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Abstract—Dynamic fast adaptation is one of the basic capabil-
ities that enables the animals to timely and properly adjust its
locomotion reacting to the unpredictable changes. Such capability
is also essential for the quadruped robot, when working in
the unforseen environment. While reinforcement learning (RL)
has achieved a significant progress in locomotion control, rapid
adaptation to the model uncertainties remains a challenge. In
this paper, we seek to ascertain the control mechanism behind
the locomotion RL policy, from which we propose a new RL-
based Rapid onLine Adaptive Control (RL2AC) algorithm to
complementarily combine the RL policy and the adaptive control
together. RL2AC is run at a frequency of 1000Hz without the need
for simultaneous training with RL. It presents a strong capability
against the external disturbances or the sim-to-real gap, resulting
in a robust locomotion, which is achieved through proper torque
compensation derived from a novel adaptive controller. Various
simulation and experiments have demonstrated the effectiveness
of the proposed RL2AC against the heavy load, disturbances
acted on one leg, lateral torque, sim-to-real gap and various
terrains.

I. INTRODUCTION

With the advancement of computing resources, model-
free reinforcement learning (RL) has demonstrated significant
potential in the motion control of legged robots, successfully
accomplishing a range of highly dynamic and complex tasks
[1]-[7]. In contrast to model-based control methods [8]-[17],
RL liberates humans from the laborious and time-consuming
task of modeling, significantly easing the challenges of dynam-
ic motion control, particularly for non-expert users. Despite the
impressive performance, it naturally arises the questions about
what is the exact control mechanism behind the legged robot
RL policy and what distinguishes it from traditional model-
based control. In the classical model-based control framework
for legged robots [16], the calculation of joint torque com-
mands integrates feedback and feedforward mechanisms. The
feedback torque is derived from PD feedbacks on both joint
position and velocity tracking errors, with the joint reference
signals calculated from Whole Body Control (WBC). The
feedforward torque is generated based on the robot dynamics
and ground reaction force (GRF) via Jacobian transpose,
with GRF optimized by Model Predictive Control (MPC)
and further rectified by WBC considering full-body dynamics.
Such control architecture aims to generate the appropriate GRF
for stance foot to maintain balance while using a PD feedback
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loop to precisely track the reference trajectory of swing foot
and achieve various dynamic gaits.

Inspired by this, one may wonder if RL follows a similar
approach when implemented on legged robots. Literature [18]
observes that the closed-loop dynamics of a complex bipedal
robot, Cassie, controlled by a learned RL policy together
with a joint-level PD controller, can be locally captured by
a decoupled linear model. This suggests that if the RL policy
is well-trained, the torque generated by the PD controller
based on action commands can well approximate the sys-
tem dynamics and decouple the system into a linear model.
This essentially resembles the traditional model-based control
mentioned earlier. Hence, delving into a comprehensive ex-
ploration and understanding of the correlation and distinctions
between reinforcement control and model-based optimization
control is deemed worthwhile.

Additionally, the RL policy typically undergoes training in
a simulator before being transferred to the physical world,
while it is always struggling with the sim-to-real issue, stem-
ming from differences in dynamic models and environments
between the simulator and reality, which has attracted a lot
of attentions [19]-[21]. Furthermore, in scenarios where the
quadruped robot operates in unstructured environments, the
terrains can vary significantly, and robot may face various
external disturbances, exacerbating the sim-to-real issue and
posing substantial challenges to the robustness of locomotion
control.

In this paper, we propose a RL-based Rapid onLine
Adaptive Control (RL2AC) for legged robot robust locomotion
as indicated in Fig. 1. This approach involves deriving an
adaptive torque compensator, which is combined with an RL
policy to mitigate the effects of external disturbances or model
mismatches due to the sim-to-real gap, thereby enhancing the
robustness of the quadruped robot’s locomotion. We observe
that locomotion policies often exhibit a decoupling into feed-
forward and feedback components, akin to model-based con-
trol. The trained feed-forward term counteracts the influence
of GRF during policy learning and contributes to balance
maintenance, while the feedback part is then responsible for
gait tracking. However, the existences of the sim-to-real gap
or external disturbances introduce the dynamics shift problem,
breaking the balance between the policy and the GRF, that
learned from the simulator. On the other hand, we also observe
that such dynamics shift can be captured and inferred from the
motion differences between the simulation and the reality, and
further be identified and compensated in an adaptive manner.
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RL2AC: We propose a new paradigm for legged robot to complementarily combine RL policy and adaptive control for robust locomotion, where a

novel adaptive control is developed to generate a feed-forward compensation to eliminate the effects of the external disturbances based on policy actions. It
is run on 1000H z without requiring training together with RL and can be directly implemented on the legged robot, enabling rapid online adaptation against
the variations or disturbances in dynamics. RL2AC is verified to be robust against the heavy load, disturbances acted on one leg, lateral torque, sim-to-real

gap and various terrains.

With the aid of the dynamics compensator, the quadruped
robot is capable of performing the locomotion demonstrated in
the simulator, even in the presence of the external disturbances
or sim-to-real gap and holds promise for achieving robust
locomotion.

In summary, the contributions of this work can be unfolded
as: 1) the mechanism behind the RL-based locomotion control
is explored and some observations behind are presented, which
is beneficial for the interpretability and transparency of RL
policies and may advance the development of robust locomo-
tion control eventually; 2) a robust locomotion control strategy
RL2AC is proposed, which enables the robot to rapidly react
and adapt to the variations and enhances its performance
against the model uncertainties; 3) the proposed framework
finds a new paradigm to closely and complementarily integrate
the RL policy and the adaptive control together. Simulations
and experiments demonstrate the effectiveness of the proposed
method in various terrains and tasks.

II. RELATED WORK

In the initial stages of controlling the quadruped robot
system, a preferred approach is the utilization of model-
based methods, as indicated by various studies [8], [10], [14].
This involves calculating a torque feed-forward term for the
stance leg to maintain balance and commonly employing a PD
controller for the swing leg to track the reference gait. The
adaptability to diverse GRF is a key element in enhancing
quadruped locomotion performance, particularly over rough
terrains. In this context, inverse dynamics control emerges
as a convenient and effective method for compensating GRF
in dynamic locomotion [9], [11], with its performance upon

the accuracy of GRF estimation. In challenging terrains like
uneven roads or rocky surfaces, the significant variations in
GRF between each step pose difficulties in dynamic loco-
motion control. The inherent strong coupling in quadruped
robot kinematics and dynamics, along with additional stability
constraints, further complicates highly dynamic maneuvers.
Resolving the conflicts between position control and interac-
tion force control of the legged robot, optimization approaches
are introduced. These include hierarchical task-space inverse
dynamics control [12], WBC [15], and a combination of MPC
and WBC [16]. Additionally, studies have demonstrated that
appropriately modifying or redistributing interaction forces
among the legs leads to coordinated stance and swing leg
movements, resulting in robust behaviors such as recovery
from pushes [13] or walking on slippery terrains [17].

While model-based control and optimization methods have
demonstrated robust performance in specific tasks, they face
challenges when applied to unknown terrains. The difficulty
arises from the inability to adequately model and encode
environmental information into the controller design. In such
scenarios, model-free RL emerges as a promising alternative,
leveraging its learning and adaptation capabilities, especially
for agile maneuvers [3], coordination with perception during
parkour [4] [5], autonomy in the unknown environment ex-
ploration [22]. Typically, diverse motion behaviours require
extensive reward design. To release human from the time-
consuming and labor-intensity reward engineering, adversarial
motion priors (AMP) [23] is introduced, which leverages a
generative adversarial network (GAN) [24] manner to learn
a style reward from a reference motion dataset and enables
the robot to mimic natural movements of the real dog [25].



Teacher-student paradigm [1] is another widely adopted policy
learning framework for the quadruped robot locomotion, in
which the privileged information such as contact force, terrain
profile, is fed into the teacher network to promote the policy
improvement. The obtained knowledge is then distilled to a
student network for deployment. This enables the robot to ac-
quire more effective information for action generation beyond
the proprioceptive measurements, ensuring better alignments
with the environment variations [2] [26]. This environment
latent representation is also implicitly learned through varia-
tional auto-encoder (VAE) [6] or contractive learning [27] for
efficient legged locomotion.

Stable locomotion seeks for the reliable leg movements
and guaranteed stability. RL-based control policy do present
stunning performance in many complex tasks, while the lack of
interpretability and transparency significantly limit its potential
in commercialization. The combination of the model-based
method and RL policy in a complementary manner may take
both strengths of them and hold a promise to achieve the per-
formance improvement. They can be settled heretically, where
the RL policy is responsible for diverse reference command
generation in high-level, while the model based control is used
for precise commands tracking in low-level [28] [29]. This can
also be carried out in a converse way, in which model-based
trajectory optimization (TO) method solve a reference motion
prior from some stability constraints for the policy learning
so as to regulate the RL action generation towards the stable
and trustable movements [30] [7]. In heretical architecture,
it prefers to decouple and split some functionalities from
RL framework and then to be replaced by the model-based
approaches. To enhance the robustness against the external
disturbances, the quadruped robot kinematics [31] or dynamics
[32] is adopted to correct the policy action, or conversely RL
policies is used for corrective whole-body motion tracking and
recovery control [33], all of which aim for stable and robust
dynamic locomotion.

Pursuing the accurate tracking in the presence of the model
uncertainties, adaptive control is one of the effective method-
ologies in both control area and robotics area [34]. It typically
encompasses two distinct schemes: an indirect scheme, where
plant parameters are estimated online for calculating controller
parameters, and a direct scheme, where the plant model
is parameterized in terms of controller parameters that are
directly estimated without plant parameter estimation [35]-
[37]. Composite adaptive control, on the other hand, represents
an integrated approach that combines both direct and indirect
adaptive control strategies. This method involves providing
feedback from both tracking errors and prediction errors to up-
date parameter estimates [38] [39]. In the context of quadruped
robots, precise modeling of contact forces proves challenging,
and the resulting model uncertainties can substantially impact
locomotion performance. To address external disturbances or
model uncertainties, various adaptive control approaches have
been developed to enhance robust locomotion [40], [41].
These approaches suggest that the model uncertainties of the
quadruped robot can be linearly parameterized. Moreover, they
underscore the significance of online adaptation mechanisms
in dynamic locomotion control.
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Fig. 2. An illustration of action and joint position of quadruped robot
under policy 7q: PD joint position tracking error (a — q) presents significant
differences between stance phase and swing phase. In swing phase, the joint
position q can almost well track the action a, while there exists an apparent
position gap between them in stance phase.

III. PRELIMINARIES
A. RL part

In this paper, similar to [6], the environment is mod-
eled as an infinite-horizon partially observable Markov de-
cision process (POMDP), defined by the tuple M =
(S,0,A,do,p,r,7v). The full state, partial observation, and
action are continuous, and defined by s € S,0 € O, and
a € A, respectively. The environment starts with an initial
state distribution, do(sg); progresses with a state transition
probability p(sti1|st,a¢); and each transition is rewarded
with a reward function, r S x A — 'R. The discount
factor is defined by v € [0,1). A temporal observation at
time ¢ over the past H measurements is defined as off =

T . .
[0t ©04-1...04—g| . A context vector, z, is defined, which
contains a latent representation of the world state.

B. Dynamics

Let ¢ is the actual joint position. The joint level dynamic
model of the quadruped robot can be commonly expressed as
follows:

M(q)§ + C(q,4)d + G(q) —JTF =7, (1)

where M(q), C(q,q),G(q),7,F,J denote the inertial ma-
trix, the Coriolis force and gravity force, the joint torque input,
the contact force and the contact Jacobian matrix, respectively.
For the quadruped robot RL framework, PD controller is
commonly adopted as follows:

T = Kp(a - Cl) - Kuyq, 2

where K, and Kgq represent the gain matrices and a is
sampled from the well-trained policy denoted as mq, which
is obtained from RL directly. Substituting Eq. (2) in to Eq.
(1) yields

M(a)d + C(q,@)q + G(q) — I'F = Kp(a —q) - Kaq.
(3)

IV. CONTROL MECHANISM ANALYSIS BEHIND
LOCOMOTION POLICY

A. RL policy for locomotion

Generally, in RL framework, it orchestrates various ele-
ments, such as body commands, gait information, GRF, and



tracking errors, together and consolidates them into a simpli-
fied action a. To figure out how the RL algorithm regulates
these elements together, we conduct a test by following the RL
framework in [6] to control the quadruped robot, which will
be detailed later. The policy 74 in [6] is a neural network that
infers 12 joints position commands to control the quadruped
robot, given a proprioceptive observation, body velocity, and
some latent information. The training process is conducted
on the Isaac Gym, and a PD control is implemented at the
low level, as indicated in Eq. (3). Domain randomization is
adopted during the training so as to enhance the robustness
of the policy against diverse testing conditions. The learned
policy mq is deployed to execute locomotion tasks based on
given commands in rough terrains. In contrast to MPC-WBC
frameworks, where the low-level PD controller effectively
tracks given joint commands with small joint position track-
ing errors, the policy mq manifests a different phenomenon.
Specifically, despite sending action a to the PD controller as a
reference command, the actual joint position does not always
precisely track the action, as illustrated in Fig. 2. Instead, it
exhibits obviously distinctions between the swing and stance
phases, though it is not carefully and intentionally designed.
In swing phase, the joint position can track the action, while
there exists a gap between the joint position and the action
command in stance phase. Such phenomenon exists in many
RL policies [1], [2], [6], [25]-[27] for quadruped robot. The
main discrepancy of these two stages is the existence of the
contact force, which promotes an exploration of the intrinsic
relationship between the presence of contact force and joint
position tracking errors.

Let 7o =Kp(a—q) and 7y =JTF. In the test, the
quadruped robot was asked to locomote with different com-
mands in a rough terrain and 7, and 7, were collected
accordingly. Inspired by the model-based method, in which
a feed-forward term is designed to regulate the contact force
exerted on the stance leg, we compare the normalized val-
ues of 7o and Ty, as indicated in Fig. 3. Let norm(-)
be the normalization process. It is interesting to note that
the normalized torque norm(7e) obtained by the specific
gain K and the corresponding tracking error (a — q), can
well approximate the measured normalized contact torque
norm(Tm). This presents a phenomenon similar to feedback
linearization as observed in [18]. The RL policy mq regulates
the feed-forward torques by adjusting the joint tracking errors
of the stance legs to generate the suitable GRF for locomotion,
while simultaneously generates the reference joint position
commands to drive the movements of the swing legs to form
different gaits according to the given commands.

More significantly, when varying the given commands, the
torque norm(7e) is still able to well estimate the structure of
the actual contact force norm(7y, ). The intuition is that, owing
to domain randomization, the policy mq4 has effectively grasped
the features of diverse GRF changes on various terrains in
the simulation. Consequently, it can adeptly modify actions in
response to different terrain frictions and the required contact
forces/torques, thereby maintaining the robot’s balance. This,
on the other hand, signifies that the tracking error term (a — q)
well captures the structure of the GRF dynamics changes and
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Fig. 3. Illustration of 7¢ and T under different commands on rough plane:

under policy 7q, the normalized estimated torque norm(7e) based on PD
position joint tracking error (a — q) can well approximate the measured
normalized contact torque morm(Tm) across a wide range of locomotion
commands. This demonstrates the effectiveness of the control policy mq in
approximating GRF for various movements.

can be regarded as certain embodied representation of GRF.
More specifically, it is suggested that GRF can be expressed
as a linear parameterization involving the gain K and the
tracking error (a — q). This bears resemblance to principles
observed in adaptive control [38], where the dynamics of
the rigid connected robot can be linearly parameterized by
a regressor matrix and a constant parameter vector.

B. Dynamics shift

When the policy mg is deployed in unseen
tasks/environments or transferred from the simulation to
the reality, it always leads to a performance degradation.
This is commonly interpreted as an out-of-distribution
(OOD) problem that the policy encounters states or actions
during testing that differ significantly from the data it was
trained on. In other words, the policy faces difficulties when
confronted with samples from a distribution that was not
adequately represented in its training set. When referring to
RL framework, this is also called dynamics shift problem
that the state-action transition model is shifted away from the
original one.

In the perspective of the quadruped robot dynamic model,
the dynamics shift is equivalent to introduce the additional
uncertainties as follows:

M(q)4+C(q,a)q+ G(q) —~ITF-Ar =7, (4

where A7 denote the unknown torque uncertainties that may
come from the model mismatch or the external contact force
changes. Typically, the dynamic model of a quadruped robot
can be mostly simulated and thus the majority of the torque
uncertainties come from the variations in the contact forces,
that is, A7 ~ JTAF. In scenarios without additional torque
uncertainties, the learned policy 74 identifies nearly optimal
actions solution, a, according to the given commands and
the model outlined in Eq. (3). Consequently, the quadruped
robot can well perform the given tasks. When JTAF appears,
the optimality of mq may not hold, resulting the performance
deterioration. As mentioned before, domain randomization is
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Fig. 4. An illustration of dynamics compensator: the existence of additional
model uncertainties AF results in the deviation of actual trajectory away
from optimal trajectory learned in simulation and an appropriate dynamics
compensator may alleviate such issue by narrowing down the state-action
distribution gap between simulation and reality.

one effective approach to alleviate the sim-to-real issue by
simulating a broader range of scenarios during the learning
phase. Here, we consider the case that the external torque
uncertainties are unseen in the training stage and significantly
different from the range specified for domain randomization.

Leveraging the optimality of the policy m4 observed in sim-
ulation, if the quadruped robot can replicate its performance
in the face of model uncertainties, it holds the promise of bol-
stering the robot’s robustness against dynamics shift. However,
the substantial variations in the dynamic model, transitioning
from Eq. (3) to Eq. (4), introduce challenges in maintaining
the optimality of the policy, leading to performance deviations,
as depicted in Fig. 4. A viable strategy to address this
challenge involves compensating the extra uncertainties. Due
to the optimally of the policy mq with respect to Eq. (3), if
additional dynamics JTAF can be approximated and canceled
out in a feed-forward manner, the effectiveness of the obtained
policy mq therefore remains intact. This assurance ensures
the performance of the quadruped robot even in the unseen
environment or in the presence of model uncertainties, as
illustrated in Fig. 4. However, if the dynamics compensation
is not properly designed, it may introduce additional model
uncertainties, exacerbating the dynamics shift problem instead.
This restricts the direct implementation of some traditional
force/torque estimation methods [42]-[44], since it may break
the mapping between the policy and the GRF, learned from
training.

V. RL2AC: RL-BASED RAPID ONLINE ADAPTIVE
CONTROL

During the real-world deployment, there is another com-
monly adopted trick to relieve the sim-to-real discrepancy by
adjusting the PD gains. Essentially, the adjustments of the PD
gains change the corresponding feed-forward compensations
and further alter the GRF. By choosing a set of PD gains that
align more effectively with the specific environment and tasks,
the resultant actions generated by the policy mq lead to the
performance improvement, thereby narrowing the gap between
simulation and reality. This provides a new and convenient
perspective to enhance the robustness of the policy mq against
the dynamics shift. If the PD gains can be autonomously and
appropriately adjusted in a real-time manner, it is promised to
obtain a better performance.

The difficulties to autonomously adjust the PD gains lay in
the strong coupling between the PD gains and the action a.
The modification of the PD gains will cause the corresponding
changes in the action. Such implicit and adhesive relationship
is hard to precisely captured and hence it is difficult to derive
a appropriate criterion to regulate the PD gains. To avoid
the explicit representation, some works [21] [26] preferred
to use the neural network to learn this mapping directly.
An actuator network was trained using the pre-collected data
to identify the non-ideal relationship between PD error and
realized torque, which is verified to be able to reduce the sim-
to-real gap. However, such data collection is time-consuming
and labor-intensity and the obtained network is only effective
for the specific robot. Besides, it brings some additional issues,
such as fragile stability, and limited generation to the unseen
situations.

Another approach is to decouple this mapping. According to
the analysis in Section IV-A, the action sent to the PD control
undertakes two main roles. One is to generate an appropriate
GREF for the balance maintenance and locomotion, while the
other is to drive the swing of the legs with suitable gaits
upon the terrains. Hence, the model defined in Eq. (3) can
be rewritten as:

M(q)§ + C(q,@)d + G(a) - ITF =Ky(a —qy) +
———
term m

Kp(qr - q) - qu7 (5)

term n

where q, denotes a reference joint position. As seen in Eq. (5),
the PD controller is divided into two parts, term m and term n.
Suppose q, is a meticulously planned reference joint position,
dictating suitable gaits for the provided commands and serving
as the equilibrium point for the system in Eq. (5). Hence, it
is expected that term m can well compensate the dynamics
on the left side of Eq. (5) so that ferm n can converged to
the equilibrium point at q,. In simulations with well-trained
policy 74, the quadruped robot demonstrates precise execution
of given commands. Consequently, the obtained actual joint
position denoted as ' can be regarded as the equilibrium
point of Eq. (3). Since the quadruped robot is expected to
perform similarly as observed in the simulation regardless of
the external forces, the actual joint position q is expected to
be as close as possible to the joint position ¢’ demonstrated in
the simulation. Alternatively speaking, it is desired to modify
the equilibrium point of Eq. (5) close to q'. To achieve this, q,
can be specified as q, = q’ so that the quadruped robot can
act as observed in simulations. Therefore, in the presence of
the dynamics shift, the effective design of ferm m to counteract
additional torque changes holds the potential for the robot to
perform comparably to scenarios without dynamics shifts.

A. RL foundation

To alleviate the dynamics shift issue, we propose a RL2AC
algorithm that is composed of the RL part and the adaptive
control part, as illustrated in Fig. 5.

Specifically, for RL part, it mainly follows the work in
[6]. The action is specified as quadruped robot 12 join-
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An illustration of the proposed RL2AC framework: the white background section denotes the modules used only for the training stage, while the

grey background section denotes the modules used in deployment stage. A variational auto-encoder (VAE) structure is employed to estimate and infer a latent
representation z; of the environment based on the historical observations ofl . The decoder is only used in training stage and abandoned in the deployment. The
framework incorporates a policy network (actor) in blue and a value network (critic) in green: the former processes current observations and latent embedding
to output actions, while the latter integrates current and privileged observations to produce state values, aiding the policy refinement during training. During
the deployment stage, the action a; is sent to the adaptive controller part together with a reference joint position qr and a sliding vector s to generate the
control input for the quadruped robot. Note that the controller does not need to train together with the policy and is plug and play directly during deployment.

t position commands. For the policy network, denoted as
m(at|os, vi, 2¢), it receives a proprioceptive observation o,
body velocity v;, and latent state z; and infers an action output
a;. The observation that feeds into the policy network contains
the body angular velocity w;, the projected gravity vector
g:, base velocity commands c; ( including linear velocities
and yaw velocity), joint positions q¢, joint velocities ¢, and
previous actions a;_;. For the value network, except the
observation o; and body velocity vy, it receives the additional
privileged observation, including d;, the disturbance force
applied randomly on the robot’s body and h;, the height map
scan of the robot’s surroundings. The reward function encour-
ages the quadruped robot to follow the desired base velocity
commands ¢ and generate smooth and efficient motions. We
define the reward function as the sum of the terms in table I,
where (-)°™? and (-)%** denote the commanded and desired
values, respectively and q, vy, w., h, py . 1 and vy 5 1 denote
the gravity vector projected into the robots body frame, linear
velocities in the xy plane, yaw rate, body height w.r.t. the
ground, foot height, foot lateral velocity, and joint torque,
respectively. The policy is optimized using the proximal policy
optimization (PPO) algorithm [45].

In [6], CENet architecture, denoted as ¢o(of!), is devel-
oped to estimate and infer a latent representation z; of the
environment based on the historical observations o/ as shown
in Fig. 5. The latent representation is widely adopted in RL
policy for the quadruped robot, such as characterizing the
terrain properties [2] [46]. In CENet, the usage of the auto-
encoding mechanism brings the advantages in robot’s forward

and backward dynamics learning and thus aligns the robot

TABLE I
REWARD STRUCTURE

Term Equation Weight
linear velocity tracking  exp{—|vxy — vxy®™%|2/0.25} 1.0
angular velocity tracking exp{—|wz — wz¢"4|2/0.25} 0.5
z velocity v? —2.0
roll-pitch velocity |wzy| —0.05
orientation lg|? —0.2
joint accelerations |&|? —2.5e =7
joint power |7|al —2e—5
body height (h — hdes)? -1.0
foot clearance (p‘}e‘;k — pf,z,k)2 CVf ey k —0.01
action rate (ar —az—1)> —0.01
action smoothing (ar — 2a;_1 +a;_2)> —0.01
power distribution var(r - ¢)2 —e—5

dynamics with the environment changes more effectively. The
output of the encoder also includes an estimation of the
body velocity v, which is shown to be able to enhance the
locomotion policy’s robustness [47] by eliminating the accu-
mulated estimation drift. Different from [6], in the proposed
framework, we design another encoder output q,, which is
the estimation of the next joint position q;;. This is not only
beneficial to the dynamics learning, but also decouples the
reference joint command from the action. In this manner, q,
is a more specific goal for PD tracking over the action a and
provides a way to integrate the adaptive control defined later.
The loss function of the CENet composes of two parts as
follows:

Lcg = Lest + Lvar, (6)

where L. denotes the MSE estimation loss and is defined as



Lost = MSE(Vy,vi) + MSE(Qr,qt+1), and Lyag denotes
a standard [3-variational auto-encoder [48]-[50], which lever-
ages the MSE for the reconstruction loss and Kullback-Leibler
(KL) divergence as the latent loss. Details can be found in [6].
Note that for RL2AC, the RL part is not limited to [6] and
can be specified as other frameworks by adding an encoder
module to learn q.

B. Adaptive control

It has been shown in Section IV-B that the term (a — q) can
be regarded as certain embodied representation of the contact
force/torque. We assume that this representation is also valid
for the unknown torque uncertainty Ar. Further, since q, is
the estimation of q’ obtained in the simulation, we can have:

AT ~ Ku(a—ar), (N

where K, denotes the unknown ideal gain matrix that can
well fit Eq. (7). Hence, Eq. (4) can be rewritten as:

M(q)d + C(q,4)q + G(q) — I"F-AT ~ Kp(a — qr)
+Ku(a - qr) + Kp(qr - Q) - qu (8)

Assuming the validity of the assumption in Eq. (7), the
reference joint position q, remains the equilibrium point of
the system in Eq. (8). This implies that the quadruped robot
can perform similarly to the case without model uncertainties
if the additional torque can be effectively compensated.

Inspired by the regressor-based adaptive control, let
¢ =(a—q,) and K, be the estimation of the gain matrix
K. An adaptive controller is proposed as:

7= (Kp +Ku)o(a,ar) - Kes ©)
~—
feedforward feedback
where Ky denotes a gain matrix and
s=dq—a(qr—q). (10)

It consists of the feedforward term used to compensate the
dynamics and feedback term developed for the reference joint
position tracking. Hence, for the proposed controller in Eq.
(9), it attempts to compensate the dynamics so as to minimize
the tracking errors (q — qy.).

In order to speed up the convergence of both tracking
errors and parameter estimation errors, a composite adaptive
controller [38] [39] is developed. First, according to Eq. (9),
a prediction error is defined as:

(1)

where 7, denotes the actual torque acted on the quadruped
robot joints and is measured by the torque sensor. A bounded-
gain-forgetting (BGF) composite adaptive law is specified as
follows:

E=Tp—T

Ku = —T(t)p(a, qp)(sT + weT)

where k is a weight factor and I'(¢) with I'(0) = T’y is a
positive-definite matrix updated by [38]

d

ZLH) = =MD (1) + dla, ar)d(a, ax) T

(12)

13)

and A(t) is a variable forgetting vector specified as:

A0 = 2ot — E0)
0
in which Ao and ko are constant values, denoting the upper
bound of A(t) and ||T'(¢)]||, respectively. It is shown in [38]
[39] that ideally, the BGF composite adaptive law is able to
achieve global asymptotic stability in the sense that all closed-
loop signals are bounded and the tracking error s and the
prediction error £ asymptotically converge to 0.
For the proposed controller defined in Eq. (9), if Ks is
specified as Ks = Kg and o satisfies aKgq = Kp, it can be
rewritten as:

T = (Kp + Ku)¢(aa Qr) - Kd(él - O‘(Qr - q))
=Kud(a,qr) + Kp(a — q) — Kag.

PD control

(14)

15)

compensator

The proposed controller only introduces a compensator term
compared with the original PD controller in Eq. (3) and
therefore is easy to be directly implemented on most RL
policies. In addition, the added compensator is specified in
low-level and the update law defined in Eq. (12)-(14) can run
as fast as the PD controller. Hence, it can react more quickly to
the variations of the external contact forces/torques compared
with RL based online fine-tuning methods and exhibits the
superiority in dynamic response and rapid adaptability. The
whole algorithm is summarized in Algorithm 1.

Algorithm 1 Implementation of RL2AC on quadruped robot

Require: 7(a;|oy, v, 2:), ¢o(0fl), K, \o, ko.
1: procedure RL2AC

2: while not stop do

3 get a ~ m(a;|os, vy, z;) and qp = ¢e(0f!);

4: repeat

5 update A(t) from Eq. (14), I'(t) from Eq. (13),

s from Eq. (10), € from Eq. (11), K,, from Eq. (12);
6: get torque 7 from Eq. (9);
7 send 7 to robot and get feedback q;
8 until next a and q,
9 get ot,vt,zt,of;
10: end while
11: end procedure

VI. SIMULATION

The proposed method is evaluated on a legged robot named
as Unitree Al. To train the policy, we used NVIDIA’s Isaac
Gym simulator [51] and code adapted from the legged_gym
environment [52]. The policy was run on a laptop equipped
with a NVIDIA GeForce RTX 3060 GPU and Intel Core
i7-12700H CPU. The control frequency of the policy was
50Hz. The value, policy and CENet network were jointly
trained for 8000 iterations and PPO was adopted for policy
training. The training parameter setting was the same as [6].
For each iteration, the data was collected in parallel from 3000
environments. The Adam optimizer was used to minimize the
value and policy loss with a learning rate 1e=3. The details of



the domain randomization are listed in Table II, which is the
same as [6]. In both simulation and experiment, we specify
some notations as follows:

« Original: using policy mq [6] without disturbances and
RL2AC;

« Baseline: using policy mq with disturbances but without
RL2AC;

o Proposed: using both policy mq and RL2AC with distur-
bances.

TABLE I
DOMAIN RANDOMIZATION DURING POLICY TRAINING

Parameter Randomization range Unit
Payload [-1,2] kg
K factor [0.9,1.1] Nm/rad
K factor [0.9,1.1] Nm/rad
Motor strength factor [0.9,1.1] Nm
Center of mass shift [-0.05,0.05] m
Friction coefficient [0.2,1.25] -

A. Heavy load

The first simulation is to verify the performance of RL2AC
against the unknown heavy payload. The robot was required to
walk forward with command [0.5, 0, 0](m/s). We intentionally
added a 19k¢ heavy payload on the base of the Al robot,
which was much heavier than it encountered during the
training (—1kg ~ 2kg) and nearly twice of itself weight. The
control parameters of the proposed method were specified as:
R = 1.2, /\0 = 3.0, k‘o = 20.

The existence of the unseen heavy load induces the state-
action distribution shift, resulting in the performance degrada-
tion. As seen on the left side of Fig. 6(a), the center of mass
(CoM) of a quadruped dog is severely lowered with the heavy
load, resulting in the poor command tracking performance
compared with the original one without payload as illustrated
in Fig. 6(b). With the proposed RL2AC, it can resist the heavy
load to keep straightly and follow the command much better
than the baseline. This is due to the appropriate feed-forward
compensator generated to eliminate the affect of the heavy
load to the locomotion, which is verified in Fig. 6(c) such that
the hip joint of left front (LF) leg with the proposed method
is much closer to the original one and changes within small
range. This indicates that robot can maintain the same height
as before and walk forward steadily. Such improvement is
also clearly demonstrated in the comparison of the gait pattern
as indicated in Fig. 7, where the colored part represents the
contact time of each leg during locomotion. With heavy load,
it is difficult for robot to swing its legs by using baseline,
resulting in four legs consistently touching the ground for
a long duration, making it challenging to track the provided
command. This is significantly alleviated when using RL2AC,
which implies that RL2AC narrows the gap between the
state-action distribution of without/with 19kg payload. The
gain changes corresponding to the right front (RF) leg are
presented in Fig. 8. Since the heavy payload was acted on
CoM, it mainly affected the thigh and knee joints and more
torque compensators were required in these two joints, which

Baseline Proposed

2 X
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Fig. 6. Locomotion with heavy load

is coordinated with the results in Fig. 8, where the gains
of the thigh and knee legs are increased more significantly
so as to provide sufficient torques to counteract the external
disturbances.

To further demonstrate the robustness of RL2AC against
the heavy load, we conducted another simulation such that
we varied the payload from 4kg to 17kg when the quadruped
robot was climbing 0.15m high stairs, as illustrated in Fig.9(a).
The remaining setting kept the same and the control parameter
was slightly modified as « = 2.2. For the baseline, the
quadruped robot failed to climb the stairs when the payload
was increased to 11kg, while its counterpart is 14kg by using
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Fig. 7. Gait comparison with heavy load
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RL2AC. The utilization of the proposed method leads to the
increased payload up to 40% over the baseline, eventually.

Domain randomization is one of effectiveness way to en-
hance the robustness of the quadruped robot against various
terrains or disturbances. In our framework, domain randomiza-
tion is also adopted during the training stage. The proposed
RL2AC is an augmentation upon the domain randomization
and can further enhance the robustness of the robot, espe-
cially in the presence of the apparent gap between training
and deployment. Such improvement is clearly shown in the
simulation where the quadruped robot was asked to follow
the given command [0.5,0,0](m/s) on the plane when the
payload was varied from [—5,15](kg) with 1(kg) increment
per test. During the training stage, the payload added to the
quadruped robot was randomly sampled from [—1,2](kg).
In the deployment stage, the robot can well track the given
velocity commands by using baseline without RL2AC as
illustrated in Fig. 10, even if the payload has already out
of the range [—1,2](kg). This illustrates the effectiveness of
the domain randomization. However, the tracking performance
may gradually descend when the gap between training and
deployment continues to widen, in particular, a rapid descent
when the payload is greater than 5(kg). This signifies that the
effective range of the domain randomization is limited and
it may lose its power when the environment is significantly
different from its training stage. The proposed RL2AC is then
used to alleviate such issues and further enhance the robot ro-
bustness against diverse environments. As seen in Fig. 10, the
tracking performance with the proposed method is observed
with a visible improvement over the baseline, even in the
presence of significant load differences between training and
deployment, which demonstrates that the proposed RL2AC
method can further improve the robot performance upon the
domain randomization.
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Fig. 10. The comparison of quadruped robot actual velocity in * — axis
with various payloads
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(a) Quadruped robot configuration under torque distur-
bances
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Fig. 11. Locomotion under external torque disturbances

B. Torque disturbances on RF leg

For second setting, we manually added an additional torque
disturbance [—10.3,4.82,5.88](Nm) to the RF leg, which
significantly enlarged the gap between the training and the
implementation, and pose the extra difficulties in the gen-
eralization of the policy. The robot was still required to
walk forward with command [0.5,0,0](m/s). The control
parameter was slightly modified as x = 1.2.

The configuration change of the quadruped robot after
adding the torque disturbance is shown in Fig. 11(a), resulting
in the unnatural inward movement of RF leg. This dramatically

Gravity Projection

180° 180° 180°

original baseline proposed

Fig. 12.  Comparison of gravity projection
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Fig. 14. Gain change in the presence of disturbances on RF leg

reduces the stable margin during locomotion. Therefore, the
quadruped robot failed to follow the given command after
3.7s and then fall down as illustrated in Fig. 11(b). For the
proposed RL2AC, it was still able to control the robot to move
forward around 0.405(m/s), in the presence of the external
torque and achieved a similar performance to the original case.
The improvement is also visible referring to the change of
the quadruped robot gravity projection as shown in Fig. 12,
where CoM of the robot titled to the front right due to the
existence of the torque disturbance acted on RF leg by using
baseline. For RL2AC, it corrected the movements of the RF
leg by identifying and compensating the disturbance and the
corresponding disturbance estimation results of the RF leg are
shown in Fig. 13. Note that the torque compensation is only
activated during the stance phase and it can be seen that once
the RF leg contacted the ground, RL2AC generated a torque to
counteract the affect of the disturbance, resulting in the less
CoM shift as indicated in Fig. 12. The corresponding gain
changes of the 12 joints are presented in Fig. 14 and among
them, joints 4, 5, 6 corresponding to the hip, thigh and knee
joints of the RF leg change more significantly than remaining
in order to alleviate the affects of the external disturbance.

VII. EXPERIMENT

For the physical implementation, the policy is directly used
to control the Al robot and the control frequency of the online
adaptation part is 1000Hz.

A. Lateral torque disturbances

To verify its performance against the unknown disturbances,
in this experiment, we put a shelf on the robot base and added
a 3kg dumbbell (one quarter of Al robot weight) on the right
side of the shelf about 0.3(m) away from its base origin as
shown in Fig.15(a). Such configuration has not be seen in the
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Fig. 15. Robot actual path

training stage. The control parameters of the proposed method
were specified as: kK = 4.5, \g = 1.0, kg = 20.

The existence of the dumbbell applies a lateral torque on
the robot body and causes the robot deflecting to the right.
Hence, it cannot walk straightly even if the command was
[0.5,0,0](m/s), as shown in Fig. 15(b), where the origi-
nal, baseline and propose denote the quadruped robot paths
without dumbbell, with dumbbell but without RL2AC and
with both dumbbell and RL2AC, respectively. It demonstrates
that without RL2AC, robot cannot resist the lateral torque
disturbances and was deviated to the right gradually. The
lateral torque had a significant impact on the robot yaw,
resulting in the path deviation. For RL2AC, it corrected the
movements of the legs through compensating the lateral torque
by updating the gains of the related joints, as illustrated in
Fig. 16. Since the dumbbell was located at the right side of
the base, the RF and right hind (RH) legs undertook more
pressures. Consequently, the gains of the knee joints 3, 9
on the RF and RH change more significantly. Note that the
order of legs in simulator and reality is reversed. This is
also detected on the tracking errors of q — q, in Fig. 17,
where the corresponding joint position tracking errors of the
RF and RH legs fluctuate more severely. However, RL2AC
can always reduce the tracking errors through proper feed-
forward compensation once it increased and all the joints
position tracking errors converge to be within a bound. This
verifies the effectiveness of the proposed method against the
lateral torque disturbance. We further compare the RF leg gait
frequency and joint amplitude of the original, baseline and
proposed. The closer the gait frequency and amplitude are to
the original one, the more effective the controller is in dealing
with and compensating for lateral force disturbances. This
implies that the quadruped robot can maintain similar gaits
even in the presence of external disturbances. For Fig. 18(b),
the middle point denotes the joint position mean value and up
and down bar represent the maximum and minimum values,
respectively. Therefore, we can conclude that RL2AC can well
handle the dynamics shift issue by properly compensating
the disturbances, achieving the similar performance with the
original one without disturbances.

B. Slow motion

When the RL policy is transferred to the reality, normally
it is hard to control the quadruped robot to perform accu-
rate slow locomotion, i.e., moving forward at a small speed
less than 0.2(m/s). One possible reason is that the smaller
the speed is, the greater the impact of friction and model
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uncertainty have in reality. This results in a more serious
sim-to-real issue and therefore can be used to verify the
performance of the proposed RL2AC against the sim-to-real
gap. The control parameters in this experiments were specified
as:k = 10, g = 1.0, kg = 20. Note that there was no any
disturbance considered in the test and the comparison was
between the baseline and the proposed one by following a
small speed command.

The performance of both two methods for tracking com-
mand [0.2,0,0](m/s) is given in Fig. 19, where the mean
actual speed of the baseline and the proposed are 0.040(m/s)
and 0.127(m/s), respectively, exceeding 200% improvemen-
t. Due to the existence of the proper feed-forward torque
compensation by using RL2AC, each joint received sufficient
power to overcome the friction and model uncertainties and
therefore was able to move smoothly for catching up the given
speed command. This is illustrated in Fig. 20, where joints
with the proposed method rotate periodically. As for the base-
line, the joints 1-4 situated on the RF and LF legs exhibited
irregular movement, appearing to encounter resistance before

Gait Frequency

0.03

—— baseline
10 —— proposed
—— original

10

joint 1

-0.02

4 5
Frequency (Hz)

—-0.07

25 30

0.4

0.2

joint 2

] 5
Frequency (Hz)

0.0

25 30

0.0

-0.2

joint 3

a 5
Frequency (Hz)

6 5 1015 20 25 30
Frequency (Hz)

baseline orginal proposed

(a) Gait frequency analysis (b) Gait amplitude analysis

Fig. 18. Gait analysis

11

— baseline —- Mean baseline

~— proposed

~- Mean proposed

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time (s)

Fig. 19. Command tracking results at small speed 0.2(m/s)

— baseline  — proposed ]

Joint (rad)

PR OoR 00 B Oor OO Lo 00k kor OO
O T W O A I o = S g S o Wi S P =

P.A.AAAAMA DA AAAINALALAL A A PP

prareva AT gy o VeV o VAV YA A A ATR D g e GV AT TA A G v ‘m

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
Time (s)

Fig. 20. Comparison of 12 joints’ motions

suddenly progressing, as depicted in Fig. 20. This behavior
resembled a scenario where the back legs pushed the front legs
forward, as observed in the accompanying video. Moreover,
we conducted more tests by specifying the desired command
from 0.1(m/s) to 0.3(m/s) with 0.02(m/s) increment and
the results are presented in Fig. 21, which demonstrates a
significant improvement of RL2AC over the baseline and
verifies the performance of RL2AC against the sim-to-real gap.
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Fig. 21.  Slow motion tests



C. Various terrains

In this experiment, we show the performance of the pro-
posed RL2AC method against rough terrains. Specifically,
the robot was required to follow the velocity command
[0.5,0,0](m/s) when locomoting on various terrains and the
command velocity tracking errors were evaluated. The control
parameters in this experiments were specified as:k = 25, \g =
1.0, kg = 20. We tested the quadruped robot on various ter-
rains including plane, lawn, sand, mound, cobbled and shrubs,
as illustrated in Fig. 22(a)-Fig. 22(f) and the experimental
comparison with the baseline, that solely used learned policy,
is illustrated in Fig. 22. The velocity of quadruped robot was
estimated by using a Kalman filter [53], which may not be very
accurate. However, it can roughly reflect the actual velocity
and is valid to evaluate the velocity tracking performance of
the quadruped robot. As seen in Fig. 22(g), the actual velocity
of the quadruped robot with the proposed RL2AC is much
closer to the desired velocity and demonstrates an apparent
improvement on the velocity tracking with about 21.38% pro-
motion in average over the baseline on 6 terrains. Additionally,
when the rough level of terrains is increased, for example
from (a)plane to (f)shrubs, the velocity tracking performance
gradually descends, implying the enlargement of the sim-to-
real gap. Such performance decline mainly stems from varied
GRF on different terrains. In particular, when the robot walked
into the shrubs, its legs were often entangled by intricate
branches and vines, imposing additional forces/torques. The
existence of the adaptive mechanism in proposed method, was
able to adjust the feedforward torques to alleviate the influence
of varied GRF and additional disturbances, resulting in a better
performance in various terrains with less velocity decrease
than its counterpart (30.1% vs 43.4%) as depicted in Fig.22(g).
This verifies the effectiveness of the proposed RL2AC against
rough terrains.

VIII. CONCLUSION

We aim to delve into and comprehend the control mecha-
nism underlying the RL policy employed in quadruped robot
locomotion. As a result of this exploration, we introduce a new
framework named RL2AC, designed for robust locomotion
by seamlessly integrating RL and traditional adaptive control.
Simulation and experimental results substantiate the effective-
ness of RL2AC in mitigating various disturbances, both in
simulated environments and the physical world.

The improvements of RL2AC over the baseline primarily
stem from the feedforward torque compensation calculated
based on the joint position tracking errors (q — q), assisting
the quadruped robot to handel the model uncertainties during
the deployments. As seen in Fig.2, during the swing phase,
the tracking errors are small, resulting in the limited torque
compensation. Therefore, RL2AC mainly affects the stance
phase and is hard to deal with the model uncertainties exerted
on the swing phase. Essentially, it is a trajectory tracking
control problem during leg swing, which has been exten-
sively explored in the existing literatures. There are a lot of
methods used to tackle the model uncertainties for trajectory
tracking tasks. In future work, these methods can be further
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integrated into the proposed control framework to improve the
robustness against the disturbances during the swing phase. In
addition, RL2AC method is able to effectively alleviate the
sim-to-real issue and enhance the robot robustness against the
disturbances, while its capability to handle totally unknown
tasks is limited. The RL2AC method aims to assist the robot
to recovery its original performance when suffering from the
sim-to-real gap or the external disturbances. If its original
performance is poor, no much improvement can be earned with
RL2AC. Generalization to totally unknown tasks is crucial for
robot, especially when deployed in un structured environment.
It is also one of key issues in robot learning domain, that we
will continuous to explore and contribute in future.
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