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Fig. 1: We propose FLAIR, a system for long-horizon robot-assisted feeding that combines the commonsense and few-shot reasoning capabilities of foundation
models with a library of parameterized skills. Above, FLAIR takes visual observations and a given user preference (“Please don’t feed me any meatballs”)
to plan a sequence of actions that pushes aside meatballs and twirls spaghetti.

Abstract—Robot-assisted feeding has the potential to improve
the quality of life for individuals with mobility limitations who are
unable to feed themselves independently. However, there exists
a large gap between the homogeneous, curated plates existing
feeding systems can handle, and truly in-the-wild meals. Feeding
realistic plates is immensely challenging due to the sheer range of
food items that a robot may encounter, each requiring specialized
manipulation strategies which must be sequenced over a long
horizon to feed an entire meal. An assistive feeding system should
not only be able to sequence different strategies efficiently in order
to feed an entire meal, but also be mindful of user preferences
given the personalized nature of the task. We address this with
FLAIR, a system for long-horizon feeding which leverages the
commonsense and few-shot reasoning capabilities of foundation
models, along with a library of parameterized skills, to plan and
execute user-preferred and efficient bite sequences. In real-world
evaluations across 6 realistic plates, we find that FLAIR can
effectively tap into a varied library of skills for efficient food
pickup, while adhering to the diverse preferences of 42 partici-
pants without mobility limitations as evaluated in a user study.
We demonstrate the seamless integration of FLAIR with existing
bite transfer methods [19, 28], and deploy it across 2 institutions
and 3 robots, illustrating its adaptability. Finally, we illustrate
the real-world efficacy of our system by successfully feeding a
care recipient with severe mobility limitations. Supplementary
materials and videos can be found at: emprise.cs.cornell.edu/flair.

I. INTRODUCTION

Eating is a vital part of everyday life, yet millions worldwide
struggle to feed themselves independently due to mobility
limitations caused by conditions such as neurological disor-
ders, injuries, the effects of aging, or other health compli-
cations [54]. These individuals often rely on caregivers for
meal assistance, which impacts their sense of independence,
daily routines, and the social experience of dining [27, 41, 50].
Moreover, feeding is one of the most time-consuming Activi-

ties of Daily Living (ADL) for caregivers [14]. A system for
autonomous mealtime assistance holds promise for improving
the quality of life for those requiring assistance [9], and
reducing the physical workload on caregivers [6, 28].

Robot-assisted feeding entails first performing bite acqui-
sition [18, 21–24, 32, 51, 52], where the robot must manip-
ulate a utensil to pick up a bite of food, followed by bite
transfer [5, 19, 28, 43, 48], or bringing a bite of food to
the mouth for consumption. In this paper, we primarily focus
on bite acquisition. Several prior works in bite acquisition
develop individual skills targeting specific food groups. This
includes policies for skewering firm foods [18, 21–23, 51],
scooping soft foods [24, 53], or rearranging and twirling
noodles [52]. These works, however, mostly operate over a
single bite horizon or consider plates with a homogeneous
type of food, such as only noodles or only bite-sized fruits and
vegetables. However, the challenge of achieving reliable bite
acquisition for dishes encountered in-the-wild, which contain
multiple different food types within the same meal and require
strategic skill sequencing over many timesteps, persists.

Consider a robot tasked with feeding a meal with a fruit
appetizer—bananas, celery, and watermelon with chocolate
sauce and ranch dressing—and spaghetti and meatballs for
the main course. The robot must not only execute specialized
strategies, such as cutting bananas, skewering fruits, dipping
in sauces, and grouping and twirling noodles, but also infer
how to sequence them over a long horizon, considering:
Efficiency: For the main course, if meatballs incidentally rest
on top of the spaghetti, the robot should prioritize efficiency
by serving the meatball first. This sequencing exposes the
spaghetti for subsequent bites, avoiding the inefficiency of
pushing the meatball aside to access the spaghetti initially.

http://emprise.cs.cornell.edu/flair


User Preferences: However, if the user prefers to not eat
meatballs, the robot must adjust the bite sequence accordingly.
Commonsense Reasoning: In the absence of explicit user
preferences, the robot must employ commonsense reasoning
to correctly order / combine bites for human-like feeding. For
the appetizer, it should pair celery with ranch, bananas with
chocolate, and feed watermelon standalone, reflecting typical
food pairings. For the main course, it should vary the serving
order between spaghetti and meatballs to avoid repetitions.
We desire a system that considers all these criteria to achieve
long-horizon bite acquisition via a library of skills, and finally
integrates with frameworks for bite transfer [5, 19, 28, 43, 48]
to effectively feed complete meals.

In this work, we introduce FLAIR (Feeding via Long-
horizon AcquIsition of Realistic dishes), a robot-assisted feed-
ing system capable of feeding a complete meal to a care
recipient. Given a plate image, and an optional user-provided
natural language preference specifying their desired feeding
strategy (i.e. ‘I prefer to alternate bites of X and Y’ or
‘Don’t feed me X’), FLAIR executes a sequence of actions
that efficiently feeds the items on the plate while adhering
to the preference. The framework starts by detecting food
items and their semantic labels (i.e. ‘spaghetti’) via Vision-
Language Models (VLMs). We then pass the visual state
estimate and semantic label for all items to a hierarchical
task planner, which outputs per-item efficiencies by proxy of
inferring a sequence of skills to achieve acquisition for each
item. Finally, we pass all of this context – the food item labels,
the optional user’s preference, and per-item efficiences – to a
Large Language Model (LLM)-based planner which outputs
the next bite to feed. The few-shot reasoning capabilities of
LLMs allows for reasoning about the available context in
a chain-of-thought manner, and planning sequences of bites
that cater to both preference and efficiency. We carry out
these action sequences via a library of parameterized food
manipulation skills implemented on custom hardware. Finally,
FLAIR’s modular approach to long-horizon bite acquisition
enables seamless integration with existing outside-mouth bite
transfer [19] and inside-mouth bite transfer [28] frameworks.

We deploy FLAIR across two institutions and three robots: a
Kinova 6-DoF at Cornell University and a Franka Emika Panda
and a Kinova 7-DoF at Stanford University, demonstrating its
adaptability to various robotic platforms. We validate FLAIR
for long-horizon food pickup across six diverse plates, ranging
from DoorDash orders and prepared grocery store meals
to homemade meals. In a user study across 42 individuals
without mobility limitations, we use FLAIR to demonstrate
the necessity of balancing between both preferences and
efficiency for feeding complete, realistic meals, as compared
to an efficiency-only or preference-only approach. Moreover,
we compare FLAIR’s hierarchical task planner against three
state-of-the-art baselines [3, 39, 52] on two different datasets,
demonstrating that it significantly outperforms these baselines.
Finally, we demonstrate the real-world effectiveness of our
system in feeding a care recipient with Multiple Sclerosis a
meal consisting of various fruits and dips.

Overall, our contributions include:
• FLAIR: A system for long-horizon feeding which lever-

ages foundation models to sequence a library of diverse
skills towards in-the-wild long-horizon bite acquisition.

• Deployment of FLAIR across two institutions and three
different robots, demonstrating its versatility.

• A user study with 42 individuals without mobility limita-
tions across 6 diverse plates validating the effectiveness of
considering both preferences and efficiency for feeding.

• Demonstration of the real-world efficacy of our system
by feeding a care recipient with mobility limitations.

II. RELATED WORK

Robot-Assisted Feeding. While various commercial robot-
assisted feeding systems [1, 2] have been introduced, they
typically rely on pre-programmed trajectories or user teleop-
eration. This limited autonomy has hindered their widespread
adoption and retention, and inspired autonomous methods for
bite acquisition and transfer. Prior work in bite acquisition
has focused on developing individual food manipulation skills
for specific food types. Various works [18, 21, 22, 51] tackle
acquisition of solid bite-sized foods, and demonstrate effec-
tive skewering strategies based on the food item’s pose and
material properties. Sundaresan et al. [52] propose visually
parameterized primitives for twirling and grouping noodle-like
dishes, and show generalization to unseen noodles. Beyond
fork-based manipulation, Grannen et al. [24] plan bimanual
scooping actions with two custom utensils, while Tai et al.
[53] and Zhang et al. [58] develop specialized strategies for
scooping with a spoon and cutting with a knife, respectively.
However, no prior work in robot-assisted feeding considers
complete, in-the-wild meals containing various food types
(noodles, semisolids, sauces, cuttable food items, etc.) within
the same plate, as typically encountered in everyday scenarios.

In this work, we leverage insights from the aforementioned
state-of-the-art food manipulation works to develop a large
library of bite acquisition skills, and use foundation models
to sequence these skills for efficiently feeding realistic dishes
while obeying user preferences. To the best of our knowledge,
FLAIR is the first of any autonomous feeding system to tackle
in-the-wild meals containing various food types, and incorpo-
rate bite sequencing preferences for long-horizon feeding.

Various works have shown joint bite acquisition with trans-
fer [6, 19, 28]. However, they typically consider bite acquisi-
tion actions over a single timestep and not over the complete
meal. In contrast, we illustrate that our long-horizon bite
acquisition framework can seamlessly integrate with existing
methods for bite transfer [19, 28], and demonstrate feeding of
a full meal to a care recipient.

Foundation Models for Robotic Manipulation. Two of the
most challenging aspects associated with feeding are planning
over available skills, and developing a library of food manip-
ulation skills themselves. To this end, several recent works in
robotic manipulation use foundation models such as vision-
language models (VLMs) [3, 31, 35, 46] or large language



models (LLMs) [10, 15, 16, 44, 45] towards both high-level
task planning and skill instantiation. A standard approach is
to prompt foundation models with context including available
skills, object states, etc., and to use them to plan action
sequences either for long-horizon manipulation [4, 13, 25, 55]
or grounded exploration [29]. However, these works focus on
exploiting the commonsense reasoning capabilities of these
models [20, 34, 47], such as inferring a sequence of skills
that is feasible or user-preferred based on the provided visual
and semantic context. In the setting of feeding, we additionally
care about planning efficient skill sequences. Reasoning about
efficiency and skill affordances in a few-shot manner remains
brittle and challenging for these models, due to hallucina-
tions [30] and a lack of priors about embodied agents. Instead,
we propose inferring the efficiencies of skills separately, and
providing this as additional context to aid in planning.

Besides skill sequencing, several recent works show the
benefits of using foundation models towards inferring the
parameters of low-level skills themselves, rather than data-
driven approaches to learning skill policies from scratch [7,
8, 42]. Recent approaches include instantiating skills via code
skeletons generated by LLMs [26, 36], or implementing skills
parameterized by open-vocabulary object detectors [55, 57] or
keypoint affordances from VLMs [37]. These approaches have
mainly been applied to simple quasi-static actions such as pick
and place. We instead apply this paradigm towards estimating
the visual state of food items, and using this to parameterize a
diverse library of skills such as twirling, scooping, and cutting.
User Preferences in Assistive Robotics. The inclusion of
user preferences in the design and operation of assistive robots
is essential for significantly enhancing user satisfaction [12].
These preferences can be identified either implicitly through
data-driven methods [56] or explicitly stated by users [11].
Canal et al. [11] explore task planning adhering to user prefer-
ences for an assistive shoe dressing experiment. However, they
explore user specification only in form of post-hoc scoring of
executed actions which is restrictive for various safety critical
applications. Madan et al. [40] propose training a hidden
Markov Model with user-demonstrated sequencing data for the
same meal collected over multiple days to learn preferred bite
sequences, enhancing user satisfaction. However, this proof of
concept did not involve a robot-assisted feeding system and is
impractical to extend to the diverse meals an individual might
consume. Recently, TidyBot [55] showcased that LLMs can
summarize information from limited examples and extrapolate
general user preferences for determining the proper place to
put each object while tidying a room. However, their approach
to task planning lacks consideration of additional metrics, such
as efficiency, which is crucial in our context of feeding a
complete meal. FLAIR instead factors in both user preference
and acquisition efficiency for long-horizon feeding.

III. FLAIR: FEEDING VIA LONG-HORIZON ACQUISITION
OF REALISTIC DISHES

In this section, we present FLAIR, a system for feeding
complete meals which combines existing foundation models

Fig. 2: We implement our skill library using a custom feeding utensil (adapted
from [48]) having two degrees of freedom for easy twirling and scooping at
the end effector. We deploy the full feeding stack on three robots and two
institutions: the 7-DoF Franka Emika Panda (top) and 7-DoF Kinova Gen 3
(middle) at Stanford University, and the 6-DoF Kinova Gen 3 (bottom) at
Cornell University.

in a novel way towards personalized and efficient bite sequenc-
ing. We first give an overview of our custom system hardware,
then outline our approach to long-horizon bite acquisition, and
finally discuss integration of our method with existing bite
transfer frameworks [19, 28] for feeding of in-the-wild dishes.

A. Hardware System

We tackle a wide range of food categories in this work such
as fruits, vegetables, noodles, meat, soft foods, dipping sauces,
and non-bite-sized items that require cutting. Many of these
foods require specialized, dynamic manipulation strategies
that typical 6 or 7-DoF robots struggle with due to their
limited workspace. We thus implement FLAIR on Kinova and
Franka robot arms equipped with a motorized feeding utensil
mounted at the end-effector, adapting the design from [48].
The utensil contains a fork attachment and has two degrees of
freedom corresponding to the orientation of the fork tines and
the tilt angle. This allows for directly controlling the utensil
to perform dynamic movements like twirling and scooping,
while the robot handles moving between waypoints in the
workspace via Cartesian position control. We also use a wrist-
mounted RGB-D Realsense camera with a known end-effector
to camera transformation. This enables perceiving plates of
food and localizing food items in the 3D workspace. We note
that the same hardware was replicated on two different Kinova
arms and one Franka Emika Panda, each with their separate
fork attachment and sensors across two different institutions
(detailed in Appendix), demonstrating the reproducibilty of
our method and hardware (Fig. 2).



B. Long-Horizon Bite Acquisition Framework

With access to a hardware platform that supports dexterous
food manipulation strategies, our goal is to plan and execute
long-horizon bite sequences that cater to a user’s preference
while efficiently feeding a meal.
Problem Formulation. We assume access to an RGB-D plate
image observation ot ∈ O = RW×H×4

+ of width W and height
H , and an optional natural language instruction ℓpref from the
user, representing their preferred feeding strategy at a high-
level (i.e., ℓpref = “Feed me alternating bites of X and Y”
or “Only feed me X”). X and Y can denote an arbitrary food
item semantic label (i.e. “spaghetti”, “strawberry”, “caramel”)
or category (i.e. “noodles”, “fruit”, “sauce”).

We further assume access to a library L = {ϕ1, . . . , ϕN}
of N skills that the robot can use to manipulate food items.
Each skill ϕi(p) represents a parameterized manipulation
primitive that takes in parameters p and outputs low-level
motor commands. We represent a low-level action at time t
by at = (x, y, z, β, γ, ψ), where (x, y, z) denotes the position
of the feeding utensil tip, β and γ denote pitch and roll of
the utensil respectively, and ψ denotes the robot’s end effector
roll angle. Thus, the output of any skill is a sequence of T
actions {at, at+1, . . . , at+T } that the robot takes to execute
the particular strategy. For instance, a skewering skill may take
the position and orientation of a desired food item as input,
and output a trajectory that skewers the item of choice. Our
goal is to plan and execute a sequence of parameterized skills
{ϕ1(p1), ϕ2(p2), . . . , ϕH(pH)} which results in efficient and
user-preferred bite acquisition, where H is the total number
of skills to execute to complete feeding a plate and ph refers
to the parameters of skill ϕh ∈ L.
State Representations for Food. Our approach ad-
dresses the main challenges in long-horizon bite ac-
quisition—parameterizing low-level skills and sequencing
them—by integrating state-of-the-art visual-language models.
We use visual state estimates and semantic features of food
items to guide skill parameterization and sequencing.

For a given plate observation ot at time t, we first
query GPT-4V [3] in a few-shot manner to recognize
which food items are present. We prompt the model
with a few in-context examples of plate images and their
corresponding ground truth food item semantic labels, and
ask the model to complete the prompt for the test image ot.
GPT-4V outputs a list of semantic labels lt that are present,
(i.e., lt = [‘fettuccine’, ’chicken’, ‘broccoli’])
along with their corresponding categories ct (i.e., ct =
[‘noodles’, ‘meat/seafood’, ‘vegetable’, ‘cuttable’]).
These categories are relevant for associating the appropriate
skill to each food item for bite acquisition. We then pass
the recognized semantic labels to GroundingDINO [38],
an open-vocabulary VLM, for bounding box detection. For
each bounding box, we use SegmentAnything (SAM) [33]
to refine these bounding boxes into segmentation masks
{m1

t ,m
2
t , . . . ,m

D
t } for all D items detected.

Skill Library The segmented representations of food we

obtain from VLMs provide a useful way to parameterize food
manipulation skills, which we split into acquisition and pre-
acquisition skills. Fig. 3 visualizes all skill parameterizations.

1) Acquisition skills: Acquisition skills refer to those that
pick up food, such as skewering a food item, twirling a pile of
noodles, scooping a soft pile of food, or dipping an item to coat
it in sauce. We parameterize them as follows, assuming access
to a segmentation mask mi

t for the item of interest:

• skewer(xc, yc, zc, γ): We detect the centroid of mi
t and

deproject this 2D pixel coordinate to a 3D coordinate
(xc, yc, zc) representing the center of a food item in
the robot’s frame of reference. We also estimate the
major axis orientation θ of an item from mi

t analytically.
Following [18, 51], we bring the utensil above the the
food item center with γ = 90◦ + θ and execute a swift
downward trajectory skewering perpendicular to the main
axis of the item. This encourages the tines of the fork to
pierce the item. If the tines align parallel to the item’s
major axis, they may run along its longer length and miss
the shorter breadth due to slight calibration challenges,
leading to unsuccessful skewering.

• twirl(xd, yd, zd, γ): We adopt the parameterization from
VAPORS [52], a long-horizon system for noodle acquisi-
tion. Specifically, we twirl noodles by bringing the fork to
the sensed densest pile (xd, yd, zd) on the plate, estimated
via 2D Gaussian filtering on mi

t, and with γ identical
to the parameterization for skewering (orthogonal to the
major axis of the noodle pile sensed via a pose estimation
network from [52]). We actuate the roll joint of the fork
to complete two full twirls, wrapping noodles on the fork.

• scoop(xs, ys, zs, xd, yd, zd): The fork starts with tines
horizontal to the plate and scoops from the sparsest
region (xs, ys, zs) to the densest region (xd, yd, zd) on the
plate, up to a pre-defined maximum distance empirically
selected to pick up a bite-sized amount. We define the
sparsest region as the point on the boundary of the food
item mask mi

t that is furthest from the densest region,
with the condition that the line connecting these points is
not intersected by other food items, such as toppings.

• dip(xc, yc, zc): Finally, dipping entails bringing a fork
containing a food item into the center (xc, yc, zc) of a
small dish containing sauce. We initially orient the fork
with tines horizontal to the plate to avoid the food item
slipping off the utensil during dipping.

Immediately following each of these actions, the robot moves
the fork tines in a scooping motion by actuating the utensil’s
pitch joint. The resulting horizontal fork helps prevent items
from slipping off the fork after being picked up.

2) Pre-acquisition skills: When the above acquisition skills
are not immediately feasible due to occlusion from other items
or the anticipated amount of food to be picked up being
insufficient, we employ a number of auxiliary strategies which
we refer to as pre-acquisition skills. These actions do not
directly pick up food but rearrange or manipulate items to



Fig. 3: Our skill library consists of 7 parameterized manipulation skills: 4 acquisition (skewer, twirl, scoop, dip) and 3 pre-acquisition (group, push, cut).

facilitate subsequent acquisition. Grouping noodles into a pile
before twirling, pushing a meatball off of a bed of spaghetti
before twirling, or cutting banana into a bite-sized piece before
pickup are all examples of pre-acquisition. We parameterize
them as follows:

• group(xs, ys, zs, xd, yd, zd): For a pile of food distributed
on the plate, we sense the densest (xd, yd, zd) and sparsest
(xs, ys, zs) regions via mi

t and execute a linear push with
the fork from the sparsest to densest point.

• push(xic, y
i
c, z

i
c): For a food item with mask mi

t obstruct-
ing a pile of food (such as noodles or a semisolid) with
mask mj

t , we can execute a linear push motion starting
at the centroid of the obstructing item, to the nearest
boundary point of the underlying food bed mj

t .
• cut(xb, yb, zb, ψ): To cut a food item, we estimate a point

on the object (xb, yb, zb) that would result in a bite-sized
portion once cut. In practice, we detect the major axis
of mi

t and traverse a fixed unit length from the one
end of the axis to estimate this. We then bring the fork
horizontal (β = 90◦) and with sideways tines (γ = 90◦).
Finally, we set the end-effector roll ψ such that the lateral
side of the fork is orthogonal to the major axis angle θ
as in skewering and twirling. Then, we execute a swift
downward trajectory to slice the soft item.

L = {skewer, twirl, scoop, dip, group, push, cut} forms
the library of vision-parameterized skills at the core of FLAIR.

We provide further details on the vision-based parameteri-
zations for each of these skills in the Appendix.
Task Planning for Acquisition. We plan a sequence of bites
that both satisfies the preference of the user, and is efficient
for the robot to acquire. The latter consideration requires
reasoning over the sequence of pre-acquisition and acquisition
skills needed to pick up an item, for which we introduce a
hierarchical task planner T . Our task planner relies on vision
modules which post-process the segmented plate observations
to quantify the density and spread of food items, along with
checking for appropriate bite sizes and collision with other
food items. While it uses a few key parameters, the overall

pipeline and these parameters are shared across different
categories like ‘noodles’, ‘semisolid’, and ‘cuttable’,
rendering the approach versatile for diverse plates.

The task planner takes as input a particular food item
category cit along with the detected segmentation mask mi

t

and outputs a sequence of skills to acquire the item. The skill
library in this work addresses the following categories of food
items: {‘meat/seafood’, ‘fruit’, ‘vegetable’, ‘sauce’,
‘noodles’, ‘semisolid’, ‘cuttable’}.

For most categories, acquisition tends to be immediately
possible. Food items such as a bite of {‘meat/seafood’,
‘fruit’, ‘vegetable’} tend to be isolated on a plate and
immediately acquirable. Thus, we plan the following acqui-
sition skills, where pit denotes the parameters of the skill to
manipulate the i-th food item, sensed from mi

t and ot:

• T (cit,m
i
t) = {skewer(pit)} for

cit ∈ {‘meat/seafood’, ‘fruit’, ‘vegetable’}
• T (‘sauce’,mi

t) = {dip(pit)}

Food items that are instead in the ‘noodles’, ‘semisolid’,
or ‘cuttable’ category require more nuanced reasoning about
pre-acquisition depending on the distribution of the food on
the plate, and whether other food items are intermixed, on top,
or to the side. We critically observe that the segmentation mask
mi

t obtained from the VLM provides a useful prior over the
spread of food on the plate, which can guide action selection.
We apply a Gaussian smoothing kernel over mi

t which has
the effect of producing a normalized density heatmap of the
food, and use simple pre-conditions to determine a sequence of
skills to pick up a bite of noodles or a semisolid. Specifically,
we measure the maximum density and the 2D entropy of the
heatmap and plan actions as follows.

If the density exceeds a pre-defined threshold
DENSITY THRESH, this indicates the presence of a large
pile of food that can be immediately acquired:

• T (‘noodles’,mi
t) = {twirl(pit)}

• T (‘semisolid’,mi
t) = {scoop(pit)}.



However, when twirling is obstructed by another item mask
mj

t , such as a meatball too close to a planned spaghetti
twirling action, the obstructing food must be pushed aside
first. Similarly, if toppings such as sausages block all viable
scooping actions for mashed potatoes, the sausage nearest to
the boundary of the mashed potato mask should be pushed.

• T (‘noodles’,mi
t) = {push(pit,push), twirl(pit,twirl)} if

the robot must push aside a topping before twirling.
• T (‘semisolid’,mi

t) = {push(pit,push), scoop(pit,scoop)}
if the robot must push aside a topping before scooping.

For food items in the ‘noodles’ category, we also consider
grouping actions. If the entropy exceeds a pre-defined thresh-
old ENTROPY THRESH, indicating that the food item is spread
out on the plate, grouping can be helpful. We can directly
execute unobstructed grouping actions. However, if all viable
grouping actions are blocked by toppings, we instead push the
topping closest to the boundary of the underlying food aside,
group the food, and then acquire.

• T (‘noodles’,mi
t) = {group(pit,group), twirl(pit,twirl)}

if grouping is unobstructed.
• T (‘noodles’,mi

t) = {push(pit,push), group(pit,group),
twirl(pit,twirl)} if the robot must push aside an obstruct-
ing topping before grouping.

If neither acquisition nor grouping is feasible according to
the set thresholds, we push the topping within the food item
mask nearest to its boundary, hoping to expose more of the
food item for future acquisition. If no such topping is available,
we default to acquisition.

Finally, for cuttable items like cake, we use a max major
axis length threshold to determine if mi

t is bite-sized or not,
and either cut and then skewer, or skewer immediately:

• T (‘cuttable’,mi
t) = {cut(pit,cut), skewer(pit,skewer)},

if the length of major axis of mi
t exceeds BITE LENGTH,

• T (‘cuttable’,mi
t) = {skewer(pit)}, otherwise.

We provide further details on task planning for acquisition
in the Appendix.

C. Bite Sequencing via Foundation Models

We introduce a unified framework for planning and exe-
cuting bite sequences that are efficient and adhere to user
preferences. With access to a library of skills L, task planner
T , and user preference ℓpref , we show how the commonsense-
reasoning capabilities of LLMs enable them to act as few-shot
planners for bite sequencing, inherently balancing preference
and efficiency.

We prompt an LLM, in our case GPT-4V with relevant
context about the meal. This includes the semantic food
item labels lt and the user’s preference ℓpref . We augment
this context with: (i) a history of bites taken so far, (ii)
an estimate of the portions of each food type remaining,
and (iii) the per-item efficiencies which correspond to the

number of actions required to pick up a food item (i.e.
|T (cit,m

i
t)|). A higher number indicates a less efficient bite

option since more pre-acquisition skills are required to pick
up the item. To estimate quantities, we simply count the
number of instances detected of the food item present if the
item category is [‘fruit’, ‘meat/seafood’, ‘vegetable’].
For ‘cuttable’ food items, we use the major axis length
of mi

t divided by BITE LENGTH. Otherwise for food items
where the ground truth quantity is not countable, such as for
‘noodles’ or ‘semisolid’, we use ⌈|mi

t|/PORTION SIZE⌉,
where PORTION SIZE is empirically determined for approxi-
mating the number of bite portions in a mask.

Below, we show an example input prompt in gray with the
immediate next bite planned by asking the LLM to perform
completion. We abridge the prompt here for brevity, but
include our full prompting strategy in Appendix.

Items remaining: ["fettuccine", "chicken", "broccoli"]
Preference: "Alternating bites of each"
History: ["chicken"]
Portions remaining: [5, 1, 2]
Efficiencies: [3, 1, 1]
---
Decide what bite to feed me next.
Format your response as follows:
Strategy: Sentence describing your high-level strategy
Next bite: Phrase describing the next bite you will feed
Next bite as list: ['item'] # Or ['item', 'dip'] or []
---
Output your response here.

Strategy: Given that you want to alternate amongst the
three types of items present, and you just ate chicken,
I will feed you either fettucine or broccoli.
Even though broccoli is a more efficient option, with only
1 action required, I will feed you fettuccine since
there are more portions of it.
Next bite: Feed fettuccine.
Next bite as list: ['fettuccine']

By reasoning about the provided context in a chain-of-
thought style, the LLM generates a subsequent bite. Im-
portantly, there are no explicit tradeoffs between efficiency,
portion size, or preference which we embed into the prompt,
allowing the LLM to reason about the most sensible strat-
egy based on the intensity of the user’s preference and
available plate context. Given a next bite, in this case
‘fettuccine’, we then plan the appropriate skill sequence
via T (‘noodles’,m‘fettuccine’

t ) and execute it via L.

D. Integration of Acquisition and Transfer
The self-contained nature of our bite acquisition frame-

work allows for straightforward integration with bite transfer
frameworks, and is agnostic to the exact approach used. We
demonstrate this easy combination with two existing methods:
(i) an outside-mouth bite transfer method [19] that features
visual servoing capabilities, and (ii) a recent method for inside-
mouth transfer [28] that leverages robust mouth tracking and
physical interaction-aware control.



A significant challenge in this integration is ensuring that
food, particularly semi-solid items such as mashed potatoes
or noodle-like items such as spaghetti, does not spill while it
moves from above the plate to the pre-transfer pose infront of
the mouth. Prior works with non-actuated utensils [43] use an
MPC-based approach to generate robot trajectories that con-
strain the orientation of the utensil to remain upright. However,
these methods often require complex tuning and can be prone
to getting trapped in local minima. Our feeding utensil (Fig. 2)
enables us to uniquely circumvent this challenge. We leverage
its roll (γ) and pitch (β) degrees of freedom, distinct from
the robot’s own degrees of freedom, to consistently keep the
fork’s tines horizontal regardless of the robot’s motion. We
continuously monitor the robot’s end-effector pose at 10 Hz
and adjust the feeding utensil’s joints accordingly, ensuring a
smooth and spill-free transfer of food to the user’s mouth.

IV. EXPERIMENTS

We evaluate the effectiveness of FLAIR for feeding diverse
plates each containing various types of food items. We first
conduct a user study to assess FLAIR’s ability to perform long-
horizon bite acquisition of in-the-wild plates, while adhering
to user preferences and efficiently feeding bites. For all ac-
quisition experiments, we interchangeably use 2 Kinova Gen3
arms (one 6-DoF, and another 7-DoF), and a 7-DoF Franka
Emika Panda. We then ablate our hierarchical task planner T
against various state-of-the-art baselines [3, 39, 52]. Finally,
we evaluate the real-world efficacy of our system for feeding
a complete plate to a care recipient with mobility limitations.

A. Bite Acquisition Experiments

Baselines: FLAIR presents a unique approach of taking into
account both preference and efficiency considerations for
bite sequencing. This naturally begs the question of how an
Efficiency-Only or Preference-Only approach would compare.
We implement an Efficiency-Only baseline which greedily
selects the next bite as the item which requires the least
number of pre-acquisition and acquisition skills for pickup
in the current instant, as dictated by the task planner |T (·, ·)|.
The Preference-Only baseline is identical to FLAIR in imple-
mentation, but notably omits efficiency scores when prompting
the LLM to generate a next bite. This encourages the LLM
to only respect a user’s preference without consideration for
how efficient a particular bite may be. In the case that a user
has no preference for feeding, we refer to the Preference-Only
baseline as Commonsense-Only.

Evaluation Plates: We consider an evaluation suite of 6 di-
verse plates of food spanning a wide range of food categories,
visualized in Fig. 4. We include 2 in-the-wild noodle dishes: a
spaghetti and meatballs plate which is a prepared frozen meal
from a grocery store, and a fettuccine alfredo dish with chicken
and broccoli ordered from Applebee’s via Doordash. We also
consider 2 homemade semisolid dishes: mashed potatoes with
sausage, and oatmeal with strawberries. Lastly, we evaluate an
appetizer plate of strawberry, watermelon, celery, ranch, and

chocolate dipping sauce, as well as a dessert plate of a whole
banana, brownie bites, and chocolate dipping sauce.

User Study Design: We evaluate FLAIR’s ability to cater to
user preferences via a two-phase user study across 42 individ-
uals without mobility limitations (Ages: 19-64, Genders: 22F,
20M). In the first phase, we present participants with a survey
showing images of all 6 evaluation plates, and solicit their
natural language preference over how they would prefer to be
fed each plate. In the survey, we specify the capabilities of
our skill library to the participants of our user study, and ask
them to note preferences over their preferred order of bites, or
pairings of food items with sauces. Details on the reported user
preferences are provided in the Appendix. Since evaluating
each submitted preference across all of the plates and baselines
is not scalable, we cluster the submitted preferences into
common shared responses via LLM summarization (GPT-4V).
We focus on cases where users have either no preference or
strong preferences, as slight preferences are not informative
for comparing method behaviors. Thus, we specifically prompt
GPT to filter for strong preferences (i.e. ‘Always feed me
alternating bites of X and Y’ or ‘Please do not feed me X’) and
group them accordingly. For each of the six plates, we then
evaluate our system on the 2 most popular strong preferences
summarized per plate, as well as a ‘I have no preference’
setting for completeness.

We hypothesized the following:
• H1: Compared to the Preference-Only baseline, FLAIR’s

consideration of efficiency in bite sequencing will lead to
more number of bites across all settings.

• H2: Compared to the Efficiency-Only baseline, FLAIR’s
consideration of user preferences in bite sequencing in
presence of strong preferences will lead to more perceived
adherence to preferences, and more human-like feeding,
rated based on the statement “This method is similar to
the strategy I would use to feed myself.”

• H3: Compared to the Efficiency-Only baseline, FLAIR’s
consideration of commonsense reasoning in bite sequenc-
ing in the absence of preferences will lead to more
perceived adherence to bite variety and common food
item pairings, and more human-like feeding.

This user study was approved by the Institutional Review
Boards of both Cornell University and Stanford University.

Food Pickup Results: Fig. 7 displays the results of food
pickup over time across methods in the no preference scenario.
We provide additional results for food pickup efficiency for all
methods averaged across all plates (both strong preferences
and no preferences) in Appendix, noting a similar trend.
Due to its consideration of efficiency in bite sequencing,
FLAIR executes a greater number of pickup skills compared
to Preference-Only, validating H1. This is because when
faced with multiple valid candidate bites, FLAIR, informed
with efficiency scores for each bite, is able to choose the
bite that optimizes for efficiency. In contrast, Preference-
Only randomly selects one bite from this set, often leading
to inefficient acquisition trajectories (Fig. 5). The efficiency



Fig. 4: Plates: We evaluate our system on the following six plates containing a variety of food items, each necessitating highly different manipulation skills.

Fig. 5: Example run on a plate with mashed potatoes and sausages where the user specified no preference. FLAIR, which balances user preferences (bite
variety) and efficiency, is judged by users to better adhere to preferences than Efficiency-Only and outperforms Preference-Only (Commonsense-Only) in plate
clearance. Consequently, FLAIR is considered to provide a more human-like feeding experience compared to the baseline methods. Note that ∗ indicates
statistical significance (p-value < 0.05), determined via a Mann-Whitney U test.

disparity between Efficiency-Only and FLAIR can be linked
to settings where bite variety or strong preferences require
the robot to pickup bites that are less efficient than those of a
method which does not take such preferences into account. For
instance, in a scenario where a robot is instructed to feed a bed
of spaghetti hidden beneath multiple meatballs, methods that
consider preferences must undertake multiple pre-acquisition
skills to push away the meatballs.
User Evaluation: Fig. 6 presents average participant ratings
comparing FLAIR with baseline approaches for settings with
strong user preferences. We conduct a Mann-Whitney U test
for statistical significance, and indicate pairs of methods for
which the average participant ratings were significant (p-
value < 0.05). This is a non-parametric test compatible with
ordinal Likert data, and without specific assumptions on the
normality or variance of the data distributions. By integrat-
ing user preferences into task planning, FLAIR substantially
surpasses the Efficiency-Only baseline in terms of adherence
to user preferences and human-like feeding across various
settings, as hypothesized (H2). The exceptions, where the
performance difference between Efficiency-Only and FLAIR
is not significant, occur in settings where the bite sequence,
generated based solely on efficiency, inadvertently matches
the user’s preferences. Fig. 7 shows participant ratings that
compare FLAIR with baseline approaches in settings where no

user preferences were specified. By leveraging commonsense
reasoning, FLAIR significantly outperforms the Efficiency-
Only baseline across most plates by ensuring bite variety and
appropriately pairing food items with dips, resulting in a more
human-like feeding experience (H3).

B. Comparisons with Task Planning Baselines

For evaluating necessity of pre-acquisition actions, FLAIR
first estimates the distribution of food items by sensing density
and entropy metrics from segmented observations, and then
uses a hierarchical decision-tree style approach. In this section,
we compare this approach against other task planning base-
lines. The closest relevant work, VAPORS [52], concentrates
on noodle dishes and employs physics-based simulations for
decision-making between twirling and grouping noodles. Our
work, however, encompasses a broader spectrum of food
textures and types (such as solids like meatballs, semi-solids
like mashed potatoes, and noodle-like items like spaghetti),
making direct adaptation of VAPORS challenging due to the
complex physics simulations required for accurately represent-
ing their varied interactions. Taking this gap into account, we
compare FLAIR’s task planning accuracy against 3 established
baselines: (i) VAPORS, (ii) VLM-TaskPlanner, which queries
a VLM (GPT-4V [3]) using 10 in-context examples from the
training set to decide between candidate actions, and (iii)



Fig. 6: Average participant ratings for settings with strong user preferences show FLAIR significantly outperforms Efficiency-Only baseline in aligning with
user preferences and achieving human-like feeding in all scenarios, except cases where the efficiency-based bite sequence coincidentally aligns with user
preferences. Note that ∗ indicates statistical significance (p-value < 0.05), determined via a Mann-Whitney U test.

Fig. 7: Left: FLAIR picks up more bites than Preference-Only (Commonsense-Only) accumulated across all plates for no preference scenarios. Right: For
most no preference scenarios, average participant ratings show FLAIR significantly outperforms the Efficiency-Only baseline in aligning with user preferences
(bite variety) and achieving human-like feeding. Note that ∗ indicates statistical significance (p-value < 0.05), determined via a Mann-Whitney U test.

image classification using a pre-trained Swin-Transformer [39]
fine-tuned on the training set. We leverage 2 datasets of plate
images with next action ground truth labels as a test-bed:

Evaluation on noodle-only plates from VAPORS ([52]).
We use the ∼ 100 held-out noodle-only image dataset from
VAPORS and have two third-party human annotators label
each image with “Twirl” or “Group,” corresponding to the
action they deem appropriate. We extract the images with
intercoder agreement and evenly split them into training and
test sets. We compare our task planning approach (FLAIR),
against the three baselines on this set.

Evaluation on logged user study plates. We further com-
pare FLAIR to baselines on the ∼ 100 images per plate logged
from our user study. Each image is labeled by two third-party
human annotators with appropriate ground truth labels for food
items where pre-acquisition is relevant: twirl/group/push for
noodles, push/scoop for semisolids (oatmeal/mashed potatoes),
and cut/acquire for a whole banana. We extract the images with

TABLE I: Comparison of FLAIR’s task planner with baselines

User Study Plates Noodle-Only Plates
FLAIR 0.817 0.854
VAPORS [52] - 0.415
VLM-TaskPlanner [3] 0.518 0.683
Swin-Transformer [39] 0.720 0.785

intercoder agreement, split them evenly into training and test
sets, and report the mean accuracy across plates.

FLAIR uses identical parameters for all plates, whereas
other baselines use plate-specific parameters inferred from
their respective training data. Table I shows the results. FLAIR
significantly outperforms all other baselines on both datasets:
the noodle-only and user study plates. We posit that VAPORS
may suffer due to the sim-to-real gap present in real vs.
simulated observations, and the black-box VLM-TaskPlanner
struggles without reasoning in a hierarchical manner. The
Swin-Transformer classifier is the most competitive baseline,
but likely suffers due to a lack of large-scale training data.

C. Demonstration of Real-World Feeding
We demonstrate FLAIR’s effectiveness in helping a care

recipient with severe mobility restrictions eat an entree dish
comprising boiled baby carrots, watermelon, strawberries,
ranch dressing, and chocolate sauce. The care recipient, a
44-year-old Caucasian/White female with Multiple Sclerosis
for 19 years, has a severely limited range of motion in
their head and neck. Consequently, they require inside-mouth
transfer [28] of acquired bites for successful feeding.

In the pre-study questionnaire, the care recipient mentioned
that they typically have a preferred order in which they like to
eat their meal. They convey this preference to their caregivers



Fig. 8: We demonstrate the real-world effectiveness of our method by feeding
an entree dish to a care recipient with severe mobility limitations.

through natural language, and when caregivers adhere to this
preference, it “definitely enhances my eating experiences.” For
the considered plate, the care recipient specified “I want to first
finish all the celery with ranch dressing, then eat watermelon
without any dips, and finally end with strawberries dipped in
chocolate sauce.” Adhering to this preference, FLAIR begins
by skewering celery, dipping them in ranch dressing, and
transferring them inside the mouth of the user. Once it detects
there is no more celery on the plate, it switches to skewering
watermelons and feeding them without dips as instructed.
Finally, it skewers the strawberries, dips them in chocolate
sauce, and feeds them to complete the meal (Fig. 8). Following
successful feeding, we posed two questions on a seven-point
Likert scale on the necessity of a robot-assisted feeding system
to (i) have a diverse bite acquisition skill library, and (ii)
adherence to meal preferences, for acceptance for day to
day usage. The care recipient strongly agreed (rating = 7)
with both, emphasizing the core contributions of our paper
as critical aspects for an in-the-wild feeding system.

In the post-study questionnaire, the care recipient noted that
while they often have specific preferences for the order in
which they eat their food, they often refrain from sharing
these preferences with their human caregivers. They expressed
concern that such requests might impose additional burdens
on caregivers who are already assisting them with feeding.
However, they were hopeful that a robot designed to assist
with feeding could accommodate their preferences seamlessly,
thus enhancing their mealtime experience by respecting their
autonomy and enabling them to better enjoy their meals.

V. DISCUSSION

FLAIR is a first step towards robot-assisted feeding in real-
world scenarios, adeptly handling various in-the-wild meals
composed of diverse food items. We deploy FLAIR across 2
institutions and 3 different embodiments with a library of 7
dexterous skills. Our evaluations include both bite acquisition
and bite transfer, along with a demonstration feeding a com-
plete plate to a care recipient. FLAIR showcases the ability
to abide by preferences across 42 individuals and a range of
diverse plates, without compromising on efficient food pickup.

Through our extensive evaluations, we identify the following
limitations to guide future work in robot-assisted feeding.

Limitations of Food Perception using VLMs. While cur-
rent VLMs are capable of identifying food items on a
plate, using these generated identifiers with open-set object
detectors can sometimes lead to inaccuracies. FLAIR ad-
dresses this challenge by enriching the identifiers with a
set of hand-coded descriptors tailored to the typical type
of the food item, for example, specifying ‘banana’ as
[‘banana piece’, ‘sliced banana’] and ‘fettuccine’ as
[‘fettuccine pasta’, ‘fettuccine noodles’]. In the fu-
ture, advancements in open-set object detection may eventually
make such specific enhancements unnecessary.

Limitations of Food Manipulation Skills. FLAIR leverages a
library of skills inspired by state-of-the-art food manipulation
methods, but open challenges that occasionally occur include:
slippage during skewering, failing to twirl noodles or scoop
mashed potatoes into reasonable bite sizes, failing to cut tough
items, and errors due to perception (erroneous depth sensing or
imprecise food detection) which can cause manipulation im-
precision. Although some of these failures can be addressed by
re-trying (as long as the item is re-detected), these challenges
can be mitigated in the future by making the skills themselves
reactive, enabling adaptive utensil trajectories that adjust to
food slippage or deformation on the fly.

Limitations of Bite Sequencing. We harness LLMs to plan ef-
ficient bite sequences that adhere to user preferences. However,
today’s language models can sometimes generate unrealistic
or irrelevant outputs (“hallucinations”). In FLAIR, we reduce
hallucinated artifacts in bite sequencing by using prompt-
engineering strategies which we detail in the Appendix. How-
ever, even with templated prompts, FLAIR is still limited
by the tendency of language models to occasionally neglect
context, such as the manipulation efficiency of food items
and their remaining portions. In the future, we are excited by
structured prompting strategies [17] and incorporation of real-
time corrections from the user [49] to address these challenges.

Although these are current limitations, FLAIR’s modular
system design allows for easy interchange of the percep-
tion/planning stacks or even skills themselves. Thus, it will
be able to take full advantage of future advances in VLMs or
better low-level skill policies that are learned or engineered.
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and Astrid Norberg. How people with stroke
and healthy older people experience the eating pro-
cess. Journal of Clinical Nursing, 9(2):255–264,
2000. doi: https://doi.org/10.1046/j.1365-2702.2000.
00355.x. URL https://onlinelibrary.wiley.com/doi/abs/10.
1046/j.1365-2702.2000.00355.x.

[28] Rajat Kumar Jenamani, Daniel Stabile, Ziang Liu,
Abrar Anwar, Katherine Dimitropoulou, and Tapo-
mayukh Bhattacharjee. Feel the bite: Robot-assisted
inside-mouth bite transfer using robust mouth perception
and physical interaction-aware control. In Proceedings
of the 2024 ACM/IEEE International Conference on
Human-Robot Interaction, pages 313–322, 2024.

[29] Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li,
Shubham Garg, Hooshang Nayyeri, Shenlong Wang, and
Yunzhu Li. Roboexp: Action-conditioned scene graph via
interactive exploration for robotic manipulation. arXiv
preprint arXiv:2402.15487, 2024.

[30] Subbarao Kambhampati. Can large language models
reason and plan? Annals of the New York Academy of
Sciences, 2024.

[31] Siddharth Karamcheti, Suraj Nair, Annie S Chen,
Thomas Kollar, Chelsea Finn, Dorsa Sadigh, and Percy
Liang. Language-driven representation learning for
robotics. arXiv preprint arXiv:2302.12766, 2023.

[32] Maya N Keely, Heramb Nemlekar, and Dylan P Losey.
Kiri-spoon: A soft shape-changing utensil for robot-
assisted feeding. arXiv preprint arXiv:2403.05784, 2024.

[33] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
et al. Segment anything. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
4015–4026, 2023.

[34] Minae Kwon, Hengyuan Hu, Vivek Myers, Siddharth
Karamcheti, Anca Dragan, and Dorsa Sadigh. To-
ward grounded social reasoning. arXiv preprint
arXiv:2306.08651, 2023.

[35] Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. Blip: Bootstrapping language-image pre-training for

unified vision-language understanding and generation.
In International conference on machine learning, pages
12888–12900. PMLR, 2022.

[36] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for em-
bodied control. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 9493–9500.
IEEE, 2023.

[37] Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey
Levine. Moka: Open-vocabulary robotic manipulation
through mark-based visual prompting. arXiv preprint
arXiv:2403.03174, 2024.

[38] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding dino: Marrying dino
with grounded pre-training for open-set object detection.
arXiv preprint arXiv:2303.05499, 2023.

[39] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 10012–10022,
2021.

[40] Rishabh Madan, Rajat Kumar Jenamani, Vy Thuy
Nguyen, Ahmed Moustafa, Xuefeng Hu, Katherine Dim-
itropoulou, and Tapomayukh Bhattacharjee. Sparcs:
Structuring physically assistive robotics for caregiving
with stakeholders-in-the-loop. In 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 641–648. IEEE, 2022.

[41] Amal Nanavati, Patricia Alves-Oliveira, Tyler Schrenk,
Ethan K Gordon, Maya Cakmak, and Siddhartha S
Srinivasa. Design principles for robot-assisted feeding in
social contexts. In Proceedings of the 2023 ACM/IEEE
International Conference on Human-Robot Interaction,
pages 24–33, 2023.

[42] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex
Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky,
Anant Rai, Anikait Singh, Anthony Brohan, et al. Open
x-embodiment: Robotic learning datasets and rt-x mod-
els. arXiv preprint arXiv:2310.08864, 2023.

[43] Daehyung Park, Yuuna Hoshi, Harshal P Mahajan,
Ho Keun Kim, Zackory Erickson, Wendy A Rogers, and
Charles C Kemp. Active robot-assisted feeding with a
general-purpose mobile manipulator: Design, evaluation,
and lessons learned. Robotics and Autonomous Systems,
124:103344, 2020.

[44] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

[45] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):
9, 2019.

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

https://openreview.net/forum?id=qDtbMK67PJG
https://openreview.net/forum?id=qDtbMK67PJG
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2702.2000.00355.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2702.2000.00355.x


Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International conference on ma-
chine learning, pages 8748–8763. PMLR, 2021.

[47] Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin
Choi, and Dan Roth. Commonsense reasoning for
natural language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 27–33, 2020.

[48] Lorenzo Shaikewitz, Yilin Wu, Suneel Belkhale, Jennifer
Grannen, Priya Sundaresan, and Dorsa Sadigh. In-mouth
robotic bite transfer with visual and haptic sensing. arXiv
preprint arXiv:2211.12705, 2022.

[49] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z Zhao, Ar-
chit Sharma, Karl Pertsch, Jianlan Luo, Sergey Levine,
and Chelsea Finn. Yell at your robot: Improving
on-the-fly from language corrections. arXiv preprint
arXiv:2403.12910, 2024.

[50] Samantha E. Shune. An altered eating experience:
Attitudes toward feeding assistance among younger and
older adults. Rehabilitation nursing : the official journal
of the Association of Rehabilitation Nurses, 2020.

[51] Priya Sundaresan, Suneel Belkhale, and Dorsa Sadigh.
Learning visuo-haptic skewering strategies for robot-
assisted feeding. In 6th Annual Conference on Robot
Learning, 2022. URL https://openreview.net/forum?id=
lLq09gVoaTE.

[52] Priya Sundaresan, Jiajun Wu, and Dorsa Sadigh. Learn-
ing sequential acquisition policies for robot-assisted feed-
ing. In Conference on Robot Learning, pages 1282–1299.
PMLR, 2023.

[53] Yen-Ling Tai, Yu Chien Chiu, Yu-Wei Chao, and Yi-Ting
Chen. Scone: A food scooping robot learning framework
with active perception. In Conference on Robot Learning,
pages 849–865. PMLR, 2023.

[54] Danielle M Taylor. Americans with disabilities: 2014.
US Census Bureau, pages 1–32, 2018.

[55] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lep-
ert, Andy Zeng, Shuran Song, Jeannette Bohg, Szymon
Rusinkiewicz, and Thomas Funkhouser. Tidybot: Per-
sonalized robot assistance with large language models.
arXiv preprint arXiv:2305.05658, 2023.

[56] Guang Yang, Shuoyu Wang, Junyou Yang, and Peng
Shi. Desire-driven reasoning considering personalized
care preferences. Transactions on Systems, Man, and
Cybernetics: Systems, 2021.

[57] Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon,
Montserrat Gonzalez Arenas, Andy Zeng, Fei Xia, and
Dorsa Sadigh. Distilling and retrieving generalizable
knowledge for robot manipulation via language correc-
tions. arXiv preprint arXiv:2311.10678, 2023.

[58] Kevin Zhang, Mohit Sharma, Manuela Veloso, and Oliver
Kroemer. Leveraging multimodal haptic sensory data for
robust cutting. In 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), 2019.

https://openreview.net/forum?id=lLq09gVoaTE
https://openreview.net/forum?id=lLq09gVoaTE

	Introduction
	Related Work
	FLAIR: Feeding via Long-horizon Acquisition of Realistic dishes
	Hardware System
	Long-Horizon Bite Acquisition Framework
	Acquisition skills
	Pre-acquisition skills

	Bite Sequencing via Foundation Models
	Integration of Acquisition and Transfer

	Experiments
	Bite Acquisition Experiments
	Comparisons with Task Planning Baselines
	Demonstration of Real-World Feeding

	Discussion
	ACKNOWLEDGEMENT

