
be valuable across many domains as human and machine intelligence increasingly
interact. While it may seem obvious that predictions that account for incentives will
perform better than those that do not, if the assumptions behind strategic response
are wrong, real-world performance could be much worse. Our approach combines
experiments that measure how behavior responds to perturbations in a decision rule
with a structural model to anticipate the response to any rule, which is embedded in
an estimator suitable for high dimensional data. Similar approaches are likely to be

relevant in a range of applied settings — especially when stakes are high or decision



rules cannot be kept secret, in new implementations where there is limited evidence of

historical manipulation, and when updating decision rules is costly or slow.

1.1 Connection to Literature

The conceptual problem of manipulation is not new. Goodhart (1975), in what has
since been referred to as ‘Goodhart’s Law’, noted that once a measure becomes a
target, it ceases to be a good measure. Lucas (1976) observed that historical patterns
can deviate when economic policy changes. Empirically, agents attempt to game
decision rules in a wide range of settings, including New York high school exams (Dee
et al., 2019), pollution monitoring in China (Greenstone et al., 2019), fish vendors in
Chile (Gonzalez-Lira and Mobarak, 2019), and census questions in Indonesia (Banerjee
et al., 2018). Economics has a long tradition of developing canonical models for specific
settings to anticipate behavioral responses, for example, when setting taxes (Ramsey,
1927; Mirrlees, 1971; Akerlof, 1978), or in market design algorithms (e.g. Agarwal and
Budish, 2021).

However, an increasingly important setting falls outside these canonical models.
Across society, many consequential decisions are now automated using behavioral ‘big
data.” These empirical decision rules are often trained atheoretically, based on corre-
lations in high-dimensional data (Breiman, 2001). Many practical implementations
assume that the behavior observed in training will remain fixed. Yet manipulation is
pervasive; for instance, companies spend many millions of dollars each year manipu-
lating their websites in order to be ranked higher by search engine algorithms (Borrell
Associates, 2016). To address manipulation, most systems periodically retrain decision
rules, treating it as a generic covariate shift (cf. Sayed-Mouchaweh and Lughofer,
2012). These approaches are typically agnostic about the forces that lead to shifts,
and learn by making mistakes. By contrast, we focus on shifts arising from strategic
behavior, which can be anticipated.

Theoretical literature in economics and computer science has started to bridge these
approaches, suggesting that behavioral responses can, in principle, be incorporated in
decision rules trained from data. In economics, work in mechanism design (Frankel
and Kartik, 2019, 2020; Ball, 2019; Hennessy and Goodhart, 2023) develops conceptual

foundations, and shows that in settings like ours the revelation principle can fail.



In computer science, a theoretical literature on ‘strategic classification’ considers
how behavioral responses can be modeled in classification algorithms. In early work,
Hardt et al. (2016) explores how the performance of classifiers could deteriorate in
the presence of strategic gaming; they show that, in general, designing a near-optimal
classifier is NP-hard (i.e., no known algorithm can solve the problem in polynomial
time), and provide a computationally efficient algorithm for learning classifiers with
certain types of cost functions. This built on prior work by Bruckner and Scheffer
(2011), who show how to compute Stackelberg equilibria of one-shot classification
settings by embedding agents’ best responses within the loss function. A series of more
recent papers analyzes optimal decision rules and extends strategic classification theory
to related settings, including iterative environments (Dong et al., 2018), incomplete
information (Jagadeesan et al., 2021), heterogeneous agent cost functions (Hu et al.,
2019), varying degrees of opacity (Ghalme et al., 2021), and strategic rankings (Liu et
al., 2022).2

While this literature suggests that behavioral responses can be incorporated in
machine decision algorithms in theory, we are unaware of any work that estimates,
implements, and evaluates such algorithms under real manipulation. Our paper thus
makes two main contributions. First, we develop a tractable empirical model that
adjusts how decision rules are trained to anticipate manipulation and from this derive
an estimator that produces rules that are effective even when fully transparent and
manipulated. Second, to our knowledge for the first time, we design and implement a
field experiment that deploys strategy-robust empirical decision rules in a real-world

setting.

2 Theoretical Model

This section introduces the model underlying our strategy-robust adjustment. We

focus on the stylized case where the decision rule is linear and costs are quadratic,

2Also related, Perdomo et al. (2020) introduces a broader notion of ‘performative’ prediction,
formally characterizing settings where repeated risk minimization (retraining) can address more
general distribution shifts. Kleinberg et al. (2019) and Miller et al. (2020) consider incentive design
and distinguish between strategic behavior that does and does not provide utility. Hu et al. (2019)
and Miller et al. (2020) extend these costs to concerns of inequality and fairness.



which we use to derive solutions that we will test with a field experiment.?

2.1 Setting

A policymaker seeks a decision rule 7(x;) = « + 3'x; for entities 7 based on behavior
captured in a vector of features x;. The decision rule could represent, for example,
the amount of aid or credit to grant based on a person’s observed assets or digital
behavior; how much a social network will prioritize a piece of content based on its
characteristics and initial engagement; whether to interview an individual based on the
text in their resume; and so forth. For convenience, we refer to entities as individuals.

When making a decision on individual ¢, the policymaker incurs loss equal to the
square of the difference between the decision 7(x;) and the label y;, which represents
the optimal decision from the perspective of the policymaker.*

Individuals are defined by three-dimensional types (y;,x;, C;) ~ F', which have a
joint distribution that we take as given. Individuals possess some natural behavior x;,
which represents their ideal behavior in the absence of incentives. However, ¢ chooses
their observed behavior x;, which can differ from this natural level, by incurring a
manipulation cost ¢;(x;,%;), which is parameterized by C;.

Individuals obtain utility from the policy’s decision, minus any cost from manipu-

lation®
wi(m(-), %) = m(x;) — ci(xi, ;).
When manipulation costs are quadratic,

ci(xi,x;) = %(Xz - Ki>/Ci(Xi - X;)

3The setting with linear rules and quadratic costs falls within the class of ‘separable’ cost functions
explored in Hardt et al. (2016).

“That is, the total realized loss is },(y; — 7(x;))?. In the field experiment, we report the square
root of the mean loss as it has more natural units and can be compared across samples of different
sizes.

5We focus on the benchmark case where the utility from the decision coincides with the implemented
decision, which is a first approximation of many settings. See Section 5.2 for a more general
formulation.



for a matrix of costs
C11; " CK;j

C; =
Ck1i ' CKKi

that is symmetric and positive definite. This parameterization allows for heterogeneity
by behavior (indices jk) and person (index 7). Some behaviors may be harder to
manipulate than others, either by themselves (the diagonal) or in conjunction with
other behaviors (the off-diagonals). Different types of individuals may also find it
more costly to manipulate behaviors; for example, clever people or those with low

opportunity costs may face lower costs.

Behavioral response ¢ chooses optimal behavior x; to maximize utility:

x; (a, B) = arg max [a + B'x; — ci(xi,x,)] = x,+C; ' 8. (1)

Since the optimal behavior does not depend on «, we write x}(3), omitting « for
convenience. When the decision does not depend on behavior (3 = 0), i’s optimal
behavior is their natural level (x}(0) = x;). However, as 3 moves away from zero, it
creates incentives for behavior to follow: i’s behavior moves in the same direction,

down-weighted by their cost of manipulation (highlighted in blue).

2.2 Decision rules

The policymaker believes the joint distribution of labels, natural behaviors, and
manipulation costs is (y;,x;,C;) ~ F.

A strategy-robust decision rule is then given by

OZSRa IBSR = arg mlél Eg [(?/z —a— ﬁ/(&‘l‘ci_lﬂ))z] (2)

which anticipates how each individual will manipulate behavior.
In contrast, a best linear predictor (BLP, as estimated by OLS) best responds to
observed behavior, anticipating that behavior will remain the same. It results in a

decision rule



aPP, B = argmin By | (v — o — B%.)7] (3)

’

given the joint distribution (y;,x;) ~ G.

2.3 Intuition and Discussion

We provide intuition for how the method works using Monte Carlo simulations. These
simulations involve a policymaker who implements a linear decision rule (w(x;) =
B11; + P29 + a) based on two observed behaviors, x; and 5. The policymaker trains
the decision rule on unincentivized behavior, x. x; is initially more predictive of the
preferred decision than zo, but it is also more susceptible to manipulation.

We consider a diagonal cost matrix with elements cgp; = vi‘k_ltcv’ with ¢1; < c9n. We

allow for heterogeneity between people, defined by ~/*¢t

et which is independent of y; and

X, and scale the overall ease of manipulation with common factor v. The policymaker
knows the distribution of costs. Figure 1 compares the performance of three different
approaches to designing decision rules in this setting.

Panel (a) of Figure 1 illustrates the parameters selected by OLS. These parameters
do not depend on manipulation costs—either the relative levels (c11; vs. ca9;), or the
absolute scale (1/y), which decreases from left to right (as indicated in the bottom
panel). Instead, OLS maximizes predicted performance in the unincentivized sample
where for each i, (x(0),y;) = (X;, ¥:)-

An alternate approach would be to add a LASSO penalty RY4559(8) = A3, |5
to the objective when estimating the standard decision rule in equation (3). Panel
(b) shows the parameters selected by LASSO, fixing the scale of manipulation costs
(v = 1) and varying the LASSO regularization penalty (\) along the x-axis. Like OLS,
LASSO places the most weight on z, since it has the strongest relationship to y in
the unincentivized sample. As ) increases, both parameters are penalized similarly.
Since LASSO assumes that behavior will remain fixed at x, it drops x5 first. Thus,
regularization does not address the key issue that z; is more easily manipulated.

The strategy-robust approach, shown in panel (¢), is related to regularization in
that it systematically alters how features are expressed in a decision rule. However,

unlike LASSO, the strategy-robust approach adjusts the decision rule to account for



Figure 1: Common vs. Strategy-Robust Decision Rules
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(b1 > ba > 0), but is easily manipulable (c11; < c22;) and has more manipulation noise. (a) OLS
performance deteriorates when behavior can be manipulated. (b) LASSO penalization with
hyperparameter A favors x1, which will be manipulated as soon as the decision rule is implemented. (c)
Our method anticipates that x; will be manipulated, and shifts weight to x5 as behavior becomes
manipulable. Simulation parameters:
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The policymaker knows C' and ~ but only the distribution of 4"¢*, and takes B=10 draws of the distribution when

i
estimating the decision rule. N=10,000. Squared error computed on out of sample draw from same population,
incentivized by that decision rule.

how each person’s features x}(3) will be manipulated in the counterfactual state of
the world where the decision rule is implemented. We show how the solution varies
with the scale of manipulation costs (1/y). When manipulation costs are high, the
strategy-robust solution approaches OLS; as manipulation becomes easier, the solution

adjusts, in this case by penalizing z;.°

Understanding the strategy-robust adjustment

Unlike revelation mechanisms where a person’s type can be inferred from their behavior,
in our setting, individuals may be heterogeneous both in their ability to shift behavior

and other dimensions of type (like the theoretical settings of Frankel and Kartik (2019,

5The method can also exploit cost interactions, adjusting behaviors that make it easier to shift
other behaviors (akin to Ramsey (1927) taxation). See Online Appendix S3.2.
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2020) and Ball (2019)). As a result, the people with more desired behaviors may
include those with more desired types and those with higher ability to game, regardless
of type. Because the mapping may not be one-to-one, types may not be fully revealed.

The strategy-robust solution for 3 is given by the moment condition derived from

equation (2):
Ep[x; (8) -ci (o, B,x] (8)] = —E [C7 '8 & (o, B,%] (B))] (4)

given residual”

51’(@7/8’)() =Y —a— ﬁlx'

The strategy-robust estimator differs from standard estimators in two ways. First,
it anticipates that the levels of behaviors will shift in response to the choice of 3.
The left side of equation (4) is analogous to the moment condition of OLS, but
replaces observed behaviors x; with counterfactual behaviors x}(3). These behavioral
responses may be heterogeneous between individuals.® If the people who find it easier
to manipulate (low C;) have differential values of the outcome (y;), manipulation itself
serves as a signal of type (as in Spence (1973) and Nichols and Zeckhauser (1982)).
Our method tends to increase the weight on manipulable behaviors if y; is negatively
correlated with C; (and decrease if positively correlated), provided this correlation
is present in F. However, there tends to be additional, idiosyncratic heterogeneity
in manipulation ability beyond that observable to the policymaker during training.
Accounting for the resulting manipulation noise leads the method to attenuate 3
(Frankel and Kartik, 2019).

Second, the method anticipates the gradient of those behaviors: how x; would
respond if 3 were to deviate off path. The right-hand side of equation (4) departs
from orthogonality and produces a Stackelberg (subgame-perfect) equilibrium. In
contrast, standard estimators compute a one-step best response, assuming that x;

would remain fixed if 3 were to deviate.’

TAs well as moment condition E [¢; (o, 8,x} (8))] = 0, which pins down a.

8If behavior cannot be manipulated (C; — oo), our solution corresponds to OLS. If each behavior
j has the same manipulation cost for all people (¢;jx; = ¢ji), the method will expect each person to
shift behavior the same amount in response to a given decision rule 3.

9Thus, even if one trained a standard decision rule on data from a strategy-robust equilibrium
(yi, xF (BS £)), it may learn a different decision rule that escapes the equilibrium.

11



Performance

Further simulations illustrate how the strategy-robust approach can produce better
decisions when people manipulate behavior. Table 1 simulates a scenario with three
observed behaviors, with a decision rule of the form 7 (x;) = 5121; + o9 + B33 + .
Here, x; is initially more strongly related to the preferred decision than the other
two features, but is more manipulable on average (the cost matrix is diagonal, with
c11i = Y, 20 = %[y and ¢33, = 4/y). Manipulation costs are 10 times higher
for a random half of individuals (v; = 10 or 7; = 1, each with probability 0.5);
the policymaker knows this distribution but not who finds it easy to manipulate.
These parameters illustrate a case where manipulation can have a large impact on
performance.

Panel B of Table 1 illustrates the performance of two status-quo approaches to
constructing decision rules. In the first row, OLS captures the static relationship
between features and the outcome. This approach would perform well if behavior
were fixed (as indicated by the low squared loss in training data); however, once
people respond to the decision rule, the OLS rule leads to poor decisions (the loss
‘when implemented’). The next set of rows in Panel B illustrate a common status quo
approach, in which the OLS decision rule is periodically retrained. After observing

B is active), the rule is then re-trained

behavior in the first period (when the rule
to obtain B9 which places lower weight on the manipulated z;. However, once
people respond to this new rule, it also performs poorly. As this process is iterated,
the rule always appears to predict well on the training sample but makes poor
decisions when actually implemented. In this particular case, the process does not
converge; it alternates between decision rules that place high and low weight on
21.1% Thus, standard approaches can perform poorly even in stable settings with
perfect information (Perdomo et al. (2020) provides more formal discussion of this
point). In settings with noise or friction in learning, a system might unexpectedly and
catastrophically fail when the other side discovers how to exploit it.

In contrast, the strategy-robust decision rule (BSR in Panel C) adjusts the co-

efficients by penalizing the behavior x; that has more manipulation noise, shifting

10Ty some cases, this process can converge; or, oscillations can be dampened using cumulative data
from prior periods. However, this may take several iterations and the resulting equilibrium may be
inferior to the strategy-robust equilibrium (Online Appendix S3.3.1 and Section 5.1).

12



Table 1: Manipulation Can Harm Prediction (Monte Carlo)

Decision Rule Performance (squared loss)

b1 B2 B3 a On training data  When implemented

Panel A: Data Generating Process (Unmanipulated)
bPer 300 010 010  0.20 0.25 4147.95

Panel B: Status Quo Approaches

BoLs 3.00 010 010  0.20 0.25 4198.12
Tterative retraining

3oL —0.02 2.84 —2.34 0.16 1.90 1491.03
BoLs® 301 0.09 010  0.20 0.25 4214.57
BeLsM —0.02 2.84 —234  0.16 1.89 1487.82
gOLSIOOL 354 052 070 0.18 0.32 8401.06
goLs102) 930 260 216 0.8 1.57 1101.25

Panel C: Strategy-Robust Method
BF 0.29 050 —-0.01 —-0.94 7.27 6.86

Notes: Monte Carlo simulation results. Panel A shows the coefficients that relate the outcome
to natural behaviors under the data generating process (DGP), y; = b’x; + ;. Panel B
shows coefficients from OLS. For the retraining approach, the training data for ,BOLS(”) is the
manipulated data from when ﬂOLS(”fl) is assigned; ,BOLS(I) = ,BOLS. Panel C shows coefficients
estimated with the strategy-robust method. Performance is assessed on the same sample of
individuals under the training data, and when the data is manipulated.

Parameters: N=10000, actual costs are C; = %C’, v; = 10Bernoulli(0.5)  pglicymaker knows C and the

distribution of «; but not the value for each i. Policymaker averages over B=10 draws of the distribution, see

1.0 1.0 0.1 1 0 0
10 20 10 |[,c=]0 2 0 |, e N©0.25).

equation (6). girivd N | o,
0.1 1.0 1.0 0 0 4

13



weight to behaviors that are harder to manipulate (zo and x3). It anticipates how
manipulation would change under other values of 3, sacrificing performance in the
environment in which it is trained (in-sample, no manipulation) for performance in
the counterfactual implementation environment where there will be manipulation.
When individuals manipulate as modeled, the strategy-robust decision rule exceeds

the performance of the standard estimator.

3 Estimation

The previous section took as given that the policymaker had formed a belief of the
joint distribution (y;,x;, C;) ~ F. This section considers how F can be estimated to
empirically learn strategy-robust decision rules.

We estimate F in two steps in a training sample where label y; is known for
each individual. First, we implement and communicate different decision rules (3
and observe resulting behavior x}(3); this makes it possible to estimate x; and C;,
under restrictions on their dependence. Second, we use these estimates to learn the
strategy-robust decision rule 8%, which best predicts y; anticipating x; (,BS R). This
decision rule can then be deployed to a full population (an implementation sample),
including individuals without observed labels.

We extend our model of behavior to allow for panel data. When facing a decision

rule B in time period ¢, i’s empirical behavior is given by
X, (8) = x; + C; ' B + €,

which may deviate from i’s natural level (x;) due to manipulation, or an idiosyncratic

shock that rationalizes variation across time (€, with Ele;] = 0 and Elepx,] = 0).1!

3.1 Behavioral responses

The most direct approach to estimating the distribution of behavioral responses (x;
and C}) relies on assigning each individual ¢ to random decision rules 3 in a training

sample — Section 5.3 discusses non-experimental approaches to estimate behavioral

UThis arises from the utility function w;; (o, B, xi1) = a + B'xi — ¢i(xit, X;) + €,Ci(xir — X;)-
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responses. Randomization ensures that E[e;,8] = 0, and E[x,5;] = 0 for each j.
After a decision rule is communicated to 7, we can estimate parameters from observed
responses. In the linear setting, all parameters can be estimated by assigning decision
rules that are simple perturbations of a base decision rule 8,. In particular, for a
decision rule 8 = 3, + f50) that has been perturbed by amount (s along dimension k
(where 8, represents the k' unit vector), the expected vector of manipulated behavior

18

E [x;(8y + B501)] = E [x;,(8Bo)] + ﬁéci_lfsk-

with expectations conditional on x, and C;. We can thus learn how sensitive behaviors

are to incentives by observing how the average vector of behaviors changes as we vary
Bs for different k.

Heterogeneity and noise Our cost specification distinguishes between observed
heterogeneity and manipulation noise. We recover observed heterogeneity under the
assumption that C; is independent of €;; conditional on a set of variables observed
during training, z;. We use residual variation to form the policymaker’s uncertainty
about costs (which results in manipulation noise); our decision rule estimator integrates
over this distribution.
To improve small sample performance, we parameterize manipulation costs to
allow separable heterogeneity by behavior (jk) and person (i),
1
Cjki = Cjk "
i
where individual gaming ability is modeled as v; = f(w, z;) + v;. This has two compo-
nents. Observed heterogeneity is described by the function f, which is parameterized
by w.'? Manipulation noise is captured by v; ~ V, which is assumed to be mean zero
and independent of z;. This unobservable portion will be treated as i.i.d. random
effects when estimating the decision rule. Altogether, our procedure accounts for the
signaling value of manipulation only across people differing in z;.

Separability implies that the noise in element c;i; is proportional to the base costs

12 Although z; is observed for the training sample, the decision rule cannot condition on it: it is
not observed when the decision rule is implemented.
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of manipulation c;;. As a result, behaviors that are more manipulable on average will
be subject to more manipulation noise, and our method will tend to attenuate their

coeflicients in decision rules.

3.1.1 Estimation procedure

We develop three estimation procedures for different settings. Our main focus is on
the setting created in our field experiment, where we perturb decision rules relative to
a control base rule 8, = 0 (this mimics ‘greenfield’ settings that arise before a decision
rule has been implemented and where behavior is initially unmanipulated), and where
each individual ¢ is observed over multiple perturbed decision rules 3;,. The appendix
presents two alternate procedures. Appendix A1.2 extends this approach to settings
where a decision rule is already in use (a ‘brownfield’ environment); Appendix A1.3

extends to ‘one shot’ settings where each individual’s behavior is observed only once.

Natural behaviors (x;) In a greenfield setting, we first estimate x; from behaviors
observed in unincentivized periods. This estimate, X;, can be calculated as the
average of i’s observed behavior during periods with no incentives. Alternatively,
finite-sample performance may improve by modeling shocks as having both common

and individual-specific terms, €; = p, + 1,,, and then estimating the OLS regression,
Xit = X; T My + Mg, (5)
with time fixed effects, including only unincentivized periods where 3,, = 0.

Manipulation costs (C' and w) In the second step, we impose each x; (and f, if
estimated, otherwise pu, = 0), and jointly estimate C' and w using Generalized Method
of Moments (GMM) with moment conditions detailed in Appendix A1.1. Moment con-
ditions include that implemented decision rules are orthogonal to idiosyncratic behavior
shocks and manipulation noise (E[B;eir;] = 0 or E[Biunit;] = 0, and E[B;,v;] = 0, for
each incentive Sy, that i faced in period ¢ on behavior k). Additionally, manipulation
noise v; is mean zero (E[v;] = 0), and orthogonal to each heterogeneity characteristic
21 (Elzy; - v;] = 0 for each ). To reduce estimation variance (at the expense of bias),

we include a regularization term in the GMM loss function to penalize the ease of ma-
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nipulation towards zero (costs towards infinity; which penalizes the resulting decision
rules towards standard estimators). We use LASSO-style penalization with separate
hyperparameters for diagonal and off-diagonal costs (A = {Agiagonats Mof faiagonar }) -
In our application, we will regularize off-diagonal elements to zero since they are

imprecisely estimated, and set Agjqgona With cross-validation.

Manipulation noise (V) An individual’s behavior is affected by both idiosyncratic
shocks (€;) and manipulation noise (v;). After estimating the cost parameters, we
estimate the noise distribution V' in two steps. First, we compute 0; based on whether
each individual manipulates more or less than predicted during randomized incentivized
periods, using a panel average of behavior by individual (Appendix equation (9)).
Second, to reduce finite-sample sensitivity to idiosyncratic shocks, we shrink and
winsorize these averages, forming the empirical distribution V = {max(¢ - 0;,v)}s,
where v is the lowest value of 0; that would lead to a nonnegative implied gaming
ability, and ¢ is a shrinkage parameter.!* One can impose ¢ or calibrate it based on

fit in initial incentivized periods.

3.2 Decision rules

A decision rule can then be estimated to best predict y given the anticipated behaviors

x7(+), using the estimates (X, C, o, V) and the empirical equivalent of equation (2),

3

()

=3 - a- B+ )+ RO
b

~SR 3°F :
— 6
a>", B arg min B (6)

~

1
F@m)Ta, O Where

O3 ~ V are drawn randomly from the estimated distribution.”® Finally, one may

This procedure uses B draws of the cost matrix, given by Cyp =

include a regularization term, such as R{4959(3) = XA >~, |Bk|, which can improve

small-sample performance in the presence of statistical noise.

13We use the term R(I:\osts(') = |:Adiagonal Zk(ekk)z + Aoffdiagonal Zj;ék(ajk)2:| [% Zq, f(wa Zi)2]’
with ;5 representing the elements of inverse costs C -1

Y That is, v = min, (9;|¢ - 9; > — miny (f(D,z4))).

5Note that this step imposes that v; is orthogonal to x;, though that is not imposed when
estimating the objects. We use different sets of draws of v when training, and when reporting decision
rule performance.
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4 Field Experiment in Kenya

We designed a field experiment to test the performance of strategy-robust decision rules
in a real-world setting. Working with the Busara Center in Nairobi, we developed and
deployed a new smartphone application (the ‘Smart Sensing’ app) to 1,557 research
subjects.

The app was designed to mimic key features of digital credit applications, which
have become widely popular in recent years and are transforming how consumers in
developing countries access credit (Bharadwaj and Suri, 2020; Francis et al., 2017). In
a typical digital credit application, lending decisions are based on an ‘alternative credit
score’ that is constructed by applying machine learning algorithms to data on how the
loan applicant uses their phone (Bjorkegren, 2010; Bjorkegren and Grissen, 2020). At
the time of our field experiment, CGAP (2018) estimated that 27% of Kenyan adults
had an outstanding ‘digital credit’ loan. Yet, there is mounting evidence that digital
credit is a domain where manipulation is problematic. In one example, Bloomberg
covered a story where ‘a scam artist studied the loan-approval patterns for several
months, using 30 different sim cards to generate data sets and deciphering the lender’s
algorithms. He fleeced the firm of $30,000 in one day and then vanished’” (Bloomberg
Technology, Sep. 22, 2015). The potential for manipulation is also salient to everyday
customers: in a survey conducted in Kenya and Tanzania, respondents listed the
desire to obtain larger digital loans as one of the top five reasons for saving money in
their mobile money accounts (FSD Kenya, 2018).

This section describes the app and experimental design; estimates costs of manipu-
lation and derives strategy-robust decision rules using our method; and compares the
performance of these new algorithms to traditional learning algorithms. Our design

was pre-registered and pre-specified in a pre-analysis plan (AEARCTR-0004649).

4.1 Experimental design and smartphone app

We designed our experiment to create incentives similar to those of a digital credit
lending app. These apps run in the background on a smartphone, and collect data on
phone use (including data on communications, mobility, social media behavior, and

much more). Digital credit apps use this information to allocate loans to people who
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appear creditworthy (i.e., for whom 7(x;) exceeds some threshold). Since financial reg-
ulations prevented us from actually underwriting loans to research subjects, we instead
focused on analogous problems where a decisionmaker wishes to allocate resources to
individuals with specific characteristics — for instance, by paying individuals based on
a linear prediction of their income level or other characteristic (e.g., level of intelligence

or education).'

Smartphone app The Smart Sensing app had two key features. First, it ran
in the background to capture anonymized metadata on how individuals used their
phones, such as when calls or texts were placed, which apps were installed and used,
battery usage, wifi connections, and so on. In total, we captured over 1,000 behavioral
indicators (‘features’). Second, the app delivered weekly ‘challenges’ to participants,
which appeared on the user’s phone, and which provided financial rewards based on
the user’s behavior (see Figure 2). We describe these challenges in greater detail
below. Participants were paid a base amount of 100 Ksh. for uploading data, plus

any challenge earnings, directly via mobile money at the end of each week.

Study population The subject population consisted of Kenyans aged 18 years or
older who owned a smartphone and could travel to the Busara center in Nairobi.
Participants were recruited in public spaces in Nairobi, and were invited to enroll
at the Busara center. During enrollment, participants completed a baseline survey
and installed the Smart Sensing app on their phones. During the consenting process,
participants were told about the data the app would gather and were given the
opportunity to ask questions. Participants generally understood the privacy tradeoffs

involved in participation.

Weekly rhythm The study followed a weekly rhythm. Each Wednesday at noon,
each participant received a generic notification on their phone that said, ‘Opt in to
see this week’s challenge!” If the participant opted in, they were shown information

about the decision rule they faced that week (see Figure 2b). Challenges were valid

16While these prediction targets differ from creditworthiness, there are many settings where similar
characteristics are inferred by digital traces (for example, social assistance programs that target the
poor (Aiken et al., 2021), or digital advertisers who target college students).
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Figure 2: Smart Sensing App

(a) Installation Screen (b) Challenge under Transparency (c) Earnings Calculator

Smart Sensing g Smart Sensing g

D rant to install this application? It N =] 1) B

)
MAIN CHALLENGES LOGS MAIN CHALLENGES LOGS

Smart Sensing

PRIVACY

The Busara Center for Behavioral

Instructions: Adjust sliders below to see
Economics
%, readpho how much you can earn this week
- Number of texts you send
This week, earn up to 1000 Ksh.
if the Sensing app guesses that 72 ‘

you are a high-income earner
based on your calls, texts, and

app use. Number of calls you send

- @

Number of texts received
Hint: Your payment this week will be

200 Ksh., minus 4 Ksh. for every 10 55 .
texts you send, plus 6 Ksh. for every 10
calls you make, plus 6 Ksh. for every
Cancel 100 texts you receive.

Potential earnings KSh. 179

until 1pm the following Tuesday. At the conclusion of the challenge, participants had
21 hours to ensure that their data was uploaded (i.e., until 10am Wednesday). Busara
then determined how much each participant should be paid, and payments were sent
via mobile money by noon Wednesday, at which point the next week’s cycle would

begin.!”

Randomization of decision rules FEach week, each participant was randomly
assigned to one of three types of decision rules: control, simple, or complex. The
control decision rules (8, = 0), which were deployed during the first few weeks of
the experiment, did not require any action from participants; each individual who
successfully uploaded their data received the same reward irrespective of how they
used their phone in that week.'® Each simple rule made decisions based on one specific

behavior (e.g., B;; = B0k, ), and were of the form, ‘We’ll pay you §;; for each behavior

ITParticipants could attrite by not opting in to the weekly challenge or by not uploading their
data. The Busara center attempted to contact attriters via text message and phone call, following an
attrition protocol detailed in Online Appendix S1.4. Our analysis includes only participant-weeks
where the participant opted in and successfully uploaded data.

18Specifically, the subject received a challenge of the form, ‘Dear user, you do not have to do
anything for this week’s challenge. You will receive an extra Ksh 100 for accepting this challenge.’
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ki; you do’, where behavior k;; and amount [3;; were assigned randomly. Most incentive
amounts were positive but some were negative (participants were incentivized to
reduce behavior).!? For example, one simple challenge was, ‘You will receive 12 Ksh.
for every incoming call you receive this week, up to Ksh. 250.” The control and simple
decision rules were used to collect training data.

Finally, in the last part of the study, we assigned complex decision rules. These
were designed to mimic real-world implementations of machine learning, in which
people can receive a desirable benefit based on how they are classified. The complex
challenges were of the form, ‘We’ll pay you m if the Sensing App guesses you are...".
For example, Figure 2 illustrates a highlighted challenge, ‘Earn up to 1000 Ksh. if the
Sensing app guesses you are a high-income earner.” Because the underlying decision
rules were linear, payment was a smooth function even if the outcome was binary
(in which case our decision rules represent a scaled linear probability model). Our
empirical analysis presents results for this highlighted challenge as an intuitive example,
and also presents results that pool over all complex challenges to gauge representative

performance.

Predicting user characteristics from app data Using data from the ‘control’
weeks, where the app collected data on user behavior but did not provide incentives for
people to change their behavior, we assess the extent to which a user’s characteristics
can be predicted based on how they use their phone. In Table 2, we observe that phone
data can weakly predict monthly income and intelligence (above-median performance

on Raven’s matrices).?"

YEach individual’s payment was drawn from {—2rg, —7x, 7%, 27k, 475, 87 }, for scalar r;,. We scaled
the payout for each behavior so that the maximum payout (8ry) was triggered by the 90th percentile
of baseline behavior. For a small number of challenges, the maximum payout was predicted to be
quite high so we slightly reduced the highest payout. Due to budget constraints, we could not assign
simple challenges for all measurable behaviors; instead, we selected behaviors k that were predictive
of main outcomes in control weeks, or which were similar to a predictive behavior. For example, if
outgoing calls were predictive, we also include a corresponding measure based on incoming calls. See
Online Appendix S1.6.

20The relatively low predictive power (R? ~ 0.03) is likely due to the fact that we have a small
sample of relatively homogeneous users who are observed for a short time.
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Table 2: Behavior Predicts Individual Characteristics

Monthly Income Intelligence

(Above Median Ravens)
Mean Duration of Evening Calls -0.559  (3.702) 0.0001  (0.0002)
Mean Duration of Outgoing Calls -1.770  (8.965) -0.0007  (0.0004)
Calls with Non-Contacts 42.023  (14.033) Ae 0.002  (0.0006)
Outgoing Text Count Ae 10.211  (12.396) 0.0004 (0.0006)
Incoming Text Count A 3.888 (7.974) A® _0.0002 (0.0004)
Evening Text Count ° -9.029 (7.815) -0.0002  (0.0003)
Outgoing Call Count Ae 76.752 (18.133) 0.002  (0.0008)
Missed Outgoing Call Count -84.533  (31.636) A 0003 (0.0014)
Outgoing Texts on Weekdays -15.023  (15.210) -0.001  (0.0007)
Max Daily Incoming Text Count 2.901 (21.212) ° 0.003  (0.0009)
Intercept 5651.04 (430.141) 0.480 (0.019)
N (individuals) 1539 1557
R? 0.026 0.027

Notes: Each column represents a regression of the outcome characteristics (column header) on
behaviors measured through the Sensing app (rows). Observations include data collected during
the first week the participant used the sensing app. We estimate the regression model over the
subset of features which were selected as one of the top-5 predictive variables by LASSO or were
assigned in an SR model (including SR based on estimated costs or expert costs) for the focal two
outcomes, and for which we estimate costs in the experiment (Section 4.2.3); for further details on
SR models, see Section 4.3. Standard errors in parentheses.  : included in incentivized naive
LASSO decision rule, ® : included in incentivized strategy-robust (SR) decision rule.
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4.2 Behavioral responses to simple decision rules

We next characterize how behavior responded to the simple algorithms and estimate

the shape of behavioral responses, i.e., the parameters underlying each x;(3).

4.2.1 Reduced form evidence

Participants changed behavior when facing simple algorithms. We demonstrate this
using data from the ‘simple’ rules that base decisions on one specific aspect of phone
use (such as increasing the number of incoming calls). Table 3 presents regressions of
each participant’s weekly level of different behaviors (columns) on randomly assigned
incentives to change specific behaviors (rows), for a subset of the behaviors incentivized.
There are three main takeaways. First, individuals manipulate the behaviors that are
incentivized, as shown by the diagonal. A joint F-test that the diagonals all equal
zero is rejected with p < 0.001.2! Second, some behaviors are more manipulable
than others. For example, the number of texts sent was 49 times more responsive to
incentives than the number of people called during the workday. Finally, incentivizing
one behavior can affect others, as shown in the off-diagonal elements. For example,
incentivizing missed incoming calls also increased the number of texts sent (it may
be that people sent messages to ask their contacts to call them back). In theory, our
method can exploit these cross-elasticities, though in practice many are imprecisely
estimated in our data (we find 94.5% of off diagonals are not statistically significant

(p < 0.05), 3.6% are significantly positive and 1.8% are significantly negative).
4.2.2 Testing model assumptions
We use experimental variation in incentives to test two assumptions of our model.

Here we summarize these results; details are in Online Appendix S3.1.

Quadratic costs. We find that behavior is approximately linear in incentive amounts,
as would be implied by quadratic costs. However, people appear less responsive to

negative incentives.

21Evaluated using a seemingly unrelated regression (SUR) to allow for correlation across regressions.
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Table 3: Behavior Changes when Incentivized

Behavior incentivized Behavior observed (change per ¢ of incentive)
# Texts  # Missed  # Missed # People called # Calls
sent calls calls (Workdays, i.e. w non-contacts

(incoming) (outgoing) M-F, 9am-5pm) (weekends)

# Texts sent 24.51 -0.052 -0.836 -0.305 -0.022
(16.114)  (0.384) (0.515) (0.14) (0.208)
# Missed incoming calls 4.15 0.708 0.825 0.128 -0.002
(1.345)  (0.402) (0.582) (0.126) (0.152)
# Missed outgoing calls -0.213 0.324 1.187 0.22 0.502
(1.237) (0.24) (0.83) (0.194) (0.247)
# People called 2.308 0.156 0.679 0.497 0.108
(workday) (2.49) (0.265) (0.624) (0.282) (0.215)
# Calls w non-contacts -2.019 -0.056 1.234 0.015 1.233
(weekends) (2.651) (0.165) (0.718) (0.164) (0.908)
Individual Fixed Effects X X X X X
Week Fixed Effects X X X X X
N (person-weeks) 7966 7966 7966 7966 7966
R? 0.704 0.552 0.637 0.604 0.491

Notes: Standard errors in parentheses, clustered at the individual level. Bold indicates diagonal: effect
on behavior k& when behavior k is incentivized. Each column represents a separate regression over the full
set of behaviors assigned; only the first five coefficients reported here. N represents person-weeks during
which ‘simple’ (single behavior) challenges were issued. ¢ defined as one U.S. cent, which was 1 Ksh.
based on contemporaneous exchange rates.

Separable heterogeneity. We find that behaviors that are easier to manipulate
on average also have higher variance across individuals when incentivized. That is,
behaviors that are hard to manipulate tend to be hard for everyone, but behaviors that
are easy to manipulate on average tend to be differentially manipulable for different
people. This relationship is nearly proportionate, which supports the parameterization

allowing separable heterogeneity by behavior and by individual.

4.2.3 Model estimates

Having confirmed that participants manipulate behavior when facing a decision rule,

we use the simple and control challenges that were deployed during the first few
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weeks of the experiment to estimate the parameters underlying each x}(3), following
Section 3. We regularize off-diagonal elements of the manipulation cost matrix to
zero because they are otherwise imprecisely estimated in our sample; this results in a
diagonal cost matrix C. We regularize diagonal elements using Agiqgonar = 1.0, set via
cross-validation.?? We parameterize 3; = f(w, z;) +¥; = e~ +1;, allowing observable
heterogeneity to vary with self-reported tech skills z; € {0, 1}, as this characteristic
explained the most heterogeneity in preliminary analysis.??

The estimated costs of manipulation are displayed in Table 4 for the main behaviors
selected by our decision rules; the costs associated with additional behaviors are shown
in Appendix Table A1. We observe several intuitive patterns in these costs (top panel
of Table 4). For instance, outgoing communications are less costly to manipulate than
incoming communications. Text messages, which are relatively cheap to send, are
more manipulable than calls, which are relatively expensive. And simpler behaviors
(such as the number of texts sent) are more manipulable than complex behaviors (such
as the standard deviation of texts sent by day; see Appendix Table Al).

Costs are also heterogeneous across people, as shown in the bottom panel of Table
4. On average it is 9% easier for individuals who report advanced or higher tech skills
to manipulate behaviors. Including unobserved heterogeneity, the 90th percentile of

gaming ability finds it twice as easy to manipulate behavior as the 10th percentile.

4.3 Complex decision rules

The final stage of the experiment allows us to compare the implemented performance
of decision rules trained with the standard approach against those trained with the
strategy-robust approach, which anticipates manipulation. In this stage, participants
were randomly assigned into different target outcomes (y), decision rules (standard
BLASO op strategy-robust B° R), and whether the decision rule was opaque or trans-
parent to the user. Under the opaque treatment, users were told only the target

outcome and the reward (i.e., Figure 2b without the Hint). Under the transparent

22We split the training sample randomly into thirds, estimate costs in two-thirds of
the sample, penalized by a Agiagonai, and predict incentivized behavior in the held-out
third. We select the Agiagonar that yields the lowest average hold-out loss from among
{2000, 1000, 800, 600, 400, 200, 100, 50, 25, 10, 7.5, 5,2.5,1,0.5,0.1,0.05, 0.005, 0.0005, 0.00001, 0.0}.

23Prior to implementing phase 2, we estimated interaction effects between incentives and candidate
characteristics; tech skills explained the most heterogeneity in behavioral responses.
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Table 4: Estimated Manipulation Costs

Heterogeneity by Behavior (C diagonal; subset of behaviors selected by decision rules)

¢;j (¢/action?)

S« g8
882, o888
Soco—aaS3S
A e textyou send 0.03 .
A e textyou receive 0.04 .
4 e textyou send or receive in the evening (6pm-10pm) 0.06 .
4 e time you call someone 0.48 .
e second of your shortest weekend call 0.64 .
4 e each different person you text or are texted by 1.02 .
A e time you receive a call 1.11 .
e call you make that's missed 1.91 J
4 e call with someone not in your contacts 1.93 .
A text you receive on the day you receive the most texts 3.47 .
A person who texts you 6.04 .
4 e second of your average evening (6pm-10pm) call  19,761.46 .
4 e second of your average call duration 3,108,632.19 .
Heterogeneity by Person (7;)
i = e + i
Low tech skills 1.000 .%’2
High tech skills 1.087 52 l
-0 '
0 4 8

Parameters estimated using GMM. Top panel shows only behaviors used in decision rules (* :
naive LASSO, ® : strategy-robust); for all behaviors see Appendix Table Al. In cost matrix, off-
diagonal elements are regularized to zero (Ao fdiagonat — 00), diagonal elements are regularized with
Adiagonal = 1.0, set via cross validation. ¥; plot omits top 5 percent of observations.

26



treatment, users saw the coefficients of the decision rule, which revealed how much
they would be rewarded for each behavior (the hint in Figure 2b), and were given
an interactive earnings calculator (Figure 2c). Because the transparent treatment
revealed information about potential decision rules, after a person had seen a trans-
parent challenge for a given outcome, they did not later receive an opaque challenge
for the same outcome.

Importantly, there was a clear separation between training and implementation:
aside from the decision rule itself, no information collected during the first stage of the
experiment (such as responses to the baseline survey, or any other individual-specific

information) was used to determine the implemented decision.?!

4.3.1 Estimating decision rules

Once the primitives are estimated using training data, decision rules for each outcome
can be constructed. The naive decision rule B¥495¢ best predicts y; given X, —
assuming agents continue with their natural behavior. In contrast, 8°F best predicts
y; given beliefs about anticipated behavior x*(3%%), following equation (6). We include
a LASSO regularization term tuned to ensure all decision rules have at most three
features. This can improve small sample performance, and also helps ensure that
participants—who tend to have low-cost mobile phones with small screens—can more
easily view and understand the decision rule.?®

For 8°" we used simple heuristics to select the shrinkage parameter ¢ for unob-
served gaming ability V. In the initial weeks of implementation, we had no data on
performance of full decision rules and so set ¢ to be large enough that in simulations
the strategy-robust decision rule differed meaningfully from the naive one. After
several weeks had passed, we assessed the fit of the models to actual behavior as

a function of ¢; based on this we opted to keep the initial selection of ¢ (with the

240One concern is that performance assessed in our final stage may be artificially high since average
costs are estimated based on the responses of a sample that includes some of the same individuals. In
a robustness test, we exclude individual-weeks with complex challenges if that individual received a
simple challenge for any of the complex challenge’s constituent behaviors during the training period.
Results are similar; see Online Appendix Table S1, columns 3-4.

258pecifically, for each outcome, we selected the smallest penalty 23U that yielded a naive decision
rule with at most three features. When estimating the strategy-robust decision rule, we consider
decision rules representing all combinations of at most three features, each estimated using the same
A3v9T penalty selected for the naive rule.
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exception of one week in 2020 where we tried a different setting).

Differences between implemented and final models. The experimental time-
line was such that we could not pause the experiment in order to compute parameter
estimates from incoming data. Thus, the decision rules implemented in the experiment
used a few simplifications. First, when estimating costs, we estimated x; from regres-
sions including week fixed effects, but when estimating decision rules from equation (6),
we plugged in the simple average of x; during control weeks for x; (without week
fixed effects). The former may yield better small sample performance but both yield
valid estimates of x;. Second, we used preliminary estimates of the cost parameters.
Third, the decision rules assigned prior to January 21, 2020 included an error in
computing the distribution of unobserved heterogeneity where one component was
inverted; this led to a minor change in the noise distribution (see Online Appendix
S1.7.2 for details). After the experiment’s conclusion, we reestimated decision rules
using final costs (which resolve the latter two issues); we report these resulting param-
eters and predicted losses in the paper. These final costs imply a different scale for V/,
so we use a value of ¢ that produces a similar set of optimal decision rules as those
implemented in our study. Specifically, we calibrated ¢ = 10~% to minimize the L2
distance between the coefficients estimated with the final procedure and those that
were implemented, for outcomes intelligence and income.?” Small changes resulted in
a slightly different LASSO hyperparameter A3V finat 28

The deviations between the implemented and final decision rules are minor. The
cost estimates are very similar, as are the resulting decision rules; see Online Appendix
S1.7.2. In particular, we can compute the expected performance improvement of deci-

~naive

sion rule 8 as AL(B) = Le(f )-Lc(p) where Lo () represents the objective

. ' Lo(B™ ™) ~Lo (BT mat)’ _ o
used in equation (6). If 3 is expected to achieve the same loss as the optimal decision

rule, AL(B) = 100%; if it is expected to achieve loss as the naive rule (and thus is

26 At the time, we thought these were final. However, after the experiment concluded, we re-checked
the optimality conditions and found that the costs estimated during the experiment were a local
optimum.

2"Final costs use the same cost matrix penalization Adiagonat = 1 as the implemented costs.

28The updated penalization protocol yields decision rules closer to the boundary of 3 coefficients,
and we also changed the LASSO sample to coincide with that used for the SR rule (including only
individuals with nonmissing tech skills, which drops 1.5 percent of the sample). Minor changes were
also made to simplify the method.
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expected to offer no strategy-robust improvement), then AL(3) = 0. By this metric,
the median implemented rule achieves 90% of the loss improvement of the optimal

final rule.

4.3.2 Indicative results: decision rules shift behavior

Table 5 provides suggestive evidence of how decision rules affect behavior. The first
panel simply indicates the estimated naive decision rule: high-income people make
more outgoing calls, send fewer texts, and receive more texts. In the second panel,
each person was rewarded ‘if the app guesses you are a high-income earner’, we see that
if people are not told the decision rule (corresponding to the ‘Opaque challenge’), the
response is not statistically significant and often in the wrong direction on average (i.e.,
participants place fewer calls and send more texts). However, participants assigned
the transparent treatment change their behavior broadly in the direction rewarded by
the algorithm, though the response is imprecise. This pattern holds when pooling over
all complex decision rules we assigned: we find that for the opaque treatment, 38.5%
of estimated effects are in the same direction as the assigned behavior incentive and
14.0% are in the same direction and statistically significant, while 61.4% are in the
opposite direction and 21.1% are in the opposite direction and statistically significant;
but for the transparent treatment, 75.4% of point estimated effects are in the same
direction as the assigned behavior incentive and 16.7% are in the same direction and
statistically significant, and 25.6% are in the opposite direction and 3.5% are in the

opposite direction and statistically significant.

4.4 Results: Naive vs. strategy-robust decision rules

Our main empirical results, shown in Table 6, compare the performance of the naive
and strategy-robust decision rules implemented during our experiment.?? The first two
columns (under ‘Income’) show results for the challenge that rewarded participants for

using their phones like a high-income earner; the last two columns show performance

2%We note that these performance results differ in nature from typical evaluations of models
in computer science and structural modeling in that we assess performance on prospective rather
than retrospective data: our experiment implemented the decision rules, and the evaluation is thus
equivalent to assessing each decision rule on a hold-out set drawn from a different (manipulated)
distribution.
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Table 5: Agents Game Algorithms

Calls Texts Texts Calls w con-contacts  Avg call length

(outgoing)  (outgoing)  (incoming) (incoming + outgoing) (evening, seconds)

Panel A: Incentives generated by algorithm (¢/action)
BLASSO 0.625 -0.395 0.065 0 0

Panel B: Regression of x;; (column label) on treatment assignment (row label)

Opaque challenge -4.7 12.5 17.4 0.8 -4.3
(8.3) (13.4) (22.1) (3.5) (4.7)

Transparent challenge 13.7 -17.5 -6.5 0.3 -2.1
(12.9) (11.0) (18.8) (3.3) (4.4)

N (Person-weeks) 1651 1651 1651 1651 1651

Notes: Panel A reports the decision rule for the challenge, ‘Earn up to 1000 Ksh. if the app
guesses you are a high-income earner!” Panel B reports how behaviors (columns) depend on whether
participants are randomly assigned to the opaque challenge (which provides no information about
the decision rule) or the transparent challenge (which reveals the details of the decision rule). The
sample includes all people who were assigned this challenge, in the week they were assigned that
challenge as well as control weeks. Standard errors in parentheses, clustered at the individual level.

averaged across all outcomes. The decision rules and associated manipulation costs
are shown in Panel A; the relative performance of the different decision rules is shown
in Panel B. We note several results.

First, Panel A highlights differences in the decision rules. LASSO places weight on
the behaviors that were most correlated with the outcome at baseline: outgoing calls,
outgoing texts, and incoming texts. However, some of these behaviors, particularly
text messaging, are quite manipulable (as shown in the ‘Costs’ column) and thus
subject to more manipulation noise. Although adjustments made by the strategy-
robust approach can be subtle depending on how gaming ability correlates with the
outcome, here the decision rule attenuates or drops more manipulable behaviors (for
example, dropping incoming texts in favor of evening texts, which we estimate are
harder to manipulate).

We evaluate predictive performance using root mean squared error (RMSE), in
units of US dollars, in Panel B. This measures how far off the payments we gave to
people (based on the decision rule and their behavior that week) were from what we

desired to give to them (based on their fixed characteristic that was targeted). The first
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pair of rows report the prediction error that would be expected ex ante. The first row
shows that if there were no manipulation and behavior were the same as control weeks,
LASSO would be expected to perform marginally better than our strategy-robust
estimator (by $0.01 for income; $0.08 for all decision rules pooled). The second row
shows the error predicted by our model if the rule were made transparent and people
were manipulating behavior: here, the strategy-robust method is expected to perform
better (by $0.11 for income; $3.76 pooled).
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Table 6: Strategy-Robust vs. Standard Decision Rules

Pooled:
Income Costs All Weeks

3LASS0 3R Cuk grAsso 35k
Panel A: Decision Rule ¢/action ¢/action2
# Texts (outgoing) -0.395 -0.107 0.035
# Texts (incoming) 0.065 0 0.037
# Texts (6pm-10pm) 0 -0.121 0.057
# Calls (outgoing) 0.625 0.542 0.480
Intercept («) 301.071 304.622
Panel B: Prediction Error RMSE (8) RMSE ($)
Training Data: Control 3.574 (0.058) 3.583 (0.052)F 3.660 (0.018) 3.737 (0.018)*
Training Data: Predicted Transparent  3.702 (0.058)  3.591 (0.056)* 7.777 (0.212)  4.018 (0.024)*
Implemented: Opaque 3.549 (0.249)  3.525 (0.218) 3.780 (0.078)  3.710 (0.070)
Implemented: Transparent 3.675 (0.179)  3.484 (0.200) 4.641 (0.167) 4.130 (0.127)*
Average Payout ($) 3.34 3.25 3.96 3.54
N (Control Individuals) 1376 1376 1391 1391
N (Treatment Person-Weeks, Opaque) 75 75 1344 1344
N (Treatment Person-Weeks, Trans.) 90 74 1246 1298

Notes: The first three columns focus on an example challenge (income); the remaining columns pool all challenges (adding marital status,
whether self-reported tech skills are advanced, PCA of number of friends, PCA of phone activity, baseline number of texts received (self-
reported), number of texts sent in first control week, and intelligence (above-median Ravens)). Panel A reports decision rules and the
manipulation cost estimates for included behaviors. Panel B reports performance using root mean squared error (RMSE), during control weeks
(‘control’), as predicted by the model of behavior (‘predicted transparent’), or when assigned in the experiment with/without transparency
hints (‘implemented transparent/opaque’, respectively). Predicted behavior is based on final cost model estimates. Pooled columns evaluate
performance in training data by averaging over individuals and then over outcomes; if an outcome was assigned in multiple weeks, we randomly
assign each individual to one decision rule for that outcome. Opaque performance is evaluated across all individuals assigned to opaque for
that outcome in that week, regardless of which decision rule was used, since individuals were not shown the rule. In parentheses we report
bootstrapped standard errors from 50 draws of individuals with replacement. ¥ indicates the performance difference between ,BLASSO and BSR
is significant at p < 0.05. (Because the first three performance rows are evaluated on the same set of individuals between ﬁLAS 50 and /65 R
the differences are estimated relatively precisely.) Average payout indicates the average payout in the transparent treatment. SR decision rule
is estimated using preliminary costs estimates.



The next pair of rows report the prediction error we obtained when the decision
rules were implemented experimentally. These may differ from the expected prediction
error either if people respond differently than anticipated by our model, or because
of noise from week to week. Here, we find that the strategy-robust (SR) method
performs better than LASSO when participants are given full information about the
decision rule, by $0.19 (5%) for income and $0.51 (11%) across pooled outcomes. The
observed difference in RMSE between transparent naive and transparent strategy-
robust decision rules for the single income outcome is not statistically significant
(p = 0.495), but across all decision rules pooled, the observed difference in RMSE is
significant with p = 0.021. The strategy-robust method also performs slightly better
when the decision rule is opaque (by $0.02 / 0.6% for income, p = 0.096; $0.07 / 2%

pooled, p = 0.089), although this difference is imprecise.*

Performance cost of transparency This framework also makes it possible to
assess the cost of making decision rules transparent. Making the naive decision
rules transparent reduces their performance on average by 23% ($4.641 vs. $3.780;
s.e. 5.9 p.p.), as shown in the last two columns of Table 6, Panel B. However, if
alongside making the decision rule transparent one also switched to strategy-robust
rules, performance declines by only 9.3% ($4.130 vs $3.780; s.e. 4.2 p.p.). Thus, in
this context, strategy-robust rules cut the cost of transparency by 59% (s.e. 18.7 p.p.).
Our model also allows us to estimate the cost of transparency for strategy-robust
rules without implementing them, since the calculation can be done with the primitives
estimated from the first part of our experiment. Our model predicts that the cost
of making strategy-robust decision rules transparent will be $4.018 - $3.660 = 0.358
(9.8%), which is close to the implemented cost of $4.130 - $3.780 = 0.350 (9.3%).3!

Anticipating performance Online Appendix S3.5 explores how well our model

(and others) predict behavior under complex challenges. We compute the rank

30P-values computed using bootstrapped standard errors for the difference in RMSE across
treatments, measured by resampling with replacement across individuals. Opaque comparisons face
less sampling variation because individuals assigned to opaque can be used to assess either decision
rule.

31This approach does well at ranking relative performance, but is less accurate at predicting the
exact level of performance of the more manipulable naive decision rules; see Online Appendix S3.5.
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correlation between the loss a decision rule attains when implemented and the loss it
is predicted to attain by various models. Under the opaque treatment, loss is best
predicted by baseline behavior (where the policymaker assumes that behavior will
follow x*(3) = x); for the transparent treatment, loss is better anticipated by the
behavior predicted with the strategy-robust adjustment.

We also assess the importance of manipulation noise in explaining behavior under
the transparent treatment, and find an inverse U-shape relationship. Namely, when
¢ = 0, the model omits manipulation noise (73 = 0), and is only as good as baseline
behavior at predicting loss. The strategy-robust model that best predicts loss uses a
value of ¢ slightly below our final choice of ¢ = 107, When ¢ is much higher, the
model anticipates too much noise and predicts worse than assuming baseline behavior
remains fixed. In other words, much of the strategy-robust correction comes from

properly incorporating manipulation noise.

5 Discussion

5.1 Contrast to standard approaches

Standard loss functions evaluate each feature based on its correlation with the outcome
within a training dataset, as in equation (3). However, as can be seen in Figure 3,
features that appear equally predictive given a current vector of behaviors x; can
have wildly different manipulability. The figure compares, for a set of features, the
estimated manipulability (y-axis) of each feature to the highest univariate baseline
predictive power (x-axis) that feature attains for two focal outcomes: income and
intelligence (Raven’s score). Some of the most predictive features (like the average

battery level on the person’s phone) are easy to manipulate.

Contrast with the ‘intuitive’ approach An alternate, ‘intuitive’ approach would
simply exclude the most manipulable features from the decision rule, for instance
by only considering features above some y-axis threshold on Figure 3. We assess
this approach in Online Appendix S3.4 for income and intelligence. This approach
reduces the predicted manipulability of decision rules, but also removes useful features,

which in some cases decreases predicted performance. In extreme cases, decision
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Figure 3: Manipulation Costs vs. Baseline Predictive Power
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Dots indicate behaviors recorded by the Sensing app. Figure compares estimated manipulation cost
(y-axis) to the highest R? across income and intelligence (x-axis), with illustrative features labeled.

rules resulting from regularized models such as LASSO can be left with no behaviors
that are predictive enough to include in the regression. In contrast, our approach
can extract signal even from manipulable behaviors, and performs better in these

simulations.

Contrast with the iterative retraining approach A second approach, common
in industry, retrains a naive machine learning estimator iteratively. This is equivalent
to iterated best response without commitment. In the n'* iteration of applying
equation (3), the best response decision rule is FOL5M = (x(n=1)x(r=1))=1(x(=1)'g),
where x(»~1 represents the covariate matrix in the n — 1** iteration and y the vector
of outcomes. In a greenfield application, one initially observes x(© = x. But our
model suggests that when BOL5™M) ig implemented, behavior changes according to
equation (1): x™ = x + C’Z-_l,BOLS(”). Define the map

®(8) = [(x+C'B)(x+C7'B8)] " [(x+C'8)y]

Then the iteration of this process can be written, 35 = @(ﬂom(n_l)). In some
cases there may exist a fixed point 85" = ®(3F) — a Nash solution, as explored in
related work by Perdomo et al. (2020) and Frankel and Kartik (2020). However, in
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others, iteration cycles. In contrast, 3°% jumps to the solution with commitment (a
Stackelberg solution).

In simulations, the performance of an iterated best-response method approaches
the strategy-robust method after approximately 4 iterations (see Online Appendix S3.4,
which uses a LASSO estimator and the income and intelligence outcomes). However,
beyond that point, performance begins to deteriorate. When predicting income
this deterioration is small; for intelligence, performance eventually falls below the
performance obtained before any retraining.

Note that in our model, behavior responds according to true costs, but the one-
shot solution with commitment responds to a belief of the costs (in F). @ will
theoretically tend to dominate B so long as the belief is sufficiently correct. However,

as we discuss below, in many real-world settings, behavior updates with noise.

5.2 Learning

Individuals may have noisy beliefs about how decisions are made. For example, when
the parameters of the actual decision rule are o and 3, individual ¢ might believe that
the decision rule is a;, @Z ~ [?1-(04, B3). Behavior would then follow the generalization

of equation (1),
x!(a, B) = arg max [EDi(a,ﬁ) [gi (64@» +B; - Xz” — c(xi,gi)] : (7)

where g;(y) represents a utility function. Individuals thus balance the cost of manipu-
lation against their expected utility gain.

Our main utility model is linear (g;(y) = y); because it has no risk aversion,
uncertainty would not affect expected behavior. However, if individuals were risk

9%gi
oy?

manipulate and a policymaker could reduce manipulation by obfuscating the decision

averse ( < 0), a mean-preserving spread in BZ would reduce the incentive to

rule. However, this approach undermines a major goal of transparency: that people
know how they are evaluated. In some settings with uncertainty, the linear model

may reasonably approximate the distribution of beliefs and risk aversion.*?

32Individuals often have difficulty understanding the complex functional forms that arise from
machine learning (Du et al., 2019; Poursabzi-Sangdeh et al., 2021), and commonly use heuristics
when facing nonlinear functions (Liebman and Zeckhauser, 2004). To make a decision rule robust to
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5.3 Alternate methods to estimate manipulation costs

In some settings, it may be cheaper or easier to use alternative, non-experimental
approaches to estimate manipulation costs. We briefly explore an approach that elicits
costs through hypothetical questions. We conducted a survey asking 171 individuals to
predict how Kenyans would manipulate different phone behaviors when incentivized, in
the spirit of DellaVigna and Pope (2016).%3 Although respondents generally predicted
costs to be lower than what we found in the experiment, the correlation between the
two estimates is 0.30, as shown in Figure A1l. If we use hypothetical predictions of
manipulation costs to train decision rules, and then predict performance based on the
experimentally estimated model of behavior, even these heuristic estimates improve
simulated performance substantially for one focal outcome, and have an inconsequential
negative effect on the other, as shown in Table A2. See Online Appendix S2.

In some cases, it may also be possible to estimate the cost of underlying manip-
ulations from market prices and first principles. A structural model of costs would
allow an implementer to model changes in these underlying parameters, suggesting

how manipulation will change if, for example, the price of calls changed.

6 Conclusion

This paper considers the possibility that machine decisions change the world in
which they are deployed. We develop an estimable approach that builds on recent
theoretical work, which anticipates manipulation by embedding a behavioral model
of how individuals will respond within a predictive loss function. We stress test this
approach in a field experiment in Kenya, by deploying a custom smartphone app
intended to mimic the digital loan products that are now commonplace in sub-Saharan
Africa. We find that even some of the world’s poorest users of technology—who are
relatively recent adopters of smartphones and for whom the concept of an ‘algorithm’

is quite foreign (Musya and Kamau, 2018)—are savvy enough to change their behavior

to game algorithmic decision rules.

manipulation, it may be sufficient to make it robust to these heuristic responses.
33Respondents included PhDs in related fields, research assistants, Busara staff who had not worked
on the experiment, and Mechanical Turk workers in the U.S.

37



We document three advantages of the strategy-robust approach. First, strategy-
robust decision rules perform better when implemented: when individuals are given
information about the rule, strategy-robust rules outperform standard estimators
by 12% on average. Second, strategy-robust models better anticipate the relative
performance that decision rules will achieve when implemented with transparency.
Third, it is possible to estimate the ‘cost of transparency’: the loss in predictive
performance associated with moving from ‘security through obscurity’ (with a naive
decision rule) to a regime of transparency (with a strategy-robust rule). We estimate
this loss to be 9.3% in equilibrium — less than the 23% loss associated with making
the naive rule transparent.

While we focus on the simple case of linear decision rules about which subjects
have either no or full information, we envision extensions to more complex rules
and more nuanced beliefs. Combining machine learning estimators with models of
human behavior is likely to be relevant to a wide range of contexts where systems face
changing environments.

This structural approach is different from the approach to machine learning most
commonly used in practice, which relies on large amounts of data and flexible functions
that impose few assumptions about how the data are generated. A central problem
with the status quo approach is that it often performs better in the lab than when
implemented (cf. Lazer et al., 2014; Andrews et al., 2023). We study one particular
implementation issue — strategic manipulation — and show that the counterfactual
world that emerges after implementing 3 has a predictable structure: including a
variable in a decision rule tends to induce manipulation and spread in that variable,
in proportion to its costs and benefits. While the costs must be estimated, benefits
can be inferred directly, because they are a function of the estimand 3.

This structure makes it possible to predict counterfactual fit, and more efficiently
identify the decision rules that will perform well when implemented. Our structural
approach decomposes decision rules into constituent components, and gathers data
on how those components can be manipulated. From these components, the model
allows us to understand how any proposed decision rule of a given form would be
manipulated, and to compute decision rules that are optimal in equilibrium.

In this sense, our paper offers a machine learning interpretation of Lucas (1976),
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where algorithmic decisions change the context of the systems they model. In settings
like ours, B determines not just predictive performance within a given world, but also

which counterfactual world comes to exist.
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Appendices

A1l Estimation Extensions

We list moment conditions formulated in the case where shocks have been decomposed,
€t = p, + 1, and common shocks g, are absorbed with time fixed effects. They also
apply without time fixed effects, in which case one may omit p, and swap €;; for n,,.

These systems are overidentified, and we weight moments equally.

Al1l.1 Moment Conditions for Greenfield Case

Implemented decision rules are orthogonal to idiosyncratic behavior shocks and
manipulation noise (E[SB;xn:;] = 0 and E[S;,v;] = 0). For each pair of behaviors jk

(including j = k) this yields sample moment condition
XN
5 202 B [ige = 2 — g — J(w,2:) - [C7'By)] = 0 (8)
i=1 teT;

where [a];, indicates the kth element of a.

One can form an estimate of unobserved heterogeneity v; by

'ﬁ' 1 2 : z I’Lk‘t - —Zk
(2
Zte'ﬂ*treatment ‘Keval

te']rtreatment keKeval

P fw,z)|,  (9)

Bl

t.3% Unobserved

where K& is the set of behaviors to be evaluated for i in period
heterogeneity is mean zero, yielding moment condition, % > ;0 =0, and orthogonal
to each heterogeneity characteristic, yielding moment condition(s) + >-. z; - o; = 0 for

each characteristic [.

34We set Kftv“l = {k s.t. Bur # 0}, so that ¢; is evaluated on shifts in the incentivized behavior.
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A1.2 Moment Conditions for Brownfield Case

In greenfield settings where the base decision rule 3, = 0, it is possible to infer natural
behavior from baseline behavior (e.g., equation (5)), prior to estimating costs. Our
method can also be applied in brownfield settings, where a decision rule has already
been implemented and baseline behavior may already be manipulated.

In such a setting, one can jointly estimate costs and the parameters describing
baseline behavior (x and p) by appending two moment conditions based on E[n;] = 0.

For each individual ¢ and behavior k, we have

1

- T Z [k — pe — flw,20) - [C7' Byl (10)

teT;

Ly
For each time period ¢t and behavior £ we have

ot = GVEDE [T — 2y, — fw,2:) - [CT By Ji] (11)

Identification still requires observing random variation along each behavior in the

decision rule (and ensuing manipulation).?

A1.3 One-Shot Estimation

In our experiment, we observed each individual over multiple time periods, which
increased statistical power. However, our approach can also be applied if each
individual 7 is observed in only one period ¢ (for example, if loan applicants each apply
for a loan once).

In a one-shot setting, C' and w can be recovered by adjusting the brownfield
moment conditions to remove both individual and time fixed effects. This entails

replacing the moment condition in equation (8) with

N
%Zﬁitk [xijt — X — flw.z) - [Cilﬁit]j} =0,
i=1

35This inversion will be more sensitive to the specification of the model than when unincentivized
behavior can be observed directly in training.
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Equation (9) with

~ xikit - Xk‘z
U = ——— —
[C=1 Bk, #

w7zi)a

Equation (10) with

N
. 1 _
Xk =5 Z [Iz‘kt — flw,z;) - [C I/Bit]k} ’
i=1
and dropping equation (11), where natural behaviors are replaced with a term repre-
senting common behavior x of dimension K, and where k; is the behavior incentivized
for individual 4.
An estimate of each person’s natural behavior can then be obtained by undoing

any predicted manipulation:
Ty = Tiwe — F(@,20) - [C7' Byl

though with just one observation this will be more affected by idiosyncratic noise.
We demonstrate that this approach obtains similar results by mimicking the data
that would result if our experiment had observed each individual for only one period.
Because this will drastically reduce our sample size, we simulate this over multiple
replication draws. For replication draw r, for each individual ¢ we restrict the sample

Tireatment “and consider

to include only one randomly selected incentivized week t¢;,. €
the average over replications r € {1...R}. Figure A2 shows that the one-shot estimates
are similar to the full sample estimates (we report the average cxr = %ZT Crir); the
Pearson correlation coefficient between the two measures is 0.9987. The corresponding
estimate for w = }% >, wy = 0.22 (standard deviation 0.98), with 30.7% of single-draw
estimates less than or equal to the full-sample estimate of -0.083 and 69.2% of estimates

greater than the full-sample estimate.
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Figure Al: Costs Elicited from Hypothetical Questions and Costs Measured in
Experiment

1000000

100

0.01

Experimental ¢, ($/action?)

3 5 7
Survey Implied ¢ ($/action?)

Notes: Each dot represents a behavior captured by the Sensing App. Y-axis indicates the cost of

manipulating that behavior, estimated through our experiment (Table 4). X-axis indicates costs
- . . . - 1 8 .

elicited from hypothetical questions, inferred as ¢y = Nowroey 2i max(o.ogl, D) for each ¢ surveyed

(see Online Appendix S2.3).
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Figure A2: Manipulation Costs Estimated with only One Observation per Person

100000
10000 ®
1000

100

Ckk (m/actionz), mean single—draw estimate

10

0.01

01 1 10 100 1000 10000 100000
Cik (G/actionz), full estimate

Notes: Our main estimates (with multiple observations per person) are shown on the x-axis. The
average estimate obtained when each individual is observed only once is shown on the y-axis using
the one-shot moment conditions in Appendix A1.3. The standard deviation across replications is
shown as a whisker in either direction.
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Table Al: Estimated Manipulation Costs for All Behaviors

Heterogeneity by Behavior (C diagonal; all incentivized behaviors)

>
.

>
.

>
.

>
.

>
.

>
.

text you send
text you receive
text you send on a weekday
each text message you send in the evening hours (after 6pm)
text you send or receive in the evening (6pm-10pm)
time you call someone
call with a number not in your contacts during the workday (9am-5pm
second of your shortest weekend call
call with a number not in your contacts on the weekend
each different person you text or are texted by
person you text during the early morning hours (12am - 5am)
time you receive a call
each person you text in the evening (after 6pm)
person you text on the weekday that you send the most texts
call between 12am and 5am
each different person you text or are texted by on the weekend
text you send on the day that you send the most texts
person you call during the workday
call you make that's missed
call with someone not in your contacts
person you receive a text from during the evening (5pm - 10pm)
text you send on the day you send the least texts
text you receive on the day you receive the most texts
if you keep it at 100%.
person you text
outgoing call on the day with the least outgoing calls
person who texts you
person who calls you during the workday
each person you call for over 30 minutes
person you text on the workday that you text the most people
time you plug in your phone and it charges
if the number of texts you send varies a lot weekday to weekday
person you receive a text from during the early morning hours (12am - 5am)
day you use a whatsapp-related app
if the number of texts you send and receive varies a lot day to day
missed call on the day you have the least missed calls
tools-type app you use
if the number of texts you receive varies a lot weekday to weekday
5-minute—or—-more call with a non—contact
day you use the gmail app
day you use the app
if you use a whatsapp-related app.
if you use a tools-type app.
if you use any document- or report-related app.
productivity-type app you use
if you use the gmail app.
if you use a productivity-type app.
second of your average evening (6pm-10pm) call
if you use any twitter-brand app.
text you receive on the day you receive the least texts
missed call
text you receive on the evening (6pm-10pm) that you receive the least texts
if you use the app
second of your average workday call (monday—friday
if you use the twitter app at least once
call that lasts at least an hour
second of your average call duration
day you use any instagram-brand app
day that you use a productivity-type app
instagram-brand app used
social-type app you use
document or report-related app you use
times the average day-to-day variation in your texts

percentage point of your time that you spend within .5 kilometers of the busara office

9.39
28.15
35.06
35.44
92.37
112.94
194.41
217.33
426.58
431.59
519.97
594.14
1,055.35
1,194.08
1,383.08
10,349.72
17,087.82
19,761.46
20,775.27
25,618.26
26,820.04
39,063.42
111,824.80
346,246.83
370,683.79
395,022.17
3,108,632.19
7,505,847.37
8,462,705.30
28,377,875.40
61,264,134.39
75,097,239.06

1,282,497,178.36
184,130,822,787.78

¢ (¢/action?)

o o
S o 3]
£8g2 2883
2294 ER=I -]
SCS oo dd oS

Notes: Parameters estimated using GMM. In cost matrix, off diagonal elements c;; j# k regularized

to zero (Aof fdiagonal — 00), diagonal elements regularized with Agiagonar = 1.0, set via 3-fold cross

validation. 4

strategy-robust (SR) decision rule.

48

: included in incentivized naive LASSO decision rule,

: included in incentivized



6V

Table A2: SR Decision Rules Based on Survey-Estimated Costs

Costs Costs Income Intelligence (above median Ravens)

(Actual)  (From Survey) BEASSOse  gglome, - gSfismat  ghASSOpma gl o B
Panel A: Decision Rule
text_count_out 0.035 3.804 -0.499 -0.329 -0.093
text_count_incoming 0.037 5.645 0.141 0.014 0.270 0.223 0.114
text_count_evening 0.057 3.805 -0.115
call_count_out 0.480 5.4 0.657 0.591 0.501 -0.058
call_count_outgoing_missed 1.914 5.4 -0.156
calls_noncontacts 1.929 5.891 -0.547 -0.518
max_daily_texts_incoming 3.471 5.155 0.421
Intercept 296.342 305.309 303.456 489.686 483.529 487.049
\decision 759.296 759.296 759.296 1032.37 1032.37 1032.37
Panel B: Prediction Error RMSE ($) RMSE ($)
Predicted Opaque 3.572 3.577 3.584 4.972 4.982 4.973
Predicted Transparent 3.876 3.644 3.591 4.988 4.989 4.975

Notes: Panel A reports the decision rules derived from naive LASSO and our strategy-robust model, as well as strategy-robust decision rules
that use only control weeks and costs estimated from surveys. It also reports the costs associated with these behaviors. Panel B reports the
predicted performance of these decision rules, based on the experimentally estimated model of behavior. fLA55Osinat presented in this table
differs slightly from the SX4999 which was implemented. The regularization protocol was updated to select penalization closer to the boundary
of 3 coeflicients and the sample was changed to coincide with that used for the SR model (it includes only individuals with nonmissing tech skills,
dropping approximately 1.5 percent of the sample). For survey costs, we infer heterogeneity in gaming ability using variation in participant
responses (see Online Appendix S2).



	Introduction
	Connection to Literature

	Theoretical Model
	Setting
	Decision rules
	Intuition and Discussion

	Estimation
	Behavioral responses
	Estimation procedure

	Decision rules

	Field Experiment in Kenya
	Experimental design and smartphone app 
	Behavioral responses to simple decision rules
	Reduced form evidence
	Testing model assumptions
	Model estimates

	Complex decision rules
	Estimating decision rules
	Indicative results: decision rules shift behavior

	Results: Naïve vs. strategy-robust decision rules

	Discussion
	Contrast to standard approaches
	Learning
	Alternate methods to estimate manipulation costs

	Conclusion
	Estimation Extensions
	Moment Conditions for Greenfield Case
	Moment Conditions for Brownfield Case
	One-Shot Estimation


