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Abstract—Recent strides in nonlinear model predictive control
(NMPC) underscore a dependence on numerical advancements
to efficiently and accurately solve large-scale problems. Given
the substantial number of variables characterizing typical whole-
body optimal control (OC) problems —often numbering in the
thousands— exploiting the sparse structure of the numerical
problem becomes crucial to meet computational demands, typically
in the range of a few milliseconds. Addressing the linear-quadratic
regulator (LQR) problem is a fundamental building block for
computing Newton or Sequential Quadratic Programming (SQP)
steps in direct optimal control methods. This paper concentrates on
equality-constrained problems featuring implicit system dynamics
and dual regularization, a characteristic of advanced interior-
point or augmented Lagrangian solvers. Here, we introduce
a parallel algorithm for solving an LQR problem with dual
regularization. Leveraging a rewriting of the LQR recursion
through block elimination, we first enhanced the efficiency of
the serial algorithm and then subsequently generalized it to
handle parametric problems. This extension enables us to split
decision variables and solve multiple subproblems concurrently.
Our algorithm is implemented in our nonlinear numerical optimal
control library ALIGATOR

1. It showcases improved performance
over previous serial formulations and we validate its efficacy by
deploying it in the model predictive control of a real quadruped
robot.

I. INTRODUCTION

In this paper, we introduce a parallel algorithm to enhance the

efficiency of model-predictive control (MPC) solvers [49, 16].

The computational complexity of these solvers is a pivotal factor

in numerical optimal control – in particular, to allow their im-

plementation on real hardware. More specifically, we consider

linear-quadratic (LQ) problems (i.e., with quadratic cost and

linear constraints), which are a fundamental block of such iter-

ative solvers. LQ is the standard form of subproblems in many

direct methods derived from Newton’s method [20] such as

sequential quadratic programming (SQP) [19, 24], differential

dynamic programming (DDP), and iterative LQR [27, 49].

In particular, the classical linear-quadratic regulator (LQR) is

an LQ problem defined in terms of explicit linear dynamics and

an unconstrained objective. The most well-known method for
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solving the classical LQR is the Riccati recursion, which can be

derived by dynamic programming [4]. Yet, direct equivalence

with block-factorization methods has been drawn [51] and

recently exploited in robotics [31].

Over the past decade, proposals have been given for the

resolution of nonlinear equality-constrained problems. Most

solutions essentially extend the Riccati recursion approaches

to properly account for equality constraints, by exploiting

projection or nullspace approaches [23, 33, 50] or augmented

Lagrangian-based approaches [32, 26]. While solving the

LQR is often a bottleneck in recent efficient optimal control

solvers [21, 36, 22], most of them rely on sequential imple-

mentation without exploiting the parallelization capabilities of

modern processing units.

Several methods were previously developed for the parallel

solving of LQ problems: [18] is based on a Gauss-Seidel

modification of the Riccati backward sweep, ADMM schemes

separating costs and constraints [48] and conjugate-gradient

methods [1] (efficient on GPUs), all with intrinsic approximate

(iterative) convergence at linear rate.

On the other hand, Wright [51, 52] looked at direct methods

for solving linear-quadratic problems on parallel architectures.

(first with a tailored banded matrix LU solver [51], then [52]

with a specialized method using dynamic programming after

partitioning the problem, with an extension to active-set

methods). More recently, Nielsen and Axehill [38] subdivide

the LQR problem into subproblems with state-control linkage

constraints; this approach involves computing nullspace matri-

ces to handle infeasible subproblems. Then, [39] introduces a

variant based on parameterizing each subproblem on the next

subproblem value function’s parameters. Laine and Tomlin

[34] suggest subdivision of the LQR problem into a set of

subproblems with state linkage constraints at the endpoints;

the linkage constraints’ multipliers satisfy a global system of

equations which is solved by least-squares.

In this paper, we propose a general direct solver for LQ prob-

lems with implicit dynamics and additional equality constraints,

leveraging parameterization to formulate a parallel algorithm,

a similar idea to Nielsen and Axehill [39], Laine and Tomlin
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[34]. This novel algorithm is implemented in C++, and used

as a backend in a nonlinear trajectory optimizer which handles

both equality and inequality constraints using an augmented

Lagrangian method. Its effectiveness is demonstrated on various

robotic benchmarks and by implementing an MPC scheme on

a real quadruped robot. This paper follows up from our prior

work on augmented Lagrangian methods for numerical optimal

control with implicit dynamics and constraints [29, 28].

After recalling the equality-constrained LQR problem in

Section II, we first derive serial Riccati equations in the

proximal setting in Section III, for which we build a block-

sparse factorization in Section III-C. This formulation is

extended in Section IV to parametric LQ problems, which

we finally use in Section V to build a parallel algorithm and

discuss it with respect to the literature. The application of

our algorithm in proximal nonlinear trajectory optimization is

described in Section VI, along with performance benchmarks

and experiments in Section VIII.

Notation

In this paper, we denote, Rn×m the set of n×m real matrices,

and Sn(R) the set of n×n symmetric real matrices. We denote

Ja,bK = {a,a+1, . . . ,b} the interval of integers between two

integers a ⩽ b. We will use italic bold letters to denote tuples

of vectors zzz = (z0, . . . ,zk) of possibly varying dimensions, and

given an index set I ⊆ J0,kK, we denote by zzzI the subset

(zi)i∈I (replacing I by its intersection with J0,kK when not

contained in the former, by abuse of notation). For linear

systems Hz+g = 0, we will use the shorthand notation

[ z

H g
]

for compactness.

II. EQUALITY-CONSTRAINED LINEAR-QUADRATIC

PROBLEMS

In this section, we will recall the equality-constrained linear-

quadratic (LQ) problem, its optimality conditions, and proximal

methods to solving it.

A. Problem statement

We consider the following equality-constrained LQ problem:

min
xxx,uuu

J(xxx,uuu)
def
=

N−1

∑
t=0

ℓt(xt ,ut)+ ℓN(xN) (1a)

s.t. Atxt +Btut +Etxt+1 + ft = 0 (1b)

Ctxt +Dtut +ht = 0, t = 0, . . . ,N−1 (1c)

CNxN +hN = 0 (1d)

G0x0 +g0 = 0 (1e)

with the quadratic running and terminal cost functions

ℓt(xt ,ut) =
1

2

[
xt

ut

][
Qt St

S⊤t Rt

][
xt

ut

]
+q⊤t xt + r⊤t ut , (2a)

ℓN(xN) =
1

2
x⊤N QNxN +q⊤N xN (2b)

for a discrete dynamics along the time horizon t = 0, . . . ,N, with

state vector xt ∈ R
nx , control input ut ∈ R

nu . The parameters

of the problem are:

– dynamics matrices At ,Et ∈ R
nx×nx , Bt ∈ R

nx×nu , and ft ∈
R

nx ,

– constraint matrices Ct ∈ R
nt

c×nx , Dt ∈ R
nt

c×nu , ht ∈ R
nt

c

(nt
c ∈ N being the number of rows),

– cost matrices Qt ∈ Snx(R), Rt ∈ Snu(R), St ∈R
nx×nu , qt ∈

R
nx and rt ∈ R

nu , and

– initial constraint matrix G0 ∈ R
ng×nx and vector g0 ∈ R

ng .

In most cases, the initial constraint would be x0− x̄ = 0 (G0 =
−I, g0 = x̄ ∈ R

nx ).

Remark 1. We consider the general case of implicit dynam-

ics (1b), with the particular case of explicit dynamics obtained

by Et =−I.

Remark 2. The LQ problem (1) is not always feasible.

B. Lagrangian and KKT conditions

We introduce the following Hamiltonian function:

Ht(x,u,ν ,λ )
def
= ℓt(x,u)+λ⊤(Atx+Btu+ ft)

+ν⊤(Ctx+Dtu+ht)
(3)

for t = 0, . . . ,N−1, and terminal stage Lagrangian

LN(x,ν)
def
= ℓN(x)+ν⊤(CNx+hN)

Using this notation, the Lagrangian of Problem (1) reads

L (xxx,uuu,ννν ,λλλ )
def
= λ⊤0 (G0x0 +g0)

+
N−1

∑
t=0

Ht(xt ,ut ,νt ,λt+1)+λ⊤t+1Etxt+1 +LN(xN ,νN).
(4)

Problem (1) has linear constraints, hence linear constraint

qualifications apply and the Karush-Kuhn-Tucker (KKT) op-

timality conditions read (with, for convenience, E−1 = G0):

−E⊤t−1λt = Qtxt +Stut +A⊤t λt+1 +C⊤t νt +qt (5a)

0 = S⊤t xt +Rtut +B⊤t λt+1 +D⊤t νt + rt (5b)

0 =Ctxt +Dtut +ht (5c)

0 = Atxt +Btut +Etxt+1 + ft (5d)

for 0 ⩽ t ⩽ N−1 with terminal and initial conditions:

−E⊤N−1λN = QNxN +C⊤N νN +qN (5e)

0 =CNxN +hN (5f)

0 = G0x0 +g0. (5g)

C. Proximal regularization of the LQ problem

In this subsection, we introduce a proximal regularization

of the LQ problem (1) in its dual variables and derive the

corresponding optimality conditions. Leveraging proximal reg-

ularization in constrained optimization settings is a generic way

to tackle ill-posed problems (e.g., rank deficient constraints) in



the optimization literature [40, 6]. The saddle-point formulation

of (1) is

min
xxx,uuu

max
λλλ ,ννν

L (xxx,uuu,ννν ,λλλ ).

The corresponding dual proximal-point iteration from previous

estimates (λλλ e,νννe) of the co-state and path multipliers is:

min
xxx,uuu

max
λλλ ,ννν

L (xxx,uuu,ννν ,λλλ )−
µ

2

∥∥[λλλ ,ννν ]− [λλλ e,νννe]
∥∥2

2
, (6)

where µ > 0 is the proximal parameter. This proximal LQ

problem is known [43] to be equivalent to finding a minimizer

of the augmented Lagrangian associated with (1). We denote

by ḡ0, f̄t and h̄t the “shifted” right-hand side quantities

ḡ0
def
= g0 +µλ e

0 , f̄t
def
= ft +µλ e

t+1, h̄t
def
= ht +µνe

t . (7)

Then, the KKT conditions of the proximal LQ problem are

given by (5a), (5b) and

0 = Atxt +Btut +Etxt+1 + f̄t −µλt+1 (8a)

0 =Ctxt +Dtut + h̄t −µνt (8b)

0 =CNxN + h̄N −µνN (8c)

0 = G0x0 + ḡ0−µλ0, (8d)

This system of equations arises when trying to solve (1) through

a proximal iteration scheme, but it also arises when applying an

augmented Lagrangian method to a general nonlinear control

problem as in section VI.

A Riccati-like recursion has been proposed in [29, 28] to

solve the proximal LQ problem. Yet, it requires solving at each

stage of the recursion a larger linear system than the classical

(unconstrained, unregularized) Riccati setting.

III. RICCATI EQUATIONS FOR THE PROXIMAL LQ PROBLEM

In this section, we will present a generalization of the

Riccati recursion, initially introduced by [29], which is akin

to taking successive Schur complements. This requires solving

large symmetric linear systems at each stage of the recursion,

for which we will provide an efficient, structure-exploiting

approach in section III-C. A self-contained refresher of the

classical Riccati recursion is given in appendix A.

A. Solving the proximal LQ by block substitution

The KKT conditions can be rewritten as a block-banded

linear system of the form:




x0 u0 ν0 λ1 x1 u1 ν1 λ2 . . . λN xN νN

Q0 S0 C⊤0 A⊤0 q0

S⊤0 R0 D⊤0 B⊤0 r0

C0 D0 −µI h̄0

A0 B0 −µI E0 f̄0

E⊤0 Q1 S1 C⊤1 A⊤1 q1

S⊤1 R1 D⊤1 B⊤1 r1

C1 D1 −µI h̄1

A1 B1 −µI E1

. . . f̄1

E⊤1
. . .

...

. . . EN−1 f̄N−1

E⊤N−1 QN C⊤N qN

CN −µI h̄N




(9)

For simplicity of presentation, we will consider, in this section,

the case where N = 2.

1) Terminal stage: Starting from the lower-right block in

the unknowns (x2,ν2), we can express the terminal system in

the unknowns (x2,ν2),

[ x2 ν2

Q2 C⊤2 q2 +E⊤1 λ2

C2 −µI h̄2

]
. (10)

A Schur complement in x2 leads to ν2 =
1
µ (h̄2 +C2x2) and

the following equation:

P2x2 + p2 +E⊤1 λ2 = 0 (11)

where P2 = Q2 +
1
µ C⊤2 C2 and p2 = q2 +

1
µ C⊤2 h̄2 correspond

to the terminal cost-to-go matrix and vector in the classical

Riccati recursion.1

2) Middle blocks: Equations (9) and (11) lead to the

following system in (x1,u1,ν1,λ2,x2) (where the unknown

λ1 is a parameter):




x1 u1 ν1 λ2 x2

Q1 S1 C⊤1 A⊤1 q1 +E⊤0 λ1

S⊤1 R1 D⊤1 B⊤1 r1

C1 D1 −µI h̄1

A1 B1 −µI E1 f̄1

E⊤1 P2 p2



. (12)

As x1 is unknown, we will solve this equation parametrically.

We introduce the primal-dual feedforward (resp. feedback)

gains (k1,ζ1,ω2,a1) (resp. (K1,Z1,Ω2,M1)) for the control,

constraint multiplier, co-state and next state, so that the

parametric solution in (u1,ν1,λ2,x2) is:

u1 = k1 +K1x1, ν1 = ζ1 +Z1x1

λ2 = ω2 +Ω2x1 x2 = a1 +M1x1.
(13)

These primal-dual gains satisfy the linear system:




R1 D⊤1 B⊤1
D1 −µI

B1 −µI E1

E⊤1 P2







k1 K1

ζ1 Z1

ω2 Ω2

a1 M1


=−




r1 S⊤1
h̄1 C1

f̄1 A1

p1 0


 . (14)

Once the matrix-matrix system (14) has been solved, we

can substitute the expressions of (u1,ν1,λ2,x2) as functions of

x1 into the first line of (12), which reduces to

E⊤0 λ1 +P1x1 + p1 = 0 (15)

where we have introduced the new cost-to-go matrix and vector

for stage t = 1:

P1 = Q1 +S1K1 +C⊤1 Z1 +A⊤1 Ω2 (16a)

p1 = q1 +S1k1 +C⊤1 ζ1 +A⊤1 ω2. (16b)

1This can be seen as follows: if E1 = −I and there are no constraints,
then P2 = Q2 and p2 = q2, then (11) reduces to λ2 = Q2x2 +q2 which is the
terminal condition in the usual Riccati recursion, see appendix A.



This equation has the expected form to close out the recursion.

Indeed, the remaining system has the form




λ0 x0 u0 ν0 λ1 x1

−µI G0 ḡ0

G⊤0 Q0 S0 C⊤0 A⊤0 q0

S⊤0 R0 D⊤0 B⊤0 r0

C0 D0 −µI h̄0

A0 B0 −µI E0 f̄0

E⊤0 P1 p1




(17)

which has the same structure as the initial problem. We can

iterate the previous derivation to obtain (u0,ν0,λ1,x1) as affine

functions of x0, then a cost-to-go matrix and vector (P0, p0).
3) Initial stage: If x0 is fixed (e.g. in classical DDP

algorithms [37, 49]) then we are done. However, if x0 is

not a fixed variable and is indeed a decision variable (e.g.

in direct multiple-shooting schemes [19]) along with λ0, then

they together satisfy the symmetric system:

[ x0 λ0

P0 G⊤0 p0

G0 −µI ḡ0

]
. (18)

B. Riccati-like algorithm

The overall Algorithm 1 is finally obtained (for any N ≥ 2)

by repeating Step 2) (the middle blocks) of section III-A from

time step t = N− 1 down to t = 0, and handling the initial

stage as previously described in Step 3). Although obtained

differently, it is the same as proposed in [28].

At each stage of the recursion, the solution of system (14) can

be obtained by dense matrix decomposition (e.g. LU , LDL⊤, or

Bunch-Kaufman [9]), which carries a time complexity of order

O((nu +nc +2nx)
3). However, if appropriate assumptions are

made, a dense factorization routine can be avoided and replaced

by one which exploits the block-sparsity of (12) as we will

outline in the next section III-C.

C. Block-sparse factorization for the stage KKT system

Rather than applying a dense factorization procedure, we

propose to leverage the block-sparse structure of (12)-(14) to

build a more efficient algorithm than the one proposed in [28].

It avoids solving a system of size nu + nc + 2nx by a well-

chosen substitution using the assumption that Et is invertible

(with Et =−I when the dynamics are explicit).

This assumption can be motivated as follows: discretization

of an ODE, as we mention in section VI, can lead to implicit

discrete dynamics φt(xt ,ut ,xt+1) = 0 (this is the case with

e.g. Runge-Kutta methods and variational integrators [29]).

Provided a small enough timestep, the solution to this implicit

equation is unique: in fact there is2 a differentiable, local

inverse map F defined on a neighbourhood O of (xt ,ut) such

that φt(x,u,F(x,u)) = 0 for (x,u) ∈ O.

A possible alternative would be to assume that the “cost-to-

go” matrix P2 in (12) is nonsingular, and compute its inverse to

perform a Schur complement. The assumption can be satisfied

2This result stems from the Implicit Function Theorem.

Algorithm 1: Generalized Riccati equations for proxi-

mal, constrained LQ problem

Data: Cost and constraint matrices

Qt ,St ,Rt ,qt ,rt ,At ,Bt ,Ct ,Et ,Dt , ft ,ht

1 PN ← QN + 1
µ C⊤N CN ;

2 pN ← qN + 1
µ C⊤N h̄N ;

// Backward pass

3 for t = N−1 to t = 0 do

4 [kt ,ζt ,ωt+1,at ,Kt ,Zt ,Ωt+1,Mt ]← solve (14);

// Set cost-to-go following (16)

5 Pt ← Qt +StKt +C⊤t Zt +A⊤t Ωt+1;

6 pt ← qt +Stkt +C⊤t ζt +A⊤t ωt+1;

7 (x0,λ0)← solve (18) ; // or impose value of x0

// Forward pass

8 for t = 0 to N−1 do

9 ut ← kt +Ktxt ;

10 νt ← ζt +Ztxt ;

11 λt+1← ωt+1 +Ωt+1xt ;

12 xt+1← at +Mt ;

13 νN = 1
µ (h̄N +CNxN);

by requiring that the pure-state cost matrices Qt be definite

positive. This is a drawback for problems with e.g. semidefinite

terminal cost Hessians (for instance, when only the joint

velocities are penalized but not the joint configurations).

The mathematical derivation for the block-sparse factoriza-

tion is postponed to appendix E as its understanding is not

necessary to continue on to the next section. We present this

as a secondary contribution of this paper, which we have

implemented and evaluated in the experimental section.

Discussion

In conclusion, this section reformulated the backward

recursion for the proximal LQ problem introduced in [28]

and allowed us to suggest a more efficient alternative. More

importantly, this formulation paves the road towards our parallel

algorithm. Next section will develop a variant of algorithm 4

geared toward parametric problems, which will be the corner-

stone to design our parallel formulation.

IV. EXTENSION TO PARAMETRIC LQ PROBLEMS

In this section, we consider problems for which the La-

grangian has an additional affine term with parameter vector

θ ∈ R
nθ . Differentiable, parametric optimal control in general

has been covered in recent literature [2, 16, 41, 5]. In particular,

the case of constrained problems with proximal regularization

has been covered by Bounou et al. [5], where (12). In this

subsection, we extend the block-sparse approach we presented

in section III-C to parametric problems. We will build upon this

in the next section to derive a method for parallel resolution

of LQ problems (1).



A. Parametric Lagrangians

In this section, we consider a parametric LQ problem with

a Lagrangian of the form (without initial condition):

L (xxx,uuu,ννν ,λλλ ;θ) = L̄N(xN ,νN ;θ)

+
N−1

∑
t=0

H̄t(xt ,ut ,νt ,λt+1;θ)+λ⊤t+1Etxt+1

(19)

where each parametric Hamiltonian H̄t reads

H̄t(x,u,ν ,λ ;θ) =

Ht(x,u,ν ,λ )+θ⊤(Φ⊤t x+Ψ⊤t u+ γt)+
1
2
θ⊤Γtθ (20)

where Ht contains the non-parametric terms of the Hamiltonian,

γt ∈R
nθ and Φt ∈R

nx×nθ , Ψt ∈R
nu×nθ , Γt ∈ R

nθ×nθ . Similarly,

the parametric terminal Lagrangian reads

L̄N(x,ν ;θ) = LN(x,ν)+θ⊤(Φ⊤N x+ γN)+
1

2
θ⊤ΓNθ . (21)

This representation can stem from having additional affine

cost terms in the LQ problem. We could seek to compute

the sensitivities of either the optimal value or the optimal

primal-dual trajectory ξξξ
⋆
= (xxx⋆,uuu⋆,ννν⋆,λλλ ⋆) with respect to

these additional terms [2].

We denote by E the value function of problem (1) under

parameters θ , defined in saddle-point form by

E(x0,θ)
def
= min

xxx,uuu
max
ννν ,λλλ

L (xxx,uuu,ννν ,λλλ ;θ) (22)

Similarly, we denote by Eµ(x0,θ) the value function of the

dual proximal-regularization (6) (as in section II) for µ > 0:

Eµ(x0,θ)
def
= min

xxx,uuu
max
ννν ,λλλ

L (xxx,uuu,ννν ,λλλ ;θ)−
µ

2
∥[λλλ ,ννν ]− [λλλ e,νννe]∥

2.

(23)

B. Expression of the value function Eµ(x0,θ)

Denote ξξξ = (xxx,uuu,ννν ,λλλ ) the collection of primal-dual vari-

ables. We have the following property, derived from the Schur

complement lemma (see appendix B):

Proposition 3. Eµ is a quadratic function in (x0,θ). There

exist σ0 ∈ R
nθ , Λ0 ∈ R

nx×nθ and Σ0 ∈ R
nθ×nθ such that

Eµ(x0,θ) =
1

2

[
x0

θ

]⊤ [
P0 Λ0

Λ⊤0 Σ0

][
x0

θ

]
+ p⊤0 x0 +σ⊤0 θ . (24)

Proof: The min-maximand in (23) is a quadratic function

in (ξξξ ,θ) which is convex-concave in ξξξ . Then, we apply

the lemma in appendix B2 to (23), choosing (x0,θ) as the

parameter (z in the lemma) in the saddle-point.

Furthermore, the lemma in appendix B2 yields

σ0 = Lθ −Lθξξξ L
−1

ξξξ ξξξ
Lξξξ θ

Λ0 = Lx0θ −Lx0ξξξ L
−1

ξξξ ξξξ
Lξξξ θ

Σ0 = Lθθ −Lθξξξ L
−1

ξξξ ξξξ
Lξξξ θ ,

(25)

where the following derivatives in θ are simple:

Lθ =
N

∑
t=0

γt , Lθθ =
N

∑
t=0

Γt , Lx0θ = Φ0. (26)

Solving ξξξ
0
=−L

−1
ξξξ ξξξ

Lξξξ is handled by the variant of the Riccati

recursion introduced in the previous section III.

Denote by ∂θ ξξξ = (∂θ xxx,∂θ uuu,∂θ ννν ,∂θ λλλ ) = −L
−1

ξξξ ξξξ
Lξξξ θ the

sensitivity matrix, such that the solution of (23) is

ξξξ
⋆
(θ) = ξξξ

0
+∂θ ξξξ ·θ .

Solving for ∂θ ξξξ requires a slight alteration of our generalized

Riccati recursion.

The terminal stage is

[∂θ xN ∂θ νN

QN C⊤N ΦN +E⊤N−1∂θ λN

CN −µI 0

]
. (27)

Defining ΛN
def
= ΦN ∈ R

nx×nθ , this leads to

PN∂θ xN +ΛN +E⊤N−1∂θ λN = 0.

For non-terminal stages, we obtain a system of equations




∂θ xt ∂θ ut ∂θ νt ∂θ λt+1 ∂θ xt+1

Qt St C⊤t A⊤t Φt +E⊤t−1∂θ λt

S⊤t Rt D⊤t B⊤t Ψt

Ct Dt −µI 0

At Bt −µI Et 0

E⊤t Pt+1 Λt+1




(28)

which can be solved as before, by introducing a matrix right-

hand side variant of (14):




Kθ
t Zθ

t Ωθ
t+1 Mθ

t+1

Rt D⊤t B⊤t Ψt

Dt −µI 0

Bt −µI Et 0

E⊤t Pt+1 Λt+1


 (29)

such that



∂θ ut

∂θ νt

∂θ λt+1

∂θ xt+1


=




Kt∂θ xt +Kθ
t

Zt∂θ xt +Zθ
t

Ωt+1∂θ xt +Ωθ
t+1

Mt∂θ xt +Mθ
t


 . (30)

This leads to a reduced first line,

(Qt +StKt +C⊤t Zt)︸ ︷︷ ︸
=Pt

∂θ xt+

Φt +StK
θ
t +C⊤t Zθ

t︸ ︷︷ ︸
def
=Λt

+E⊤t−1∂θ λt = 0 (31)

where Λt ∈ R
nx×nθ , thereby closing the recursion.

The recursion continues until reaching the initial stage, which

gives the expression corresponding to ∇x0
E(x0,θ):

P0x0 +Λ0θ + p0.



Then, the sensitivity matrix ∂θ ξξξ can be extracted by a forward

pass, iterating (30) for t = 0, . . . ,N−1.

Furthermore, the remaining value function parameters

(σ0,Σ0) can be obtained by backward recursion:

Proposition 4. The vector σ0 and matrix Σ0 from (24) can be

computed as follows: let

σN = γN (32a)

ΣN = ΓN (32b)

and for t = N−1, . . . ,0,

σt = σt+1 + γt +Ψ⊤t kt +Λ⊤t+1at (32c)

Σt = Σt+1 +Γt +Ψ⊤t Kθ
t +Λ⊤t+1Mθ

t . (32d)

Algorithm 2: Generalized Riccati recursion for para-

metric problems

Data: Cost and constraint matrices and vectors

Qt ,St ,Rt ,qt ,rt ,At ,Bt ,Ct ,Dt , ft ,ht , parameters

ΦN ,γN

1 PN ← QN + 1
µ C⊤N CN ;

2 pN ← qN + 1
µ C⊤N h̄N ;

3 ΣN ← ΓN ;

4 ΛN ←ΦN ;

5 σN ← γN ;

// Backward pass

6 for t = N−1 to t = 0 do

7 [Kθ
t ,Z

θ
t ,Ω

θ
t+1,M

θ
t ]← solve (29);

8 Pt ← Qt +StKt +C⊤t Zt +A⊤t Ωt+1;

9 pt ← qt +Stkt +C⊤t ζt +A⊤t ωt+1;

10 Σt ← Γt +Σt+1 +Ψ⊤t Kθ
t +Λ⊤t+1Mθ

t ;

11 Λt ←Φt +K⊤t Ψt +M⊤t Λt+1;

12 σt ← σt+1 + γt +Ψ⊤t kt +Λ⊤t+1at ;

13 (x0,λ0,θ)← COMPUTEINITIAL();
// Forward pass

14 for t = 0 to N−1 do

15 ut ← kt +Ktxt +Kθ
t θ ;

16 νt ← ζt +Ztxt +Zθ
t θ ;

17 λt+1← ωt+1 +Ωt+1xt +Ωθ
t+1θ ;

18 xt+1← at +Mtxt +Mθ
t θ ;

19 νN = 1
µ (h̄N +CNxN);

Algorithm: Bringing this all together, we outline a

parametric generalized Riccati recursion in algorithm 2, which

provides the solution of (23). Step 12 (COMPUTEINITIAL) of

algorithm 2 is the procedure where the choice of parameter

θ ∈R
nθ , initial state x0, and initial co-state λ0 is made: θ and

x0 could be some fixed values, or all three could be decided

jointly by satisfying an equation. This choice is application-

dependent.

V. PARALLELIZATION OF THE LQ SOLVER

In this section, we present a derivation for a parallelized

variant of the algorithm introduced in section III, through the

lens of solving parametric LQ problems.

We will split problem (1) into J +1 parts (or legs) where

1⩽ J <N. Let P = {0= i0 < i1 < · · ·< iJ <N−1<N} be a set

of partitioning indices for J0,NK. We denote I j = Ji j, i j+1−1K
for j ⩽ J (where iJ+1 = N +1), such that J0,NK =

⋃J
j=0I j.

Each “leg” of the split problem, except for the terminal one,

will be parameterized by the co-state λi j
(taking the place of θ

in the previous section IV) which connects it to the next. In this

respect, our algorithm differs from [34], where the parameter

is the unknown value of the first state in the next leg.

A. 2-way split (J = 1)

For simplicity, we start by describing how an LQ problem

can be split into two parts (the case J = 1) and explain how

to merge them together.

The partition of J0,NK is I0∪I1 where I0 = J0, i1−1K and

I1 = Ji1,NK, for some 1 ⩽ i1 < N. Denote λ̃1 = λi1 the co-state

for the i1-th dynamical constraint, which will be our splitting

variable (taking the role of section IV’s parameter θ ), and

x̃1 = xi1 the corresponding state.

We proceed by splitting up the Lagrangian of the full-horizon

problem:

L (xxx,uuu,ννν ,λλλ ) = L
0(xxxI0

,uuuI0
,νννI0

,λλλI0
; λ̃1)+ λ̃⊤1 Ei1−1x̃1

+L
1(xxxI1

,uuuI1
,νννI1

,λλλI1
)

(33)

where L 0 is the parametric Lagrangian for the first leg

(running for t ∈ I0), parameterized by θ = λ̃1:

L
0(xxxI0

,uuuI0
,νννI0

,λλλI0
; λ̃1) =

i1−2

∑
t=0

Ht(xt ,ut ,νt ,λt+1)+ xt+1E⊤t λt+1

+Hi1−1(xi1−1,ui1−1,νi1−1, λ̃1), (34)

and the non-parametric Lagrangian L 1 for the second leg

(running for t ∈ I1):

L
1(xxxI1

,uuuI1
,νννI1

,λλλI1
) =

N−1

∑
t=i1

Ht(xt ,ut ,νt ,λt+1)+ xt+1E⊤t λt+1 +LN(xN ,νN). (35)

We now define their respective value functions:

E0(x0, λ̃1) = min
xxx,uuu

max
ννν ,λλλ

L
0(xxx,uuu,ννν ,λλλ ; λ̃1) (36a)

E1(x̃1) = min
xxx,uuu

max
ννν ,λλλ

L
1(xxx,uuu,ννν ,λλλ ) (36b)

where the second value function does not depend on λ̃1.

Similarly to (23), we can define their dual-regularized value

functions E0
µ and E1

µ (the former includes the − µ
2
∥λ̃1∥

2
2 term).

This allows us to write the full-horizon regularized LQ problem

as the following saddle-point (assuming fixed x0):

min
x̃1

max
λ̃1

E0
µ(x0, λ̃1)+ λ̃⊤1 Ei1−1x̃1 +E

1
µ(x̃1). (37)



We introduce the shorthands P̃1 = Pi1 , p̃1 = pi1 , Ẽ1 = Ei1−1.

The stationarity equations for this saddle-point are

∇λ̃1
E0

µ(x0, λ̃1)+ Ẽ1x̃1 = 0, (38a)

Ẽ⊤1 λ̃1 +∇xE
1
µ(x̃1) = 0, (38b)

or, substituting the expression (24),
[

Σ0 Ẽ1

Ẽ⊤1 P̃1

][
λ̃1

x̃1

]
=−

[
σ0 +Λ⊤0 x0

p̃1

]
. (39)

The formulation can be further augmented if x0 is a decision

variable with initial constraint G0x0 +g0 = 0 associated with

multiplier λ0: the corresponding dual-regularized system is



−µI G0

G⊤0 P0 Λ0

Λ⊤0 Σ0 Ẽ1

Ẽ⊤1 P̃1







λ0

x0

λ̃1

x̃1


=−




ḡ0

p0

σ0

p̃1


 . (40)

Forward pass: Once the above linear system is solved,

we can reconstruct the full solution (xxx,uuu,ννν ,λλλ ) by running a

separate forward pass for each leg according to the equations

in algorithm 2.

B. Generalization to J ⩾ 2

We now consider the case J ⩾ 2. For 0 ⩽ j ⩽ J, we denote

x̃ j = xi j
and λ̃ j = λi j

. Consider, for j < J, the value function

E j(x̃ j, λ̃ j+1) associated with the subproblem running from time

t = i j to t = i j+1−1:

E j(x̃ j, λ̃ j+1) = minmax

i j+1−2

∑
t=i j

Ht +λ⊤t+1Etxt+1 +Hi j+1−1. (41)

For j = J, the value function corresponding to the subproblem

running for indices t ∈ IJ is

EJ(x̃J) = minmax
N−1

∑
t=iJ

Ht +λ⊤t+1Etxt+1 +LN . (42)

We also define their proximal regularizations (E j
µ) j as in (23).

Finally, the dual-regularized full-horizon LQ problem is

equivalent to the saddle-point in x̃xx = (x̃ j)0⩽ j⩽J and λ̃λλ :

min
x̃xx

max
λ̃λλ

J−1

∑
j=0

E j
µ(x̃ j, λ̃ j+1)+ λ̃⊤j+1Ẽ j+1x̃ j+1 +E

J
µ(x̃J). (43)

This problem also has a temporal structure, which leads to a

block-tridiagonal system of equations.

We introduce the following notations, for 0 ⩽ j ⩽ J ( j < J

for the last four):

P̃j = Pi j
p̃ j = pi j

Ẽ j+1 = Ei j+1−1 σ̃ j = σi j

Λ̃ j = Λi j
Σ̃ j = Σi j

(44)

(in particular, p̃0 = p0, P̃0 =P0, and so on) so that, for 0⩽ j < J,

∇λ̃ j+1
E j

µ(x̃ j, λ̃ j+1) = σ̃ j + Λ̃⊤j x̃ j + Σ̃ jλ̃ j+1 (45a)

∇x̃ j
E j

µ(x̃ j, λ̃ j+1) = p̃ j + Λ̃ jλ̃ j+1 + P̃j x̃ j (45b)

and

∇EJ
µ(x̃J) = p̃J + P̃J x̃J . (45c)

Proposition 5. The optimality conditions for eq. (43) are given

by the following system of equations:

σ̃ j + Λ̃⊤j x̃ j + Σ̃ jλ̃ j+1 + Ẽ j+1x̃ j+1 = 0, 0 ⩽ j < J (46a)

p̃ j + Ẽ⊤j λ̃ j + P̃j x̃ j + Λ̃ jλ̃ j+1 = 0, 1 ⩽ j < J (46b)

and

Ẽ⊤J λ̃J + P̃J x̃J + p̃J = 0. (46c)

The system of equations can be summarized as the following

sparse system:




λ0 x0 λ̃1 x̃1 λ̃2 · · · x̃J

−µI G0 ḡ0

G⊤0 P0 Λ0 p0

Λ⊤0 Σ0 Ẽ1 σ0

Ẽ⊤1 P̃1 Λ̃1 p̃1

Λ̃⊤1
. . . σ̃1

. . . ẼJ

...

Ẽ⊤J P̃J p̃J




(47)

This system above can be solved by sparse LDL⊤ factoriza-

tion, or by leveraging a specific block-tridiagonal algorithm.

We will denote M the matrix in (47).

The overall method is summarized in algorithm 3.

Algorithm 3: Parallel condensation LQR

Input:

1 for j = 0, . . . ,J in parallel do
// Parameterize last stage of each leg

2 Fx,i j
← A⊤i j

;

3 Fu,i j
← B⊤i j

;

4 γi j
← f̄i j

;

// Solve (43) parametrically in λ̃ j

5 Compute (P̃j, Λ̃ j, Σ̃ j, p̃ j, σ̃ j) using algorithm 2;

6 (x̃ j) j,(λ̃ j) j← solve consensus system (47);

7 for 0 = 1, . . . ,J in parallel do

8 Compute the forward pass of (43) starting from x̃ j;

C. Block-tridiagonal algorithm for the reduced system

In this subsection, we present an efficient algorithm for

solving the reduced linear system, exploiting its symmetric,

block-tridiagonal structure by employing a block variant of

the Thomas algorithm. The diagonal is (−µI, P̃0, Σ̃0, . . . , P̃J),
and the superdiagonal is (G0, Λ̃0, Ẽ1, . . . , ẼJ). The elimination

order will be from back-to-front, constructing a block-sparse

UDU⊤ decomposition of the matrix M. The resulting routine

has linear complexity O(J) in the number of processors.

In a recent related paper, Jordana et al. [31] leverage the

same algorithm to restate the classical Riccati recursion.



VI. IMPLEMENTATION IN A NONLINEAR TRAJECTORY

OPTIMIZER

We now consider a nonlinear discrete-time trajectory opti-

mization problem with implicit system dynamics:

min
xxx,uuu

J(xxx,uuu) =
N−1

∑
t=0

ℓt(xt ,ut)+ ℓN(xN) (48a)

s.t. x0 = x0 (48b)

φt(xt ,ut ,xt+1) = 0 (48c)

ht(xt ,ut)⩽ 0 (48d)

hN(xT )⩽ 0. (48e)

The implicit discrete dynamics φt(xt ,ut ,xt+1) = 0 is often a

discretization scheme for an ODE ẋ = f (t,x,u) or implicit

ODE f (t,x,u, ẋ) = 0 (e.g. implicit Runge-Kutta methods).

Following [28], we use a proximal augmented Lagrangian

scheme to solve this problem. This solver implements an outer

(proximal, augmented Lagrangian) loop which iteratively solves

a family of proximal LQ problems (6) instead of the initial

LQ problem (1). The coefficients of the problem are obtained

from the derivatives of (48) with the following equivalences:

At = φx,t Bt = φu,t Et = φy,t

Ct = hx,t Dt = hu,t

ft = φt(xt ,ut ,xt+1)

qt = ℓx,t +A⊤t λt+1 +C⊤t νt +E⊤t−1λt

rt = ℓu,t +B⊤t λt+1 +D⊤t νt

Qt = ℓxx,t +λt+1 ·φxx,t +νt ·hxx,t +λt ·φyy,t−1

Rt = ℓuu,t +λt+1 ·φuu,t +νt ·huu,t

St = ℓxu,t +λt+1 ·φxu,t +νt ·hxu,t ,

All these quantities are directly obtained from applying a semi-

smooth primal-dual Newton step, as detailed in [30]3

We then implemented our parallel algorithm for solving the

proximal LQ. Our implementation will be open-sourced upon

acceptance of the paper. It is then straightforward to adapt an

implementation of [29] by replacing the proximal LQ solver by

the parallel formulation. This also makes it possible to fairly

compare the new algorithm with the original formulation.

VII. DISCUSSION

In the introduction, we mentioned a few prior methods for

parallelizing the resolution of system (5), and made a distinction

between indirect and direct methods – the terms “indirect” and

“direct” are used in the linear algebra sense. In this section, we

will provide a more detailed discussion of these prior methods

to distinguish with our own.

In [24] and [35], multiple-shooting formulations for nonlinear

DTOC problems are shown to enable parallel nonlinear rollouts

in the forward pass. There, multiple-shooting defects are used at

3We have neglected two second-order terms corresponding to the derivatives
∂ 2

ut xt+1
L = λt+1 ·φuy,t(xt ,ut ,xt+1) and ∂ 2

xt xt+1
L = λt+1 ·φxy,t(xt ,ut ,xt+1). They

could be added to the block-sparse factorization of section III-C with further
derivations which are outside the scope of this paper.

specific knots of the problem (called shooting states) to split the

horizon into segments where, once the shooting state is known

(through a serial linear rollout), nonlinear rollouts on each

segment can be performed in parallel. Our method, however,

can parallelize both the backward and (linear) forward passes,

but no strategy for a nonlinear rollout has been discussed

in this paper. In light of the hybrid rollout strategy of [24],

parallel nonlinear rollouts between each “leg” could be used

in a nonlinear solver after applying our method to compute a

linear policy and linear rollout in parallel.

Method Type Notes

Multiple-shooting [24, 35] Direct Only the forward pass is parallel.

PCG [1, 8] Indirect Adapted to GPUs. Exploits struc-
ture through sparse preconditioner.

Gauss-Seidel [18, 42] Indirect Not meant to solve (1), but pro-
duce iterations for (48). [18] ex-
plicitly considers equality con-
straints.

ADMM [48] Indirect ADMM splitting costs, dynamical,
and state-control constraints.

State linkage [34] Direct λλλ obtained by least-squares.
State-control linkage [38] Direct Results in subproblems similar

to [52].
Co-state split [52, 39] Direct [39] works on the value function

parameters. [52] considers con-
straints (through nullspace/QR de-
composition). Both condense into
another instance of (1).

Co-state split (Ours) Direct Condenses into state/co-state sys-
tem (43) instead of another in-
stance of (1). Explicitly considers
equality constraints, implicit dy-
namics, dual proximal regulariza-
tion.

TABLE I
COMPARISON TABLE OF MULTIPLE METHODS FOR PARALLEL

COMPUTATION OF THE LQ STEP.

Indirect methods. As for indirect methods for solving (5),

we distinguish a few subclasses of methods. These methods

all work towards parallelizing the entire computation of a

linear search direction for (48) by approximating a solution

for (1). One is given by preconditioned conjugate gradient

(PCG) methods such as [1, 8] which are well-suited to

GPUs, exploiting the block-banded structure to find appropriate

preconditioners. In particular [1, 8] reduce (5), through a

tailored Schur complement, to a system in the co-states λλλ which

is solved iteratively. A major assumption there is that both cost

Hessian matrices (Qt ,Rt) are positive definite (there are no

(St) cross-terms, and equality constraints are not considered).

Another idea suited to nonlinear OC is to re-use a previous

set of value function parameters, as proposed by [42] using

the multiple-shooting forward sweep from [24]. A similar

idea is to adapt Gauss-Seidel iteration, as in [18], where the

Riccati recursion is modified to use a previous iteration’s linear

relation between λt+1 and xt . Finally, [48] propose an instance

of ADMM [7] which alternatively iterates between optimizing

cost and projecting onto the dynamical constraints.

Direct methods. In comparison, our method is squarely in



the realm of direct methods for solving (5). These methods

exploit problem structure when applying classical factorization

or (block) Gaussian elimination procedures. As presented

in section V, our method splits the problem at specific co-states

at stages t ∈P = (i j) j, and condenses it into a saddle-point over

the splitting states and co-states (xt ,λt)t∈P . In contrast, Wright

[52] condenses the problem into another MPC-like subproblem

which also includes controls (and is thus over (xt ,ut ,λt)t∈P ).

Nielsen and Axehill [39] achieve a similar set of subproblems,

by partial condensing (eliminating states and keeping their

unknown controls (ut)) followed by reduction through SVD

and parametrizing with respect to the value function parameters

– this is similar to parametrizing with respect to co-states. Laine

and Tomlin [34] condense the problem into an (overdetermined)

linear system in the co-states through a linkage constraint in the

states. [52, 38, 39] show that their constructions – which yield

MPC subproblems in the same form as (1), can be iterated

to further reduce each subproblem. In our setting, the linear

subproblem (47) does not have that same structure (such that

our construction from section V cannot be iterated), however,

it is still possible to leverage or design a parallel structure-

exploiting routine (generic sparse e.g., [44], or specific for

block-tridiagonal systems).

The different methods that have been discussed are summa-

rized in Table I.

VIII. EXPERIMENTS

We have implemented the algorithms presented in this paper

in C++ using the Eigen [25] linear algebra library and the

OpenMP API [12] for parallel programming. This imple-

mentation has been added to our optimal control framework

ALIGATOR
4. It is the authors’ aim to improve its efficiency in

the future.

A. Cyclic LQ problem

Figures 1 and 2 show trajectories for sample cyclic LQ

problems, which are formulated in appendix D.
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Cyclic LQ problem
x0 = xT

Fig. 1. LQ problem with cyclical constraint x0 = x30 ,in one dimension. No
other initial condition was provided for x0.

4https://github.com/Simple-Robotics/aligator/
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Fig. 2. Cyclic LQ problem in the 2D plane. Cost
function ℓ(x,u) = 10−3∥x∥2 +∥u∥2 except at for t ∈ {5,15} where
ℓ(x,u) = 0.2∥x− x̄t∥

2 +∥u∥2.

B. Synthetic benchmark

To assess the speedups our implementation of the par-

allel algorithm could achieve, we implemented a synthetic

benchmark of problems with different horizons ranging from

T = 16, . . . ,2048. The benchmark was run on an Apple Mac

Studio M1 Ultra, which has 20 cores (16-P cores, 4 E-cores).

The resulting timings are given in Figure 3. These results

show that our implementation is not able to reach 100%

efficiency (defined as the ratio of the speedup to the number

of cores). Instead, we obtain between 50-60% efficiency for

the longer horizons, but this decreases for shorter problems.

This might be due to the overhead of solving (47), and that

of dispatching data between cores. Greater efficiency would

certainly be obtained with a more refined implementation

(optimizing memory allocation, cache-friendliness).

C. Nonlinear trajectory optimization

Computation of robot dynamical quantities (joint accelera-

tion, frame jacobians. . . ) is provided by the Pinocchio [10, 11]

rigid-body dynamics library. The TALOS benchmark and NMPC

experiments were run on a Dell XPS laptop with an Intel i9-

13900k CPU (8 P-cores and 16 E-cores).

1) TALOS locomotion benchmarks: We consider a whole-

body trajectory optimization problem on a TALOS [47] hu-

manoid robot with constrained 6D contacts. For this robot,

the state and control dimensions are nx = 57 and nu = 22

respectively. The robot follows a user-defined contact sequence

with feet references going smoothly from one contact to the

next. State and controls are regularized towards an initial

static half-sitting position and u = 0 respectively. Single-foot

support time Tss is set to 4 times double-support time Tds.

We consider three instances of the problem with different

time horizons, encompassing two full steps of the robot. The

problem is discretized using the semi-implicit Euler scheme

with timestep ∆t = 10ms. In fig. 4, our proximal solver

with various parallelization settings is compared against the

feasibility-prone DDP from the CROCODDYL library [36].

https://github.com/Simple-Robotics/aligator/
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Fig. 4. C++ benchmarks of a trajectory optimization problem involving two
forward steps with the whole-body model of the TALOS robot, with single
support time Tss set to 0.6 s, 0.8 s and 1 s from left to right. Each instance is
run 40 times on every solver to produce a mean and standard deviation.
Here, the Turboboost feature on the CPU was disabled and clock speed fixed
to 2200 MHz.

2) Constrained NMPC on TALOS: In this subsection, we

leverage our proximal solver to perform whole-body nonlinear

MPC on the humanoid robot TALOS in simulation, similarly

to what is achieved in [15] on real hardware. The problem

remains the same as in the previous subsection, except that

Fig. 5. Snapshot of a PyBullet [14] simulation featuring TALOS walking with
pre-defined feet trajectories (blue rectangles). The Bullet simulation timestep
is set to 1 ms.

we add equality constraints at the end of each flying phase to

ensure that foot altitude and 6D velocity are zero at impact

time (7 constraints per foot). Horizon window is set to 0.5 s

with a timestep of 10 ms for a total of N = 50 steps. A snapshot

of this experiment is displayed in fig. 5.

In order to test the benefits of parallelization in the NMPC

setting, the walking motion experiment has been run with vary-

ing numbers of threads. The timing results of this experiment

are shown in fig. 6. When using 4 threads, computation time is

cut by a factor 2 with respect to the serial algorithm. However,

above 4 threads, the speedup stagnates.

Fig. 6. Comparison of the performances of parallel and serial proximal
algorithms on the TALOS walking MPC. The histogram shows the distribution
of time per iteration for a two-step motion. The simulation was written using
PyBullet, and the proximal solver was called through its Python API.

3) Parallel NMPC on SOLO-12: To demonstrate the capa-

bilities of our solver in a real-world setting, we integrated it

inside a whole-body nonlinear MPC framework to control an

actual torque-controlled quadruped robot, SOLO-12, adapting

the framework of Assirelli et al. [3].

The framework formulates an optimal control problem

(OCP) with a state of dimension nx = 37 (12 + 12 joint

positions/velocities and 7+6 base pose/velocity) and controls

of size nu = 12. Akin to the experiment on TALOS, the robot

follows a user-defined contact sequence, yet with no predefined

reference foot trajectories. The horizon is set to 0.96 s, with a

12 ms timestep, resulting in a discrete-time horizon of N = 80.

The above framework is divided into two parts, running on

separate computers communicating via local Ethernet:



Fig. 7. SOLO-12 walking on flat ground.

• a high-level OCP solver runs on a powerful desktop,

• a lower-level, high-frequency controller on a laptop

with the necessary drivers for real-time robot control.

It interpolates the Riccati gains and feedforward controls

between two MPC cycles, producing a reference torque

and joint trajectory for the robot at 1 kHz.

The time budget for solving the OCP is approximately 9 ms.

The MPC has a frequency of 12 ms (same as the discretization

step of the OCP), communication requires 2 ms (round-trip),

and 1 ms is left for margin and additional computations. This

limited budget, coupled with the problem’s long horizon and

dimensionality, justifies the need for parallelization.

The solve times for a single iteration of the OCP in the

MPC loop were measured over 20,000 MPC cycles in the

experiment. Table II summarizes some statistics.

No. of threads 2 4 8 10 12

Mean time (ms) 10.3 6.0 4.6 4.6 4.4
Std. dev (ms) 1.0 1.2 0.97 0.90 0.85

TABLE II
MEAN TIME (AND STANDARD DEVIATION) FOR THE MPC EXPERIMENT ON

SOLO-12. STATISTICS COMPUTED OVER 20,000 CONTROL CYCLES.

Computer specifications: Apple Mac Studio M1 Ultra desktop

with 20 cores (16 P-cores and 4 E-cores), and Dell XPS laptop

with an Intel Core i7-10510U CPU.

IX. CONCLUSION

In this paper, we have discussed the proximal-regularized LQ

problem, as a subproblem in nonlinear MPC solvers, and have

introduced a serial Riccati-like algorithm with a block-sparse

resolution method which allows efficient resolution of this

proximal iteration subproblem. Furthermore, we extended this

method to solving parametric LQ problems and then leveraged

this to formulate a parallel version of the initial algorithm.

We demonstrated that the parallel algorithm is able to

handle complex tasks on high-dimensional robots with long

horizons, even for real-time NMPC scenarios. Still, while we

are able to reach good overall execution times, the benchmarks

suggest our implementation is not able to reach high parallel

efficiency as of yet. This suggests an avenue for further work

on this implementation and further experimental validation

and benchmarking. Furthermore, the timings on the tested

systems open the door to experimenting with more complex

motions, assessing the benefits of either longer time horizons

or higher-frequency MPC schemes.
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APPENDIX

A. Refresher on Riccati recursion

In this appendix, we provide a self-contained and concise re-

fresher on Riccati recursion. We will consider an unconstrained,

unregularized linear-quadratic problem

min
xxx,uuu

J(xxx,uuu)
def
=

N−1

∑
t=0

ℓt(xt ,ut)+ ℓN(xN) (50a)

s.t. xt+1 = Atxt +Btut + ft (50b)

x0 = x0 (50c)

where the cost functions ℓt and ℓN are the same as (2), and

x0 ∈ R
nx is the problem’s initial data. Compared to problem

(1), this problem has no contraints, an explicit initial condition

and explicit system dynamics.

Optimality conditions. The KKT conditions for (50) read as

follow: there exist co-states {λt}0⩽t⩽N such that

λN = QNxN +qN , (51a)

0 = x0− x0 (51b)



as well as, for 0 ⩽ t < N,

Qtxt +Stut +qt +A⊤t λt+1 = λt , (51c)

S⊤t xt +Rtut + rt +B⊤t λt+1 = 0 (51d)

Atxt +Btut + ft − xt+1 = 0. (51e)

Recursion. The recursion hypothesis is as follows: there exists

a semidefinite positive cost-to-go matrix Pt and vector pt such

that

λt = Ptxt + pt . (52)

This is true for t =N owing to the terminal optimality condition

(51a).

Now, let 0 ⩽ t < N such that the recursion hypothesis is

true for t + 1, i.e. there exist (Pt+1, pt+1) such that λt+1 =
Pt+1xt+1 + pt+1. Then, plugging (51e) into this leads to

λt+1 = Pt+1(Atxt +Btut + ft)+ pt+1

which with eqs. (51c) and (51d) leads into

[
Q̂t Ŝt

Ŝ⊤t R̂t

][
xt

ut

]
+

[
q̂t

r̂t

]
=

[
λt

0

]
, (53)

where we have denoted

Q̂t = Qt +A⊤t Pt+1At , (54a)

Ŝt = St +A⊤t Pt+1Bt , (54b)

R̂t = Rt +B⊤t Pt+1Bt , (54c)

q̂t = qt +A⊤t (pt+1 +Pt+1 ft), (54d)

r̂t = rt +B⊤t (pt+1 +Pt+1 ft). (54e)

The following step in the Riccati recursion is to apply the

Schur complement lemma to (53) (see appendix B), requiring

that R̂t ≻ 0. This leads to

λt = (Q̂t − Ŝt R̂
−1
t Ŝ⊤t )xt + q̂t − Ŝ⊤t R̂−1

t r̂t (55a)

as well as the familiar linear feedback equation

ut = kt +Ktxt (55b)

where we denote by Kt =−R̂−1
t Ŝ⊤t and kt =−R̂−1

t r̂t the classic

feedback and feedforward gains. The recursion is then closed

by setting

Pt
def
= Q̂t − Ŝt R̂

−1
t Ŝ⊤t ∈ Snx(R) (56a)

and

pt
def
= q̂t − Ŝt R̂

−1
t r̂t . (56b)

To go further, we direct the reader to an application of this

recursion in the context of nonlinear control for robotics in [49],

which introduced the popular iterative LQR (iLQR) algorithm.

B. Schur complement lemma

In this appendix, we will provide an overview of the Schur

complement lemma.

1) 2x2 block linear system: We consider a symmetric 2×2

block linear system
[

G J⊤

J −Λ

][
x

z

]
=−

[
b

c

]
(57)

where G (resp. Λ) is a n×n (resp. m×m) symmetric matrix,

b ∈ R
n, c ∈ R

m, and J ∈ R
m×n.

Symmetric indefinite systems such as (57) can be solved by

straightforward LU , LDL⊤ or Bunch-Kaufman [9] decomposi-

tion. Specific methods exist for sparse matrices [17, 13].

Assuming nonsingular Λ, the Schur complement in x, solves

z as a function of x:

z = Λ−1(c+ Jx) (58)

and leads to an equation in x:

(G+ J⊤Λ−1J)x =−(b+ J⊤Λ−1c). (59)

Here, GΛ = G + J⊤Λ−1J is called the Schur matrix. If,

furthermore, we have that G ⪰ 0 and Λ ≻ 0, then the Schur

matrix is positive semidefinite.

In some applications (e.g. constrained forward dynam-

ics [11]), G exhibits sparsity and the the complement in z

is chosen instead, computing G−1 – this corresponds to the

partial minimization minx f (x,z).
2) Variant: lemma for proposition 3: Consider the following

parametric saddle-point problem:

ψ⋆(z) = min
x

max
y

f (x,y,z) (60)

where f is the following quadratic:

f (x,y,z) =
1

2




x

y

z






Q S C⊤

S⊤ R D⊤

C D H






x

y

z


+q⊤x+ r⊤y+ c⊤z

(61)

with appropriate assumptions on (Q,S,R) to ensure that f is

convex-concave (namely, Q⪰ 0 and that R⪯ 0) and

M =

[
Q S

S⊤ R

]
(62)

is nonsingular. The first-order conditions satisfied by a solution

(x⋆,y⋆) of (60) read:

[
Q S C⊤

S⊤ R D⊤

]


x⋆

y⋆

z


+

[
q

r

]
= 0. (63)

By nonsingularity of M, it holds

(i) that (x⋆,y⋆) is linear in z with
[

x⋆

y⋆

]
=−M−1

([
q

r

]
+

[
C⊤

D⊤

]
z

)
, (64)

and, as a consequence,

(ii) that ψ⋆ is a quadratic function of z: there exist a matrix

W and vector w such that

ψ⋆(z) =
1

2
z⊤Wz+w⊤z, (65)



and (W,w) is given by

W = H−
[
C D

]
M−1

[
C⊤

D⊤

]
,

w = c−
[
C D

]
M−1

[
q

r

]
.

(66)

C. Thomas algorithm for block-tridiagonal matrices

Consider a block-sparse linear system

M




X1

...

XN


=




C1

...

CN


 (67)

where the Xi and Ci are ni×m matrices, and

M=




A0 B1

B⊤1 A1 B2

B⊤2 A2

. . .

. . . BN

B⊤N AN




(68)

is a block-triadiagonal matrix, where Ai ∈R
ni×ni , Bi ∈ R

ni−1×ni .

A quick derivation of the backward-forward algorithm stems

by considering an appropriate block UDU⊤ factorization, where

we prescribe

U =




I U1

I

. . .

I UN


 , D =




D0

D1

. . .

DN


 .

Writing M=UDU⊤, it appears that a sufficient and necessary

condition is that (U,D) satisfy

AN = DN (69a)

Bi = UiDi, 1 ⩽ i ⩽ N (69b)

Ai = Di +Ui+1Di+1U
⊤
i+1, 0 ⩽ i < N, (69c)

which determines (U,D) uniquely. The second and third

equations can be combined together as Di = Ai−Bi+1D
−1
i+1B⊤i+1.

Furthermore, we use (U,D) to solve the initial system as

UDU⊤X =C, which can be split up as U⊤X = Z and UDZ =C.

The second equation can be solved by working backwards

(since U is block upper-triangular):

ZN = D
−1
N CN (70a)

Zi = D
−1
i (Ci−Bi+1Zi+1), 0 ⩽ i < N (70b)

and then solve the first equation for X , working forwards:

X0 = Z0 (71a)

Xi+1 = Zi+1−U
⊤
i+1Xi, 0 ⩽ i < N. (71b)

D. Formulating LQ problems with cyclic constraints

Assume the LQ problem to solve is similar to (1) with a

cyclical constraint

xN − x0 = 0

and, for simplicity, no other path constraints (meaning nc = 0).

We introduce for this constraint an additional multiplier θ ∈Rnx

as a parameter. The full problem Lagrangian is

L (xxx,uuu,λλλ ;θ) = L (xxx,uuu,λλλ )+θ⊤(xN − x0).

The terminal stage Lagrangian becomes LN(xN ,θ) =
ℓN(xN)+θ⊤xN . In this setting, our previous derivations apply

with with ΦN = I. After condensing into the parameterized

value function E(x0,θ), we can solve for (x0,θ) by solving

the min-max problem

max
θ

min
x0

E(x0,θ)−θ⊤x0 (72)

leading to the system

[
P0 Λ0− I

(Λ0− I)⊤

][
x0

θ

]
=−

[
p0

σ0

]
. (73)

Other topologies such as directed acyclic graphs (DAG)

have been explored in the literature [45, 46]. Such a discussion

would be out of the scope of this paper, but it is our view that

several algorithms in this vein can be restated using parametric

Lagrangians and by formulating partial min-max problems.

E. Details for the block-sparse factorization in Section III-C

We present here the details of how we propose to solve

(12)-(14) by exploiting its block-sparse structure, replacing the

less efficient recursion initially proposed in [28]. The first step

is isolating the equations, in (12), satisfied by the co-state and

next state (λ2,x2). They are:

[ λ2 x2

−µI E1 f̄1 +A1x1 +B1u1

E⊤1 P2 p2

]
. (74)

This system could be solved by Schur complement in either

variables λ2 or x2. One way requires computing a decomposi-

tion of P2+
1
µ E⊤1 E1, which is numerically unstable if µ is small.

The other way requires P2 to be nonsingular, and computing

the inverse of µI +E1P−1
2 E⊤1 – although this would be more

stable, assuming nonsingular P2 can be a hurdle in practical

applications (typically, if the terminal cost only applies to part

of the state space such as joint velocities).

1) Substitution by E2: We approach this another way, by

assuming that the dynamics matrix E1 is nonsingular. This

means the substitution x̌2 = −E1x2 is well-defined, and that

we can define P̌2 = E−T
1 P2E−1

1 and p̌2 =−E−T
1 p2.

Then, the system (74) is equivalent to

[ λ2 x̌2

−µI −I f̄1 +A1x1 +B1u1

−I P̌2 p̌2

]
(75)



which by substituting x̌2 = f̄1 +A1x1 +B1u1−µλ2 reduces to

the symmetric linear system

(µP̌2 + I)λ2 = p̌2 + P̌2( f̄1 +A1x1 +B1u1). (76)

Denote ϒ = I + µP̌2, and set V2 = ϒ−1P̌2 and v2 = ϒ−1( p̌2 +
P̌2 f̄1). Then, it holds that

λ2 = v2 +V2(A1x1 +B1u1).

Substitution into (12) yields equations for (x1,u1,ν1):




x1 u1 ν1

Q̂1 Ŝ1 C⊤1 q̂1 +E⊤0 λ1

Ŝ⊤1 R̂1 D⊤1 r̂1

C1 D1 −µI h̄1


 (77)

where Q̂1, Ŝ1, R̂1, q̂1, r̂1 are given by the familiar equations:

Q̂1 = Q1 +A⊤1 V2A1, q̂1 = q1 +A⊤1 v2,

R̂1 = R1 +B⊤1 V2B1, r̂1 = r1 +B⊤1 v2,

Ŝ1 = S1 +A⊤1 V2B1.

(78)

2) Multiplier and next-state update: The closed-loop multi-

plier update is

λ2 = v2 +V2B1k1 +V2(A1 +B1K1)x1 = ω2 +Ω2x1 (79)

and the next state update is

x2 =−E−1
1 x̌2,

x̌2 = ( f̄1 +B1k1−µω2)+(A1 +B1K1−µΩ2)x1

= a1 +M1x1.

(80)

3) Final substitution: Now, our goal is to eliminate (u1,ν1)
from the system, expressing them as a function of x1. Denote

K̂1 the lower-right 2×2 block

K̂1 =

[
R̂1 D⊤1
D1 −µI

]
, (81)

which is a nonsingular symmetric matrix due to the dual

regularization block −µI. Then, by Schur complement, we

obtain (u1,ν1) as a feedback

[
u1

ν1

]
=−K̂−1

1

([
r̂1

h̄1

]
+

[
Ŝ⊤1
C1

]
x1

)
(82)

which can be rewritten as

u1 = k1 +K1x1, ν1 = ζ1 +Z1x1. (83)

Then, it holds that the cost-to-go matrix and gradient

introduced in (16) also satisfy

P1 = Q̂1 + Ŝ1K1 +C⊤1 Z1 (84a)

p1 = q̂1 + Ŝ1k1 +C⊤1 ζ1. (84b)

The full block-sparse algorithm is summarized in Algo-

rithm 4.

Algorithm 4: Block-sparse factorization for the stage

KKT equations

Data: Cost and constraint matrices

Q1,S1,R1,q1,r1,A1,B1,E1, f̄1,C1,D1, h̄1,

cost-to-go matrix and vector P2, p2

1 Compute E−1
1 ; // using, e.g., LU

2 P̌2← E−T
1 P2E−1

1 ;

3 p̌2←−E−T
1 p2;

4 ϒ← µP̌2 + I ;

5 V2← ϒ−1P̌2;

6 v2← ϒ−1( p̌2 + P̌2 f̄1);

7 Set (Q̂1, Ŝ1, R̂1, q̂1, r̂1) according to (78);

8 Set K̂1←
[

R̂1 D⊤1
D1 −µI

]
;

9 Compute K̂−1
1 (using, e.g., LDLT);

// Solve (82)

10

[
k1

ζ1

]
←−K̂−1

1

[
r̂1

h̄1

]
;

11

[
K1
Z1

]
←−K̂−1

1

[
Ŝ⊤1
C1

]
;

12 P1← Q̂1 + Ŝ1K1 +C⊤1 Z1;

13 p1← q̂1 + Ŝ1k1 +C⊤1 ζ1;

F. Bound for the parallel algorithm’s speedup

In this appendix, we etch a derivation for the complexity of

the serial and parallel backward passes of our algorithms 1, 2

and 3, which we will compare to find an upper-bound for the

expected speedup.

Consider the stage system (14) in the backward pass

of algorithm 1. We denote by:

• Cfac =O((nx +nu +nc)
3) the complexity of the factoriza-

tion step

• Ccol =O((nx+nu+nc)
2) the complexity of the right-hand

side solve for a single column.

Then, the primal-dual gains are recovered with complexity

(nx +1)Ccol. Furthermore, for the parametric algorithm, solving

the parameter gains (Kθ
t ,Z

θ
t ,Ω

θ
t+1,M

θ
t ) in (29) for a parameter

of dimension nθ has complexity Cparam = nθCcol.

The complexity of the backward pass in the serial algorithm 1

is thus

T b
serial = N(Cfac +(nx +1)Ccol). (85)

Now, consider the parallel algorithm executed over J + 1

(J ⩾ 1) legs. Each stage in the backward pass for legs 0 ⩽ j < J

has complexity Cfac + (2nx + 1)Ccol (the last leg still has

standard stage complexity Cfac + (nx + 1)Ccol). Meanwhile,

the consensus system (43) has complexity Ccons ∼
2J+1

3
n3

x

(assuming Cholesky decompositions with complexity n3/3).

We assume an equal split across the J legs, such that

i j+1− i j = N/(J + 1). The parallel time complexity for this

backward pass is thus

T b
parallel =

N
J+1

(Cfac +(2nx +1)Ccol)

parallel section

+Ccons. (86)



We plot the speedup ratio T b
serial/T b

parallel of serial to parallel

execution times for a chosen dimension (nx,nu,nc) in fig. 8.

The graph shows early departure of this ratio from the “perfect”

speedup (which would be T b
parallel = JT b

serial).
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Fig. 8. Theoretical speedup derived from the bounds, with varying problem
horizon N and number of parallel legs/processors J. The problem dimensions
correspond to the Solo-12 system in section VIII.
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