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Abstract—Unlike traditional cameras, event cameras measure

changes in light intensity and report differences. This paper

examines the conditions necessary for other traditional sensors

to admit eventified versions that provide adequate information

despite outputting only changes. The requirements depend upon

the regularity of the signal space, which we show may depend

on several factors including structure arising from the interplay

of the robot and its environment, the input–output computation

needed to achieve its task, as well as the specific mode of access

(synchronous, asynchronous, polled, triggered). Further, there

are additional properties of stability (or non-oscillatory behavior)

that can be desirable for a system to possess and that we

show are also closely related to the preceding notions. This

paper contributes theory and algorithms (plus a hardness result)

that addresses these considerations while developing several

elementary robot examples along the way.

I. INTRODUCTION

Advances in sensing technologies have the potential to
disrupt the field of robotics. Twenty-five years ago, the shift
from sonar to LiDAR sensors triggered a significant change
as robots became, rather abruptly, much more capable. Since
information enters a robot through its sensors, a change to its
sensor suite often has ramifications downstream — sometimes
quite far downstream. Accordingly, it is useful to have tools
to help us understand the impact of sensor modifications.

The last decade has seen steadily-growing interest in event
cameras, a novel type of camera that operates on a separate
principle from traditional devices [17], [9]. These cameras
afford various new opportunities, and a growing body of work
has begun exploring these possibilities [24], [41], [29], [33]. At
a high level, event cameras report changes in intensity rather
than an absolute measurement. These devices perform per-
pixel differencing instead of operating with entire frames —
the very concept of a ‘frame’, while crucial for devices
employing a shutter (whether rolling or global), is absent from
event cameras. Because this different principle of operation
eases some hardware design constraints, current technology
allows for consumer-grade devices that, when compared to
frame-based cameras, can be much more efficient in transmit-
ting image data and operate at considerably higher temporal
resolution with greater dynamic range [9]. Not only are these
performance traits attractive for reducing motion blur, but
event cameras report information that is important for robots in
key applications: their output naturally focuses on changes to
the scene, picking up dynamic elements within the perceived
environment (e.g., [20] and [42]).

Whether event cameras will form an impetus for new
sets of innovative applications, or will drive some radical
departure from existing methods, or even initiate a thorough
re-examination of the field’s underpinnings—all remains to be
seen. This paper is not about event cameras per se. Instead, it
asks the question:

For any sensor, say, of type X 2 {compasses, IMUs,
LiDARs, . . .}, is there a useful “event X” version?

The transformation from the raw sensor into an event
version, a process which we dub eventification,1 involves dis-
entangling, conceptually, several different facets. We introduce
theory by which one can formulate the preceding question in
a meaningful way. The present paper is an abstract treatment
of the essential properties that make event cameras interesting,
expressed with reasonable rigor, and in adequate detail to lay
open some connections that were not immediately apparent.

The long-term goal of this theory is to try to change the
way our field interacts with the areas of sensor design and
with signal processing researchers. Today, most roboticists
are consumers: we see what is out there, we buy something
from a catalogue, we bolt it to a robot, and then integrate it
with software. Robot use-cases (i.e., task performance) should
play a greater role in informing what sensors ought to exist,
what should be designed, and how manufacturers might target
roboticists.

A. Related work
Our work was inspired by the recent paper of Zardini,

Spivak, Censi, and Frazzoli [38], wherein the authors provide a
compositional architecture with which they express a model of
a UAV system. That robot system has, as one specific sensor,
an event camera. Their model leads one to ponder whether
the ‘eventfulness’ of the camera might be obtained by some
abstract transformation of a traditional camera — if so, what
would such a transformation look like? Hence the present
paper, which retains some of the spirit of their work. That
same spirit is also apparent in the important, early paper of
Tabuada, Pappas, and Lima [35] which provides an expressive
mathematical framework through which aspects of robotic
systems’ behavior can be represented and examined.2 Their
work employs equivalence based on bisimulation; the notion
of output simulation we employ is similar (but known to be

1A term inspired by [25].
2A recent ICRA workshop [43] attests to expanding interest in such topics.



distinct, cf. [28]). The concept of stutter bisimulation —where
sequences may have repeated subsequences— was introduced
and studied in the early model checking literature [1], [5],
though we are not aware of applications to robotics. The
present paper can be understood as generalizing output simu-
lation so that, among other things, it may also treat a form of
stutter.

The question of whether some sensors provide a system with
a sufficiency of information has roots in the classic notion
of observability [13], [11]. More recently, and more directly
in the robotics community, the subject has been related to
concepts such as perceptual limits [7], information spaces [14]
(originally of von Neumann and Morgenstern), and lattices of
sensors [15], [40]. Erdmann’s work [8] reverses the question,
asking not what information some given sensor provides, but
what a (virtual) sensor ought to provide. His action-based
sensors become, then, a computational abstraction for under-
standing the discriminating power needed to choose productive
actions. The idea of the discriminating power and a (virtual)
sensor wrapping some computation permeates this paper’s
treatment as well. Whether some transformation undermines
the ability to extract sufficient information, especially as a
model for non-idealized sensors, appears in [31] — a paper
which we shall refer to again, later. An important class of
transformations are ones that seek to compress or reduce
information. These fit under the umbrella of minimalism,
an idea with a long history in robotics [3], [21], but with
adherents of a more recent generation having a greater focus
on algorithmic [26] and optimization-based tools [27], [39].

Neuromorphic engineering, the field that pioneered event
cameras, is concerned with a class of devices much broader
than just cameras [18]. In recent years, along with advance-
ments in spiking-neuron and neural computing [4], [22],
[23], event-driven tactile sensors [36], synthetic cochlea [19],
chemical concentration and gas detection sensors [34], [37]
have been developed. We feel the robotics community could
be better at informing sensor designers about what devices
would be germane for robot use.

B. Paper Organization with a Preview of Contributions
The next section deals with preliminaries and begins by

introducing, with some basic notation, definitions that have
mainly been established elsewhere. Section III introduces the
core notion of substitutable behavior (Definition 5) on which
this work is based; it takes a new and general form, subsuming
and unifying two previous concepts, while affording much
greater expressive power. In Section IV this power is put to
use. We give a basic structure, which we call an observation
variator (Definition 9), that is capable of reporting differences
in the signal space, leading to the formation of a derivative.
We pose a form of optimization question, asking how to find
a smallest variator, and then establish that minimization is
NP-hard (Theorem 18). As we then show, modes of data
acquisition affect the sensor’s power, so Section V turns to this
in depth, moving beyond synchronous data flow. The key result
(Theorem 27) is that polling and event-triggered acquisition

modes are equivalent to one another. Section VI considers the
fully asynchronous data acquisition mode; doing so requires
the variator to have additional structure (Definition 28, a
monoidal variator). The problem, when expressed directly,
appears complicated; we construct a conceptually simpler ver-
sion, and show that they are actually equivalent (Theorem 35).
The penultimate section motivates and examines some simple
notions of stable behavior, which ensure the sensor will not
chatter. But fortunately chatter-free behavior can be obtained,
essentially for free, in problems of interest (Theorem 39).
Section VIII offers a brief summary of the paper.

Overall, the work explicates the concept of eventification,
and then identifies and explores some further connections.
With an eye toward an axiomatic theory of sensing, some care
has been exercised to be economical: additional structure is
introduced just when actually demanded; for instance, only in
Section VI do any algebraic properties make an appearance.

II. BACKGROUND: FILTERING PROBLEMS

To be analogous to event cameras, event sensors must
couple raw sensor devices (i.e., physical components and elec-
tronics for energy transduction) with some computation (e.g.,
signal differencing). Thus, our treatment will consider them
to be units that are abstract sensori-computational devices
(borrowing this term of Donald [6]). These units implement a
kind of abstract sensor (here, a term inspired by Erdmann [8]).
We will use procrustean filters, a basic framework for treating
(potentially stateful) stream processing units, to model such
sensori-computational devices:

Definition 1 ([31]). A sensori-computational device is a 6-
tuple (V,V0,Y,t,C,c) in which V is a non-empty finite set of
states, V0 is the non-empty set of initial states, Y is the set of
observations, t : V ⇥V !√(Y ) is the transition function, C
is the set of outputs, and c : V !√(C) \ {?} is the output
function. (We write √(A) to denote the powerset of set A.)

A sensori-computational device translates between streams
of discrete symbols. These objects are transition systems for
processing streams, with finite memory (represented as the set
of states) used to track changes in sequences as they’re being
processed incrementally. Acting as transducers, they receive
a stream of observations as input, revealed one symbol at
a time, and generate one output per input symbol. In our
setting, the observations will come from a raw sensor or after
some simple post-processing; outputs, represented abstractly
as colors, encode either actions (for a policy) or state estimates
(for a filter).

The sets of states, initial states, and observations for F
are denoted V (F), V0(F) and Y (F), respectively. All the
sensori-computational devices throughout this paper (i.e., units
modeled, in the terminology of [31], via some filter F) will
just be presented as a graph, with states as its vertices and
transitions as directed edges bearing sets of observations. For
simplicity, for all such devices we shall assume that Y (F) is
finite. The values of the output function will be visualized as
a set of colors at each vertex, hence the naming of C and c(·).



Given a particular sensori-computational device F =
(V,V0,Y,t,C,c), an observation sequence (or a string) s =
y1y2 . . .yn 2 Y ⇤, and states v,w 2V , we say that w is reached
by s (or s reaches w) when traced from v, if there exists
a sequence of states w0,w1, . . . ,wn in F , such that w0 = v,
wn = w, and 8i 2 {1,2, . . . ,n},yi 2 t(wi�1,wi). (Note that Y ⇤
denotes the Kleene star of Y .) We let the set of all states
reached by s from a state v in F be denoted by VF(v,s) and
denote all states reached by s from any initial state of the filter
with VF(s), i.e., VF(s) =

S
v02V0

VF(v0,s). If VF(v,s) =?, then
we say that string s crashes in F starting from v.

We also denote the set of all strings reaching w from some
initial state in F by S F

w = {s 2 Y ⇤|w 2 VF(s)}. The set of
all strings that do not crash in F is called the interaction
language (or, briefly, just language) of F , and is written
as L (F) = {s 2 Y ⇤|VF(s) 6= ?}. We also use C (F,s) to
denote the set of outputs for all states reached in F by s,
i.e., C (F,s) =

S
v2VF (s) c(v). When s crashes, the vacuous

union gives C (F,s) =?. Definition 1 ensures that any L (F)
contains at least e , the empty string; we have C (F,e) =
[v02V0c(v0).

We focus on sensori-computational devices with determin-
istic behavior:

Definition 2 (deterministic). An sensori-computational device
F = (V,{v0},Y,t,C,c) is deterministic or state-determined, if
for every v1,v2,v3 2V with v2 6= v3, t(v1,v2)\ t(v1,v3) =?.
Otherwise, we say that it is non-deterministic.

Algorithm 2 in [30] can turn any non-deterministic sensori-
computational device into one with an identical language
but which is deterministic. Hence, without loss of generality,
in what follows all sensori-computational devices will be
assumed to be deterministic.

Overwhelmingly we shall give simple examples, but one
easily gains expressive power by constructing complex
sensori-computational devices by composing more elementary
ones:

Definition 3 (direct product). Given F = (V,V0,Y,t,C,c) and
F 0 = (V 0,V 00,Y

0,t 0,C0,c0), then their direct product is the 6-
tuple F ⇥F 0 = (V ⇥V 0,V0⇥V0

0,Y ⇥Y 0,tF⇥F 0 ,C⇥C0,cF⇥F 0)
with

tF⇥F 0 : (V ⇥V 0)⇥ (V ⇥V 0)!√(Y ⇥Y 0),
((vi,v0j),(vk,v0m)) 7! t(vi,vk)⇥ t 0(v0j,v0m);

cF⇥F 0 : (V ⇥V 0)!√(C⇥C0)\{?},
(vi,v0j) 7! c(vi)⇥ c0(v0j).

(Note: To save notational bloat, we shall only present
pairwise products, trusting the reader will be comfortable with
the obvious extension to any finite collection.)

Remark 1. If s1s2 . . .sn 2L (F⇥F 0) then each si = (yi,y0i) has
yi 2 Y (F) and y0i 2 Y (F 0), and further y1y2 . . .yn 2L (F), and
y01y02 . . .y

0
n 2L (F 0). The converse, however, needn’t hold: e.g.,

for some y1y2 . . .yn 2 L (F) there may exist no s1s2 . . .sn 2
L (F⇥F 0) with si = (yi,y0i).

The standard way to compare sensori-computational devices
is in terms of input-output substituability, that is, whether
one can serve as an functional replacement for another. The
following expresses this idea.

Definition 4 (output simulation [26]). Let F and F 0 be two
sensori-computational devices, then F 0 output simulates F if
L (F)✓L (F 0) and 8s 2L (F) : C (F 0,s)✓ C (F,s).

If F 0 output simulates F , the intuition is that then any stream
of observations that F can process can also be processed
effectively by F 0; the outputs that F 0 yield will be consistent
with those F could produce. In terms of functionality, F 0 may
serve as an alternative for F .

When considering F 0 and F , often F would be treated as
providing a specification (with L (F) circumscribing aspects
of the world that may arise, and C (F, ·) characterizing suitable
outputs); an output simulating F 0 realizes behavior that is
acceptable under this specification. This is because such a
sensori-computational device F 0 is able to handle all strings
from F and yields some suitable outputs for each string. Note
that the output may be the result of some sort of estimation
(like a combinatorial filter [14]), or the output may be a
representation of an action to be executed, and so encode a
policy (e.g., [26]).

III. GENERALIZED OUTPUT SIMULATION

For this paper, the point of departure is a more general
notion of output simulation. We consider a case where one
may specify some relation that modifies the strings of one
sensori-computational device, so that the second device must
process strings through (or in the image of) the relation.

Definition 5 (output simulation modulo a relation). Given two
sensori-computational devices F and F 0, and binary relation
R ✓ A⇥ B we say that F 0 output simulates F modulo R,
denoted by F 0 ⇠ F (mod R), if 8s 2L (F):

1) 9t 2L (F 0) such that sR t;
2) 8t 2 B such that sR t, t 2L (F 0) and C (F,s)◆ C (F 0, t).

(Notice that, as t 2L (F 0), C (F 0, t) 6=?.)

Some sensori-computational device F is output simulatable
modulo relation R if there exists some F 0 which output
simulates F modulo R. More concisely, in such cases we may
say that F is R -simulatable. When F 0 output simulates F
modulo R, intuitively, the streams of observations F can pro-
cess can also be effectively processed by F 0 after they’ve been
pushed through binary relation R. Because R may be 1-to-
1, 1-to-many, many-to-1, or many-to-many, this generalization
gives the ability to treat several phenomena of interest.

Remark 2. As most relations we will use are binary relations,
we’ll suppress the ‘binary’ qualifier in that case. Also, when
some relation is a (partial or total) function and it is clearer to



express it as a map, we will write it using standard notation
for functions.

Definition 5 is the fundamental notion of behavioral substi-
tutability that underlies our treatment in this paper. It is a non-
trivial generalization of two prior concepts. One interesting
and, as it turns out, particularly useful degree of flexibility is
that the relation R can associate strings of differing lengths.

First, the preceding definition generalizes the earlier one:

Remark 3. When R = id , the identity relation, then Defini-
tion 5 recovers Definition 4 (the standard definition of output
simulation, the subject of extensive prior study).

The specific requirement that F 0 handle at least the inputs
that F does, explicit in Definition 4, becomes:

Property 6. For relation R ✓ A⇥B, a necessary condition for
any F to be R-simulatable is that R \ (L (F)⇥B) be left-total
in the sense that for every s 2L (F), there exist some t with
sR t. (Were it otherwise for some s 2L (F), then that string
s suffices to violate condition 1 in Definition 5.)

And second, for the other generalization:

Remark 4. Definition 5 subsumes the ideas of sensor
maps [31] (also called label maps). These are functions,
h : Y ! X , taking individual observation symbols to another
set. (One may model sensor non-ideality by applying such
functions; for instance, observations y 2 Y and y0 2 Y can be
conflated when h(y) = h(y0).) Specifically, sensor maps only
give relations R restricted so that any sR t must have |s|= |t|,
that is, the strings will have equal length.

Given a sensori-computational device F and general relation
R, the question is whether any sensori-computational device
F 0 exists to output simulate F modulo R. For the particular
case that R is id , F always output simulates itself. This
fact means that the prior work focusing on minimizing filters,
such as [28], [32], [26], can be reinterpreted as optimizing size
subject to output simulation modulo id .

Returning to more general relations R, the existence of
a suitable F 0 is the central question in prior work on the
destructiveness of label maps [31], [10]. General relations
make the picture more complex, however, and these will be
our focus as well as complex relations composed from more
basic ones.

When R is many-to-1 it models compression or conflation.
Output simulation of F modulo such a relation shows that F’s
behavior is unaffected by reduction of observation fidelity, i.e.,
it is compression that is functionally lossless. Relations R that
are 1-to-many model noise via non-determinism. Output simu-
lation modulo such relations show that operation is preserved
under the injected uncertainty. And many-to-many relations
treat both aspects simultaneously.

Going forward, we will use the open semi-colon sym-
bol to denote relation composition, i.e., U # V is {(u,v) |
9r s.t.(u,r) 2 U and (r,v) 2 V}. Beware that when both rela-
tions are functions (cf. Remark 2), the notation unfortunately

reverses the convention for function composition, so g # f =
f (g(·)) = f �g. (This will arise in, for example, Problem 2.)

Property 7. Given sensori-computational devices F and G,
and left-total relations U and V on L (F)⇥L (G), with U ◆
V, then G⇠ F (mod U) =) G⇠ F (mod V).

Hence, sub-relations formed by dropping certain elements
do not cause a violation in output simulation if left-totalness is
preserved. Before composing chains of relations, we examine
further the connection raised in Remark 4.

Remark 5. Unlike sensor maps, the property of output sim-
ulating modulo some relation is not monotone under com-
position. For sensor maps, there is a notion of irreversible
destructiveness: composition of a destructive map with any
others is permanent, always resulting in a destructive map.
That theory can talk meaningfully of a feasibility bound-
ary in the lattice (e.g., title of [10]). For relations, com-
posing additional relations can ‘rescue’ the situation. For
instance, consider the device Frgb in Figure 1. For relation
U = {(a, p),(a,q),(b,q),(b, t)} there can be no G that output
simulates F modulo U because q must either be green or
blue, but can’t be both. Formally {green}=C (F,a)◆C (G,q)
since aUq, and {blue} = C (F,b) ◆ C (G,q) since bUq,
and C (G,q) 6= ?. But with V = {(p,a),(p,a0),(t,b),(t,b0)},
which is not left-total (cf. Property 6), crucially, then it is
easy to give some G0 so that G0 ⇠ Frgb (mod U # V). One can
simply take Frgb and add a0 and b0 to the edge sets with a and
b, respectively.

{a}

{b}

Fig. 1: A small sensori-computational device Frgb, with
Y (Frgb) = {a,b}, and C = {red,green,blue}.

Nevertheless, one may form a chain of relations:

Theorem 8. Given two relations R1 and R2 , and sensori-
computational device F , if there exists a sensori-computational
device F1 with F1 ⇠ F (mod R1) and there exists a sensori-
computational device F2 with F2 ⇠ F1 (mod R2), then F2 ⇠
F (mod R1 # R2).

Since Sections IV and V will consider particular relations
that model properties specifically related to event sensors, this
theorem can be useful when one is interested in devices under
the composition of those relations.

IV. STRUCTURED OBSERVATIONS: OBSERVATION
DIFFERENCING

The most obvious fact about event cameras is that the
phenomena they are susceptible to (photons) impinge on
some hardware apparatus (the silicon retina) in a way which
produces signals (intensity) for which differencing is a mean-
ingful operation. We talk about ‘events’ as changes in those
signals because we can define and identify differences (e.g.,
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Fig. 2: An iRobot Create drives down a corridor its wall sensor
w generating output values as it proceeds.

in brightness). Thus far, our formalized signal readings are
only understood to involve elements drawn from Y (F), just
a set. The idea in this section is to contemplate structure in
the raw signal space that permits some sort of differencing.
Accordingly, the pair definitions that follow next.

Definition 9 (observation variator). An observation variator,
or just variator, for a set of observations Y is a set D and a
ternary relation SD ✓ Y ⇥D⇥Y .

Often the two will be paired: (D, SD). Reducing cumber-
someness, the SD will be dropped sometimes, but under-
stood to be associated with D and Y (F) for some sensori-
computational device F . Anticipating some cases later, when
(y,d,y0)2 SD we may also write it as a function: y0= SD(y,d).
But beware of the fact that it may be multi-valued, and it may
be partial.

On occasion we will call D the set of differences, termi-
nology which aids in interpretation but should be thought of
abstractly (as nothing ordinal or numerical has been assumed
about either the sets Y (F) or D).

Definition 10 (delta relation). For a sensori-computational
device F with variator (D, SD), the associated delta relation
is —

��D
F ✓L (F)⇥ ({e}[ (Y (F) ·D⇤)) defined as follows:

0) e—
��D
F e , and

1) y0—
��D
F y0, for all y0 2 Y (F)\L (F), and

2) y0y1 . . .ym—
��D
F y0d1d2 . . .dm, where (yk�1,dk,yk) 2 SD.

Intuitively, the interpretation is that SD tells us that dk
represents a shift taking place to get to yk from symbol yk�1.
(With mnemonic ‘difference’ for dk.)

Leading immediately to the following question:

Question 1. For any sensori-computational device F with
variator (D, SD), is it —

��D
F -simulatable?

Given F with variator (D, SD), we call a device F 0 that
output simulates F modulo —

��D
F a derivative of F . In such

cases we will say F has a derivative under the observation
variator D.

Example 1 (iRobot Create wall sensor). In Figure 2 an iRobot
Create moves through an environment. As it does this, the
infrared wall sensor on its port side generates a series of
readings. These readings (obtained via Sensor Packet ID: #8,
with ‘0 = no wall, 1 = wall seen’ [12, pg. 22]) have binary
values. The Create’s underlying hardware realizes some basic
computation on the raw sensor to produce these values by
thresholding luminance, either as a voltage comparison via

{0}

{1}

{1}

{0}

(a) A sensori-computational
device Fwall, with Y (Fwall) =
{0,1}; within the vertices,
white encodes {0}, and azure
{1}.

{1}{0}
{?} {?}

{>}
{>}

(b) A sensori-computational de-
vice F 0wall with observation vari-
ator is D2 = {?,>}, so F 0wall ⇠
Fwall

⇣
mod —

��D2
Fwall

⌘
.

Fig. 3: Two sensori-computational devices describing the
scenario in Example 1: (a) A model of the rather trivial
transduction of the Create’s wall sensor, and (b) its derivative
under the observation variator D2.

analogue circuitry or after digital encoding. To cross the
hardware/software interface, the detector’s binary signal is
passed through a transducer, namely sensori-computational
device of the form shown in Figure 3a.

A suitable observation variator is D2 = {?,>}, and
ternary relation written in the form of a table as
(row,cell-entry,column) 2 SD2 ✓ {0,1}⇥D2⇥{0,1} as:

SD2 0 1
0 ? >
1 > ?

Using this variator, there is a sensori-computational device
that output simulates Fwall modulo the delta relation —

��D2
Fwall

.
Figure 3b shows its derivative F 0wall. A direct interpretation for
how D2 encodes the variation in the bump signal is that >
indicates a flip in the signal; while ? makes no change. Also,
the first item in the sequence, some element from Y (Fwall),
describes the offset from wall at time of initialization. 2

The preceding example, though simple, illustrates why we
have started from the very outset by considering stateful
devices. This may have seemed somewhat peculiar because
we are treating sensors and these are seldom conceived of as
especially stateful. An event sensor requires some memory,
and so state is a first-class part of the model. (As already
touched upon, some authors have applied the moniker ‘virtual’
to sensors that involve some computational processing.)

Especially when exploring aspects of the delta relation’s
definition, most of our examples will involve very simple
input–output mappings. It should be clear that they could
quickly become rather more complex. For instance if, in
Figure 2, the robot must tell apart odd and even doors, then a
suitable adaption of the sensor is easy to imagine: the 2 states
in Figure 3a become 4, and the outputs involve three colors,
etc.

Example 2 (Lane sensor). A self-driving car, shown in Fig-
ure 4, moves on a highway with three lanes. It is equipped with
on-board LiDAR sensors to detect the vehicle’s current lane.
Supposing these are indexed from its right to left as 0, 1 and
2, then this lane sensor produces one of these three outputs.
To construct a sensor that reports a change in the current



Fig. 4: A self-driving car, with on-board sensors to detect
whether the vehicle changes to the left or right, or stays at
the current lane.

lane, consider the observation variator is (D3-lane, SD3-lane)
with D3-lane = { LEFT , NULL , RIGHT } and, SD3-lane(i,d) =
min(max(i+ v(d)),0),2), where v( LEFT ) = +1, v( NULL ) =
0, and v( RIGHT ) =�1.

This observation variator will be able to transform any
sequence of lane occupations into unique lane-change signals
in a 3-lane road. 2

Example 3 (Minispot with a compass). Consider a Minispot,
the Boston Dynamics quadruped robot in Figure 5. Assume
that it is equipped with motion primitives that, when activated,
execute a gait cycle allowing it to move forward a step, move
backward a step, or turn in place ±45°, without losing its
footing. Starting facing North, after each motion primitive
terminates, the Minispot’s heading will be one of 8 directions
(the 4 cardinal plus 4 intercardinal ones).

Suppose the raw compass produces measurements x 2 {"
,%,!,&,#,., ,-}, then consider the observation variator
(D3, SD3) with D3 = {�,Ø,+}, where (x,Ø,x) 2 SD3 , and
(x,+,y) 2 SD3 if the angle from x to y is 45°, and (x,�,y) 2
SD3 if the angle from x to y is �45°.

Given the four motion primitives, any sequence of those
actions produces a sequence of compass measurements that
the output variator D3 can model. The constraint implied by
such sequences means that a model of the raw compass will
have a derivative under variator D3. 2

Fig. 5: A Boston Dynamics Minispot quadraped is equipped
with a compass to give its heading. To simplify the control
challenge, the Minispot is programmed with motion primitives
to step forward and backward, and to turn in place by ±45°
(illustrated on the right).

The previous two examples show that constraints can be
imposed on the signal space—in the first case owing to the
range of lanes possible (i.e., a saturation that arises); or via
structure inherited from the control system (i.e., only some
transitions are achievable). For both situations, a simple 3
element set is sufficient only because the sequences of changes
the sensor might encounter has been limited.

Example 4 (Minispot with a compass, revisited). Suppose the
Minispot of Example 3 has been enhanced by supplementing
its motion library with a primitive that allows it to turn in
place by ±90°. Now, after each motion primitive terminates,
the compass signal can include changes for which (D3, SD3)
is inadequate. When Definition 10 is followed to define —

��D3
F ,

those sequences involving 90° changes fail to find any dk 2D3,
and the relation is not left-total. Hence, via Property 6, there
can be no derivative.

Naturally, a more sophisticated observation variator does
allow a derivative. Supposing we encode {",%, . . .-} instead
with headings as integers {0,45, . . . ,315}, then we might
consider the variator (Z,+). By the plus we refer to the
function + : Z⇥Z!Z, the usual addition on integers. To meet
the requirements of Definition 9 strictly, we ought to take the
restriction to the subset of triples (in the relation) where the
first and third slots only have elements within {0,45, . . . ,315}.
Then there are devices that will output simulate modulo
—
��Z
F . 2

The preceding illustrates how, for a sufficient observation
variator, (D, SD), some aspect of the signal’s variability is
expressed in the cardinality of D. Thus, seeking a small (or the
smallest possible) D will be instructive; employing the whole
kitchen sink, as was done with the integers above, fails to
pinpoint the necessary information. Also, having stated that
some variators are sufficient and touched upon Property 6, the
following remark is in order.

Remark 6. Despite Property 6, one does not require that SD
be left-total for Question 1 to have an affirmative answer. For
instance, some pairs of y and y0 may never appear sequentially
in strings in L (F), and so SD needn’t have any triples with y
and y0 together. (Though, obviously, the left-totalness of —

��D
F

is required.)

Proposition 11. A sufficient condition for an affirmative
answer to Question 1 is that y0 = SD(y,d) be a single-valued
partial function whose —

��D
F is left-total. More explicitly, the

requirement on SD(y,d) is

(y,d,y0) 2 SD and (y,d,y00) 2 SD =) y0 = y00.

Placing stronger constraints solely on the variator, we obtain
another sufficient condition:

Proposition 12. For (D, SD), if for every y,y0 2 Y (F), there
exists a unique d 2D so y0= SD(y,d) then Question 1’s answer
is affirmative.

The two previous propositions, while straightforward
‘closed-form’ sufficient conditions, make demands which sel-



dom hold for realistic sensors. For instance, SD may be multi-
valued in order to model noise. The complete answer for any
SD, deferred until Section IV-B, does appear in Lemma 17.

But first, a camera as an example is, of course, long overdue.

Example 5 (single-pixel camera). A single-channel, 8-bit,
single-pixel camera is a device that returns reading in the
range Y = {0, . . . ,255} at any point in time. We might model
such a camera via a sensori-computational device Fcam that
does no state-based computation: have it use 256 vertices
V (Fcam) = {v0, . . . ,v255}, and outputs Ccam = {o0, . . . ,c255}, so
that c(vi) = {oi}, and transitions which consider only the last
value tcam(vi,v j) = { j}.

For the observation variator, we again can use standard
integers (Z,+). Now we restrict to the subset of triples
where the first and third slots only have elements within
{0, . . . ,255}; the second slot then clearly only has elements
{�255, . . . ,255}.

The device Fcam with variator (Z,+) (or the restriction
described) is —

��D
F -simulatable because a derivative F 0cam can

be constructed for it. 2

The integers used to model observation changes for the pixel
intensities differ from those with the compass bearings: that
is, the elements that remain after + : Z⇥Z! Z is restricted
in Example 5 and Example 4 have different structure. We shall
revisit this.

Rather more obviously, a single-pixel camera has only
limited applicability. Next, we consider how to scale up.

A. Modeling complex sensors
We start with a definition that allows aggregation of output

variators.

Definition 13 (direct product variator). Given (D1, SD1) as
an output variator for F1, and (D2, SD2) for F2, then the set
D1⇥2 = D1⇥D2 and SD1⇥2 defined via
�
(y1,y2),(d1,d2),(y01,y

0
2)
�
2 SD1⇥2()(y1,d1,y01)2 SD1 ^

(y2,d2,y02)2 SD2 (1)

is an observation variator for F1⇥F2, and is termed the direct
product variator.

Example 6 (iRobot Create bump sensors). Recalling the
iRobot Create of Example 1, these robots have left and
right bump sensors, both of which provide binary values
(obtained via Sensor Packet ID: #7 (bits 0 and 1, right and
left, respectively, encoding ‘0 = no bump, 1 = bump’ [12,
pg. 22]). As these are binary streams, just like the wall
sensor, they can each be transformed with variator (D2 =
{?,>}, SD2) that tracks bit flips. And to track both, one
constructs {?,>}⇥ {?,>}, and the ternary relation SD2⇥2 .
In this way, a di = (?,?) would indicate that neither bump
sensor’s state has changed since previously. 2

Example 7 (1080p camera). A conventional 1080p camera has
3 channels at a resolution of 1920 ⇥ 1080. Using the Fcam of

Example 5, apply the direct product (of Definition 3) to form
an aggregate device, and the direct product (of Definition 13)
to the variator (Z,+). The triple relation is large (with 4.0⇥
1011 elements). 2

In order for this camera, assembled from the single-pixel
ones, to not be unwieldy we must show how output simulation
also aggregates. We do this in Proposition 15, but need the
following definition first.

Definition 14 (length compatible relations). A pair of rela-
tions, R1 and R2 , each on sets of sequences R1 ✓ A⇥B (with
A ✓ Sa

⇤, B ✓ Sb
⇤), R2 ✓C⇥E (with C ✓ Sc

⇤, E ✓ Se
⇤) are

length compatible if for every a 2 A and c 2C with the same
length (i.e., |a| = |c|), there exists some b and e of identical
length (|b|= |e|) with aR1 b and cR2 e.

In other words, when we consider the image of any sequence
under R1 , along with the image of any sequence of identical
length under R2 , both contain some pair of common-lengthed
sequences.

We now express the property of interest.

Proposition 15 (product output simulation). Given sensori-
computational devices F1 and F2 which are output simulatable
modulo length compatible relations R1 ✓ A⇥ B and R2 ✓
C⇥E, respectively, then device F1⇥F2 is output simulatable
modulo relation R1⇥2 defined via:

�
(a1,c1) . . .(an,cn)

�
R1⇥2

�
(b1,e1) . . .(bm,em)

�
~� (2)

(a1 . . .an) R1 (b1, . . . ,bm) ^ (c1 . . .cn) R2 (e1, . . . ,em) .

Corollary 16. Given sensori-computational devices F1 and
F2, with variators (D1, SD1) and (D2, SD2), a sufficient con-
dition for direct product F1⇥F2, with direct product variator
(D1⇥2, SD1⇥2), to possess a derivative is that F1 and F2 do.

The proof of Corollary 16 and the foundation it builds upon,
Proposition 15, construct the output simulating device via a
direct product.

To summarize, we may compose sensori-computational de-
vices to give a more complex aggregate device, and also com-
pose output variators to give a composite variator. Question 1
for the aggregate device, can be answered in the affirmative
by consider the same question for the individual devices.

B. Answering Question 1
In most of the examples we have considered, the argument

for the existence of an output simulating sensori-computational
device has been on the basis of the fact that the variator allows
complete recovery of the original stream. Indeed, being based
on the same reasoning, conditions like those in Propositions 11
and 12 are rather blunt. Remark 6 has already mentioned
that some specific two-observation subsequences might never
appear in any string in L (F), thus a set D smaller than
one might naı̈vely expect may suffice. Even beyond this, and
perhaps more crucially in practice, full reconstruction of the
y0y1 . . .ym from y0d1d2 . . .dm may be unnecessary as whole



subsets of L (F) may produce the same or a compatible
output, some element of C (F,y0y1 . . .ym).

Hence, to answer an instance of Question 1 when some
input streams are allowed to be collapsed by —

��D
F , one must

examine the behavior of the specific sensori-computational
device at hand. But to provide an answer for a given (D, SD),
a computational procedure cannot enumerate the possibly
infinite domain of —

��D
F . We give an algorithm for answering

the question; the procedure is constructive in that it produces
a derivative of F if and only if one exists.

Question 1 (Constructive version). Given F with variator
(D, SD), find an F 0 such that F 0 ⇠ F

�
mod —

��D
F

�
if one exists,

or indicate otherwise.

In this case, we shall additionally assume that the set D is
finite.

The procedure is given in Algorithm 1. It operates as
follows: it processes input F to form an F 00 (in lines 1–16)
by copying and splitting vertices so each incoming edge has a
single label. This F 00 is processed to compute the differences
between two consecutive labels (lines 18–30) and the results
are placed on edges of F 0. If it fails to convert any pair of
consecutive labels, then it fails to compute the change of
some string in F and reports ‘No Solution’. In the above
step, after computing the changes, a single string can arrive
at multiple vertices in F 0. We further check whether those
strings, which will be distinct strings in L (F) but share the
same image under —

��D
F , have some common output or not.

If that check (in lines 31–40) finds no common output, then
it fails to satisfy condition 2 of Definition 5 and, hence, we
report ‘No Solution’. Otherwise the procedure merges those
reached states to determinize the graph. As a consequence,
Algorithm 1 will return a deterministic sensori-computational
device that output simulates the input modulo the given delta
relation. Its correctness appears as the next lemma.

Lemma 17. Algorithm 1 gives a sensori-computational device
that output simulates F modulo —

��D
F if and only if there exists

such a solution for Question 1.

Proposition 11 (Revisited). The proof of Proposition 11
stopped short of giving an actual sensori-computational device.
One may simply employ Algorithm 1 to give an explicit
construction.

C. Hardness of minimization
Earlier discussion has already anticipated the fact that an

interesting question is: What is the minimal cardinality set D
that is possible for a given F?

Decision Problem: Observation Variator Minimization (OVM)
Input: A sensori-computational device F , and n 2 N.

Output: TRUE if there exists a variator (D,SD) and a sensori-
computational device F 0, such that F 0 output simulates
F modulo —

��D
F and |D| n. FALSE otherwise.

Theorem 18. OVM is NP-hard.

Algorithm 1: Delta Transform: DELTAD(F)⇢ F 0

Input : A device F , output variator (D, SD)
Output: A determinized device F 0 that output simulates F

modulo —
��D
F ; ‘No Solution’ otherwise

1 Create a sensori-computational device F 00 as a copy of F
with each state v00 in F 00 corresponding to state v in F

2 for v00 2V (F 00) do // Make vertex copies
3 L := Set(v00.IncomingLabels())
4 if v00 = v000 then L := L[{e} ;
5 for ` 2 L do

6 Create a new state v00` and set c(v00` ) = c(v00)
7 for ` 2 L do

8 for every outgoing edge v00
y�! w00, w00 6= v00 do

9 Add an edge v00`
y�! w00 in F 00

10 for every `-labeled incoming edge w00 `�! v00 do

11 if w00 6= v00 then

12 Add an edge w00 `�! v00` in F 00
13 else // Self loop

14 Add edges v00k
`�! v00` in F 00, for k 2 L

15 Remove v00 from F 00
16 Rename v00e to v000
17 Create F 0 as a copy of F 00 and q := Queue([v00])
18 while q 6=? do // Apply variator
19 v0 := q.pop()
20 Find the corresponding state v00 in F 00 and

{`} := v00.IncomingLabels() // A singleton
21 for z 2 v0.OutgoingLabels() do

22 Initialize set Uz :=?
23 if v0 = v00 then

24 Uz := {z}
25 else

26 Uz := {d : D | (`,d,z) 2 SD}
27 if Uz =? then

28 return ‘No Solution’
29 Replace z in F 0 with label set Uz
30 Mark v0 as visited, and add children of v0 to q
31 Reinitialize q := Queue([v00])
32 while q 6=? do // State determinization
33 v0 := q.pop()
34 for d 2 v0.OutgoingLabels() do

35 W 0 := {w0 : V (F 0) | v0 d�! w0}, X := \w02W 0c(w0)
36 if X =? then

37 return ‘No Solution’
38 if |W 0|> 1 then Merge all states in W 0 as m0, set

the c(m0) := X , and add m0 to q ;
39 else

40 Add states in W 0 to q if not visited
41 return F 0

D. Aside: Trimming initial prefixes and absolute symbols

Before moving on, a brief digression allays a potential
niggling concern and serves as our first use of relation com-
position. Some readers might find it disconcerting that —

��D
F ’s

definition includes the initial ‘absolute’ symbol y0 for each
sequence — this might be seen as a model for hybrid devices
rather than sensors that report pure changes. One possible
resolution is to introduce the new relation:

Definition 19 (Shave relation). For a sensori-computational
device F , the associated shave relation for k 2 N is Sk ✓



L (F)⇥Y (F)⇤ defined as follows:
0) e Sk e , and
1) y0y1 . . .ym Sk ykyk+1 . . .ym.

Intuitively, Sk trims away prefixes of length k. Then we
can compose relations to give —

��D
F # S1 , which removes the

initial ‘absolute’ symbol y0. Hence by analogy to Question 1,
one might ask whether sensori-computational device F with
variator (D, SD) is (—

��D
F # S1 )-simulatable? This can be an-

swered most directly by modifying Algorithm 1, inserting a
step between lines 30 and 31 which replaces the labels of edges
departing v00 with e labels and performs an e-closure thereafter.
Then, state determinization (lines 31–40) will succeed if and
only if the answer to the question is affirmative.

V. DATA ACQUISITION SEMANTICS: OBSERVATION
SUB-SEQUENCES AND SUPER-SEQUENCES

It is worth closely scrutinizing the phrase ‘event-based’, a
technical term used in multiple different ways. When people
speak of event-based sensors or event sensors, they typically
refer to a device capable of reporting changes. But in comput-
ing more generally, and in the sub-field of ‘event processing’
specifically, the phrase is used when a system is driven by
elementary stimulus from without. Adopting that standpoint
as an organizational principle in structuring software, one
obtains event-based (or event-driven) software architectures.
Such architectures will oftentimes impose synchronous oper-
ation. This contrasts with systems that must ‘poll’ to obtain
information, and polling systems will usually do some sort
of comparison or differencing between successive checks to
detect a change. To de-conflate these slightly intertwined
ideas, we must distinguish data acquisition from difference
calculation. (Concretely: Definitions 9 & 10 dealt with the
latter; Definitions 20 & 22 will deal with the former.)

The previous section determines if the set D of differences
retains adequate information to preserve input–output behav-
ior. All processing considered thus far preserves sequence
lengths precisely, which may encode structured information.
But such tight synchronous operation may be infeasible or an
inconvenient mode of data acquisition for certain devices, and
is inconsistent with, for example, event cameras. To emphasize
this fact, recall Example 4. It showed, albeit only indirectly,
how the lockstep flow of information from the world to the
device affects whether D is adequate. In that example, the
robot was allowed to turn 90° in a single step, whereas
previously (in Example 3) it could do at most 45°. In practice,
a 90° change in raw compass readings could happen for the
robot in Example 3 if there was skew, or timing differences,
or other non-idealities so that two actions occurred between
sensor updates. One must be able to treat such occurrences,
partly because they arise in practice, and partly because the
implicit structure arising from synchronization is an artefact of
the discrete-time model and is not something one wishes the
event sensors to exploit. (The information baked in to time,
especially as it is given privileged status, is often quite subtle,
cf. [16].)

Thus, we next consider two other, practical ways in which
sensors might generate the symbols that they send down-
stream. The first is that they may be change-triggered in that
the sensori-computational device produces an output symbol
only when a change has occurred. The second is for the
element consuming the sensori-computational device’s output
to poll at some high frequency. Definitions that suffice to
express each of these two modes, Definitions 20 and 22, are
developed next.

(Note on notation: In what appears next, we consider
sequences which may be from an observation set Y , or from
a D of differences, or a combination, etc.; we use S as an
arbitrary set to help emphasize this fact.)

Definition 20 (shrink). Given L ✓ S⇤ and N ✓ S, then the
N-shrink is the single-valued, total function pN defined
recursively as follows:

pN : L! (S\N)⇤,
e 7! e,

s1 . . .sm 7! s1 . . .sm if 8 j 2 {1, . . . ,m},s j 62N,
s1 . . .si . . .sm 7! pN (s1 . . .si�1si+1 . . .sm) when si 2N.

The intuition is that the N-shrink drops all elements in N
from sequences. The mnemonic for N is ‘neutral’ and the idea
is that we will apply the N-shrink relation in order to model
change-triggered sensors; we can do this by choosing, for the
set N, symbols that reflect no change in signal. This assumes
some subset of D will represent this no-change condition.
Shortly, Section VI will address choices for D that guarantee
such a subset is present.

Question 2. For sensori-computational device F and a set
N ✓ Y (F), is F pN -simulatable?

Question 2 (Constructive). For device F and N ✓
Y (F), give some sensori-computational device G such that
G⇠ F (mod pN) if any exists, or indicate otherwise.

Example 8 (Wall sensor, revisited). In Example 1 the iRobot
Create’s traditional wall sensor produces a stream of 0’s and
1’s depending on the intensity of the infrared reflection it
obtains. We discussed how, under output variator D2 = {?,>},
a derivative sensori-computational device exists that produces
a stream of ?s and >s, the former occurring when there is no
change in the presence/absence of a wall, and latter when there
is. When one examines this derivative device under the {?}-
shrink relation, we are considering whether the desired output
can be obtained merely on a sequence of >s. If the output
depends on a count of the number of >s, like the even- and
odd-numbered doorways, then this is possible. If it depends
on a count of the number of ?s, or the interleaving of >s and
?s then it can not.

If some derivative, F 0 say, is p{?} -simulatable, then it can
operate effectively even if it is notified only when the wall-
presence condition changes. It is in this sense that such F 0s
are change-triggered. 2

A constructive procedure for addressing Question 2 appears



Algorithm 2: Shrink Transform: SHRINKN(F)⇢ G
Input : A sensori-computational device F , a set N
Output: A deterministic sensori-computational device G if

G output simulates F modulo pN ; otherwise,
return ‘No Solution’

1 Make G, a copy of F
2 for e0 2 G.edges() do // Label replacement
3 for ` 2 e0.labels() do

4 if ` 2N then

5 Replace ` with e on edge e0
6 Merge e-closure(V0(G)) as a single state v00 in G
7 q := Queue([v00])
8 while q 6=? do // State determinization
9 v0 := q.pop()

10 for ` 2 v0.OutgoingLabels() do

11 W := {w : V (G) | v0 `�! w}
12 W 0 := [w2W e-closure(w)
13 X := \w02W 0c(w0)
14 if X =? then

15 return ‘No Solution’
16 if |W 0|> 1 then

17 Create a new state w00 inheriting all outgoing
edges of W 0 in G, add a new edge v0 `�! w00,
remove ` from v0 to W

18 c(w00) := X , add w00 to q
19 else if W 0 is not visited then

20 Add the single w0 2W 0 to q
21 return G

in Algorithm 2. It operates as follows: first, it changes all
the transitions bearing labels in N to e-transitions between
lines 1–5. It then shrinks those e-transitions by determinizing
the structure between lines 6–20. By doing so, it captures all
the sequences possible after the shrink relation. The following
lemma shows correctness:

Lemma 21. Algorithm 2 gives a sensori-computational device
that output simulates F modulo pN if and only if there exists
a solution for Question 2.

The essence of N-shrink is that, via relation pN , it asso-
ciates to a string all those strings we obtain by winnowing
away symbols within N. A second, related definition expands
the set of strings by adding elements of N. (Thinking, again,
of changes within N as ‘neutral’.)

Definition 22 (pump). Given L ✓ S⇤ and N ✓ S, then the
N-pump is the relation PN ✓ L⇥ S⇤ defined as follows:
8(s1 . . .sm) 2 L,
0) e PN e ,
1) (s1 . . .sm)PN (s1 . . .sm),
2) 8b 2N,k 2 {1, . . . ,`},

(s1. . .sm)PN(t1. . . t`) =) (s1. . .sm)PN(t1. . . tk btk+1. . . t`).

The intuition is that, to any string, the N-pump associates all
those strings with extra elements from N sandwiched between
any two symbols, or at the very end. Notice that it does not
place elements of N at the very beginning of the string.

Question 3. For sensori-computational device F and a set
N ✓ Y (F), is F PN -simulatable?

Question 3 (Constructive). For device F and N✓Y (F), give
a device G such that G⇠ F (mod PN) if any exists, or indicate
otherwise.

Example 9 (The 45° Minispot, again). Reconsider Example 3,
with a derivative compass device for the observation variator
D3 = {�,Ø,+}. Whenever some downstream consumer of
the change-in-bearing information queries, an element of D3
is produced. If it polls fast enough, we expect that it would
contain a large number of Ø values. Doubling the rate would
(roughly) double the quantity of Ø values. At high frequencies,
there would be long sequences of Øs and those computations
on the input stream that are invariant to the rate of sampling
would be P{Ø} -simulatable. 2

Algorithm 3: Pump Transform: PUMPN(F)⇢ G
Input : A sensori-computational device F , a set N
Output: A deterministic sensori-computational device G if

G output simulates F modulo PN ; otherwise,
return ‘No Solution’

1 Make G, a copy of F
2 Add a vertex vnew and set c(vnew) = c(v0). Add edges from

vnew pointing to the destination of edges that depart
v0 2V0(G)

3 Update G’s initial vertex: V0(G) := {vnew}.
4 for v 2V (G)\{vnew} do // Add self loops
5 Add a self loop at v bearing labels N
6 q := Queue([vnew])
7 while q 6=? do // State determinization
8 v := q.pop()
9 for ` 2 v.OutgoingLabels() do

10 W := {w : V (G) | v `�! w}, X := \w2W c(w)
11 if X =? then

12 return ‘No Solution’
13 if |W |> 1 then

14 Create a new state w0 inheriting all outgoing
edges of W in G, add a new edge v `�! w,
remove ` from v to W

15 c(w0) := X , add w0 to q
16 else if W is not visited then

17 Add the single w 2W to q
18 return G

A procedure for answering Question 3 constructively ap-
pears in Algorithm 3. Its operation is as follows: first, it creates
an initial state, reached (uniquely) by the e string (line 3).
Then, in lines 4–5, it adds self loops bearing labels to be
pumped at all states (except the newly created one). Finally,
it checks whether the resulting structure output simulates the
input, and determinizes the structure between line 6–17. By
doing so, it creates a deterministic structure to pump the
elements in N using self loops. The following lemma addresses
correctness.

Lemma 23. Algorithm 3 gives a sensori-computational device
that output simulates F modulo PN if and only if there exists
a solution for Question 3.



A. Relationships between shrinking and pumping
As understanding the connection between these two rela-

tions (shrink and pump) supplies some insight, we start with
some basic facts.

Property 24. Immediately these relationships follow:
1) pN = PN # pN . The preceding statement generalizes

to pN = X1 # · · · # Xn # pN , where by X1 # · · · # Xn we
denote any sequence of concatenations under ‘ # ’ of
relations id , PN , and pN .

2) If N 6= ?, then PN ✓ pN # PN . More precisely: if
some string in s1s2 · · ·sn contains an si 2 N, then PN

is a strict sub-relation; otherwise the two relations are
equal.

3) If N 6=?, then pN ( pN # PN .

To give some brief interpretation: Property 24.1) leads one
to conclude, with N ✓ Y (F), that determining if device F is
(PN # pN )-simulatable, then, is identical to Question 2. This
is very intuitive, as the N-shrink has the ‘last word’ so to
speak, and hence will drop all symbols from N— it does not
care whether those symbols were in the input or generated via
the N-pump operation.

The generalization mentioned in Property 24.1) implies
other specific facts, like that pN is idempotent. Proper-
ties 24.2) and 24.3) suggest that PN behaves differently from
pN . In fact, they share many common properties (e.g., PN is
idempotent too). Actually, as will be established shortly, the
question of output simulation modulo each of these relations
is equivalent under conditions we shall be directly concerned
with.

Lemma 25. With N ✓ Y (F) for an F being pN -simulatable
implies that F is PN -simulatable.

Lemma 26. For F , with N✓Y (F), and all s1s2 . . .sk 2L (F)
having s1 2 Y (F) \N, then device F being PN -simulatable
implies that F is pN -simulatable.

Theorem 27 (equivalence of pumping and shrinking). Given
any sensori-computational device F and N ✓ Y (F), such that
all s1s2s3 . . .sk 2L (F) have s1 2 Y (F)\N, then

F is PN -simulatable () F is pN -simulatable

The intuitive interpretation is clear. If elements of N can be
pumped, you cannot conduct any computation that depends
on their number. This is true even when F has strings in
its language that include some elements of N because, when
such elements are encountered, they could either be pumped
additions or originally in the string—two cases which cannot
be distinguished. The following remark does emphasize that
some care is needed, however.

Remark 7. Both Lemmas 25 and 26 construct a new device.
That this should be necessary for Lemma 25 is scarcely
surprising: if H ⇠ F (mod pN), an attempt at redeploying
device H directly under pumping could fail immediately since
L (H) need contain no strings with any element of N, yet

for PN , the device must consume many strings full of N
elements. In Lemma 26, the case for construction of a new
sensori-computational device is more subtle. We show this as
an example.

Example 10. For F with N ✓ Y (F), beware that

G⇠ F (mod PN) 6=) G⇠ F (mod pN) .

Figure 6 is an example of a simple sensori-computational
device, we shall refer to it as Ftiny. Figure 7 gives two more de-
vices, G1 and G2. All three have Y (Ftiny) =Y (G1) =Y (G2) =
{a,b,n}. Both G1 and G2 output simulate Ftiny modulo P{n} ,
but G2 fails to output simulate Ftiny modulo p{n} . The string
anb 2L (Ftiny), but p{n}(anb) = ab 62L (G2). 2

{b}{n}{a}

Fig. 6: An example of a simple sensori-computational device
Ftiny, with Y (Ftiny) = {a,b,n}.

{a}

{n}

{b}

{n}

(a) A G1 which output simulates Ftiny modulo P{n},
and modulo p{n} as well. Device G1 can be
obtained from Algorithm 3.

{n}

{n}

{b}

{n}

{a}

{n}

(b) A device G2 that output simulates Ftiny mod-
ulo P{n}, but which fails modulo p{n} .

Fig. 7: Two devices, related to Ftiny, the one in Figure 6, help
illustrate how Theorem 27 is a statement about the existence of
some device. A device that will output simulate modulo P{n}
need not modulo p{n} ; however, the devices Algorithm 3
produces will.

Remark 8. The condition on the first element of the sequences
in Lemma 26 and Theorem 27 is necessary. The sensori-
computational device Fsmall shown in Figure 8a is obtained
by adding a string ‘nab’ to Ftiny. Figure 8b gives a device
G01 that output simulates Fsmall modulo P{n} . However, no
device exists that can output simulate modulo p{n} because
p{n}(na) = p{n}(a) = a, and {cyan}\{red,blue,orange}=?.
This caveat is neither a particular concern nor limitation for
us, as sensori-computational devices that are derivatives (Def-
inition 10) have sequences where the first element is distinct.
For these, the first element gives the offset or initial value,
whereas the remainder has the role of tracking the dynamic
variations. It is pumping or shrinking of these variations that
is important.



{b}

{a}

{n}

{n}

{a}

{b}

(a) A new sensori-computational device Fsmall with an
additional string ‘nab’ being added to Ftiny.

{a}

{n}

{n}

{b}

{n}

{a}

{n} {b}

{n}

(b) A device G01 that output simulates Fsmall mod-
ulo P{n}.

Fig. 8: After adding a new string, the sensori-computational
device in Figure 6 is only output simulatable under P{n} , not
under p{n} .

VI. DATA ACQUISITION SEMANTICS REPRISE: MONOIDAL
VARIATORS

The previous two sections do not break the atomicity of
the symbols in the original signal space. For instance, the
polling acquisition mode (modeled via the N-pump relation)
adds neutral elements to the stream; it does not consider
what happens if a change is occurring continuously so that
the query arrives amid a change. If we desire to query the
sensor with maximal flexibility, such as if one were to model
a general asynchronous interaction, then some extra structure
is required. To move in this direction, we will need the output
variator to possess some additional properties.

Definition 28 (monoidal variator). A monoidal variator for an
observation set Y , is a monoid (D,�,1D) and a right action3

of D on Y , • : Y ⇥D! Y .

Being concise, we will write (D, •) for a monoidal variator,
the notation showing an operation in the second slot that helps
to indicate that it is an action and hence D has additional alge-
braic structure. (This is consistent with the previous notation
when we would include the ternary relation within the pair.)

Some of the earlier examples had output variators that were
monoidal or could be extended to be, while not so for others.

Example 11 (Lane sensor, again). Building on Exam-
ple 2, the observation variator was given as D3-lane =
{ LEFT , NULL , RIGHT }. Given that there are 3 lanes, it means
that one might wish to combine, say, two RIGHT actions, one
after the other. As there are only three elements, two RIGHT
actions might map to a RIGHT (as that seems less wrong
than LEFT or NULL ). Following this might give the following
‘operator’:

3Recall that • is a total function with two requirements— identity: y•1D = y;
compatibility: (y •d1) •d2 = y • (d1�d2), for all y in Y , and all d1, d2 in D.

�1 LEFT NULL RIGHT
LEFT LEFT LEFT NULL
NULL LEFT NULL RIGHT
RIGHT NULL RIGHT RIGHT

But �1 fails to be a monoid operator as since the associativity
rule does not hold: ( LEFT �1 LEFT )�1 RIGHT 6= LEFT �1
( LEFT �1 RIGHT ).

Here is an alternative which does yield a valid operator,
although it is still hard to give it a consistent interpretation:

�2 LEFT NULL RIGHT
LEFT RIGHT LEFT NULL
NULL LEFT NULL RIGHT
RIGHT NULL RIGHT LEFT

But now the action causes difficulty. While NULL must map
0, 1 and 2, each to themselves, the form of �2 requires that
the action treat RIGHT �2 RIGHT identically with LEFT . This
fails to describe lanes 0, 1 and 2, in a consistent fashion. The
lanes do not seem to admit any monoidal variator. 2

robot on fire?

Fig. 9: A delivery robot equipped with a smoke detector in
order to determine whether it has caught on fire.

Example 12 (Robot on fire). Consider a sensor indicating
that the robot has encountered some irrecoverable failure. For
instance, the delivery robot shown in Figure 9 is equipped
with a sensor to detect some irreversible condition. Once the
sensor is triggered, it retains this status permanently.

Representing the status of the robot by 0 for ‘normal’ and
1 for ‘abnormal’, we may then use a monoid variator D2 =
{,,/}, with 1D2 is ,, and the monoid operator � and the
right action • in table form as:

� , /
, , /
/ / /

and
• , /
0 0 1
1 1 1

2

Example 13 (Wall sensor, re-revisited). The D2 and table
for SD2 in Example 1 shows that it has the potential to
be monoidal, and indeed an appropriate right action can be
defined. 2

The case in Example 13 also admits an inverse, leading on
to the following.

Proposition 29. A sufficient condition for an affirmative
answer to Question 1 when (D, •) is a monoidal variator is
that D be, additionally, a group (i.e., possesses inverses), and
there be a y0 2 Y (F) for which y0 •D = Y (F).



Example 14 (90° Minispot, again). In Example 4, we took as
the output variator the integers and addition. After discussing
restricting the transformation, what remained was, Z8, the
cyclic group of order eight. 2

Suppose a down-stream consumer of some device gener-
ates its queries in an asynchronous fashion. If that device
measures changes, then it reports the change since the last
query. When the consumer queries at a high frequency, the
change sequence contains many elements, presumably with
only moderate changes. Otherwise, the sequence is sparse and
the change between symbols would be more considerable.
To model this asynchronous data acquisition mode wherein
the events reported are causally triggered by the down-stream
element, we give the definition that follows. It expresses
the idea that the sequences of changes should agree on the
accumulated change, regardless of when the queries occur.

Definition 30 (monoid disaggregator). Given the monoid
(D,�,1D) and observation set Y , the associated monoid
disaggregator is a relation, ∂�

��
Y ✓ ({e}[ (Y ·D⇤)) ⇥

({e}[ (Y ·D⇤)) defined as:
0) e∂�

��
Y e , and

1) y0∂�
��
Y y0 for all y0 2 Y , and

2) y0d1d2 . . .dm∂�
��
Y y0d01d02 . . .d

0
n if d1�d2� · · ·�dm = d01�

d02� · · ·�d0n.

Based on the above relation, and adhering to the established
pattern, we have the natural question, posed in two forms:

Question 4. For any device F with monoidal variator (D, •)

on Y (F), is it
⇣

—
��D
F #∂�

��
Y (F)

⌘
-simulatable?

Question 4 (Constructive). Given F with monoidal variator
(D, •), find a sensori-computational device F 0 such that F 0 ⇠
F

⇣
mod —

��D
F #∂�

��
Y (F)

⌘
, or indicate none exist.

Remark 9. In the reflection at the beginning of Section V, on
Example 4 and its relation to Example 3, attention was directed
to the significance of missing an element from the symbol
stream (there a skipped 45° gave the appearance of a 90° turn).
With a monoidal variator one can talk meaningfully of a single
symbol from the variator expressing accumulated changes
over time: the monoidal variator will take you from any
configuration to any other, regardless of how many elements
in the sequence of 45° turns have occurred.

Question 4 is challenging because it is rather cumbrous.
The source of this is Definition 30: it expresses the idea that
asynchronous queries might happen at any time in a very
direct and unwieldy way. So, instead, we will consider the
‘accumulated changes’ intuition just described in the previous
remark. This gives a new relation (actually a function) and,
following the pattern employed for the pump and shrinking
cases, we will then form a connection between the two.

Definition 31 (monoid integrator). Given the monoid
(D,�,1D) and observation set Y , the associated monoid in-

tegrator is a function s�
��
Y is given by:

s�
��
Y : {e}[ (Y ·D⇤)! {e}[Y [ (Y ·D)

e 7! e
y0 7! y0

y0d1d2 . . .dm 7! y0(d1�d2� · · ·�dm).

Notice that s�
��
Y is a rather different relation from the

previous ones. All the relations express an alteration under
which we wish the device to be invariant. Or more pre-
cisely: in which we seek to determine whether the requisite
information processing can be invariant. The relations prior
to Definition 31 all describe transformations which we may
envision being produced and processed directly—it is easy to
think of the robot operating in the world and tracing strings
in the relation’s image. Not so for the monoid integrator: it
serves mostly as an abstract definition. All the strings are short:
the robot gets at most two symbols. Nevertheless, the usual
questions still apply:

Question 5. For any device F with monoidal variator (D, •),
of Y (F), is it

⇣
—
��D
F #s�

��
Y (F)

⌘
-simulatable?

Question 5 (Constructive). Given F with monoidal variator
(D, •), find a sensori-computational device F 0 such that F 0 ⇠
F

⇣
mod —

��D
F #s�

��
Y (F)

⌘
, or indicate none exist.

Algorithm 4: Monoid Integrator: INTD(F)⇢ G
Input : A sensori-computational device F , a monoid

variator with monoid (D,�,1D)
Output: A deterministic sensori-computational device G if

G output simulates F modulo —
��D
F #s�

��
Y ;

otherwise, return ‘No Solution’
1 F 0 := DELTAD(F)
2 if F 0 is ‘No Solution’ then

3 return ‘No Solution’
4 Initialize G with an initial state v0
5 for edge v00

y�! w0 in F 0 do

6 Create a state w in G and add edge v0
y�! w

7 Associate w with w0, c(w) := c(w0)
8 q0 := Queue([(1D,w0)])
9 while q0 6= do

10 (dacc,v0) := q0.pop()
11 for d 2 v0.OutgoingLabels() do

12 Let w0 be the state such that v0 d�! w0
13 if there is no state vd in G then

14 Create a state vd in G, c(vd) := c(w0)
15 Add edge w d�! vd
16 else

17 X := c(vd)\ c(w0)
18 if X =? then

19 return ‘No Solution’
20 else

21 c(vd) := X
22 if (dacc�d,w0) is not visited then

23 Add (dacc�d,w0) to q0
24 return G

To answer these questions, a constructive procedure is given



Fig. 10: A depiction of the tree with three layers employed
in Algorithm 4 for the monoid integrator. Top right: the inset
shows how Algorithm 5 modifies sub-trees so they gain extra
edges (and potentially extra vertices) to make composite leaves
as self-contained blocks with transitions to encode (D, •).

in Algorithm 4: it builds a three-layer tree, where the first
layer is the initial state, the second layer consists of the states
reached by a single label in Y (F), the third layer consists of
the states reached by strings yd where y2Y (F) and d 2D. The
first layer is produced through lines 1–4, and the second layer
through lines 6–7. The third layer is constructed via a depth-
first search on the derivative F 0 as shown between lines 8–23
by keeping track of the accumulated change dacc and creating
the new state reached by ydacc accordingly. The correctness of
the algorithm follows next.

Lemma 32. Algorithm 4 gives a sensori-computational device
that output simulates F modulo —

��D
F #s�

��
Y (F) if and only if

there exists a solution for Question 5.

We remark on the fact that Algorithm 4 is unlike the previ-
ous algorithms. The preceding ones act as a sort of mutator:
they begin by making a copy of their input graph, and local
modifications are made before, finally, being determinized
to catch inappropriate outputs (via the c(·) function) and
to ensure that the resulting sensori-computational device is
deterministic. This means that structure of their input F influ-
ences the structure of their result. But Algorithm 4 produces
an sensori-computational device de novo, and its structure is
essentially fixed: it is a 3-layer tree regardless of the specifics
of F . The F serves really to define the input–output behavior.
Figure 10 offers a visualization of the structure of F : the three-
layer tree produces outputs for e , the yi elements, and strings
of the form y jdk.

Now we return to consideration of Question 4.

Lemma 33. Given a sensori-computational device F with
monoidal variator (D, •), F being

�
—
��D
F #∂�

��
F

�
-simulatable

implies that F is
�
—
��D
F #s�

��
F

�
-simulatable.

Lemma 34. Given a sensori-computational device F with
monoidal variator (D, •), F being

�
—
��D
F #s�

��
F

�
-simulatable

implies that F is
�
—
��D
F #∂�

��
F

�
-simulatable.

Theorem 35. For any sensori-computational device F with

Algorithm 5: Disaggregator: FILLLEAVESD(F 0)⇢ G
Input : A monoid integrator device F 0 from Algorithm 4,

and monoid variator D
Output: A deterministic device G that accepts additional

elements in D
1 Initialize an empty graph M // Graph for D
2 for d 2 D do

3 Create a state wd in M
4 for d1,d2 2 D do

5 d := d1�d2

6 Form an edge wd1
d�! wd2 in M

7 Create graph G with a single vertex v0, with output
c(v0) := c(v00)

8 Let v00 be the initial state of F 0

9 for every outgoing edge v00
y�! v0y in F 0 do

10 Add a vertex vy to G
11 Set c(vy) := c(v0y), and connect v0

y�! vy
12 Create My as a copy of M, adding My to G
13 for every outgoing edge v0y

d�! v0d in F 0 do

14 Form an edge vy
d�! wy

d
15 c(wy

d) := c(v0d)
16 Assign an arbitrary color to the remaining vertices in My

17 return G

monoidal variator (D, •),

F is
�
—
��D
F #∂�

��
F

�
-simulatable

~�

F is
�
—
��D
F #s�

��
F

�
-simulatable.

The proof of Lemma 34 (available in the Supplement) uses
Algorithm 5 to construct a sensori-computational device with a
very specific form: two layers, as a tree, reaching ‘composite-
leaves’ formed by connected blocks. The inset to Figure 10
illustrates this. (Note that Algorithm 5 itself takes as input Al-
gorithm 4’s output.) Since, for any F that is

⇣
—
��D
F #∂�

��
Y (F)

⌘
-

simulatable, there is a F 0 possessing this structure, we term it
the universal monoid integrator. That same integrator will also
output simulate F under —

��D
F #s�

��
Y (F). (Heed: the universality

refers to its structural form, the particular outputs at each
vertex will depend on the F and (D, •) used.) This structure
is will lead to Theorem 39.

VII. CHATTER-FREE BEHAVIOR

In this brief section, we introduce two additional concepts
that resemble some aspects of the relations in Section V,
and which also connect with the topics just discussed in
Section VI. We start by presenting a new, detailed example
which will motivate a pair of additional definitions.

Example 15 (Driving drone). The Syma X9 Flying Quad-
copter Car, shown in Figure 11, is a robot marketed as a
‘driving drone’. It is capable of switching between driving
and flying modes, the idea being that it can make use of
either mode of locomotion and determine what best suits the
demands of its task. Imagine deploying such a robot in the
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Fig. 11: A driving drone monitors a home environment.
The robot is capable of both flight and wheeled locomotion
and is equipped with a single-pixel camera. As an occupied
residence, the space imposes complex constraints on how the
vehicle may move. It must fly to avoid grass outdoors (F and Y)
and liquids in the pantry (P); in the bedroom (B), it should drive
to minimize noise. The robot is initially located in either the
front garden (F) or the living room (L). To determine its state,
the robot uses its single-pixel camera, which is capable of
discerning just three different ambient light levels (Bright (B),
Moderate (M), Dark (D)). The insets show: (left) the motion
constraints and (right) the various light levels.

scenario shown as the map on right-hand side of the figure.
The robot, starting in either the front garden (F) or the living
room (L), will move about the home and garden. Its size
and construction, along with task constraints, mean that it
must adjust its mode of locomotion depending on where it is.
The robot has a single-pixel camera with which it determines
different levels of ambient light. (The figure’s caption provides
specific details, and further explanation.)

It uses a sensori-computational device that processes the
light readings as input, and outputs the appropriate mode
(driving or flying). Figure 12a gives such a device; it is
essentially a state diagram encoding the problem constraints,
topological structure, and raw sensor readings. As Figure 12a
is essentially a transcription of the problem, it serves as a type
of specification for acceptable input–output functionality.

An observation variator D` = {+,�,=} uses + to capture
the brightness increase (from dark to moderate, from moderate
to bright), � for brightness decrease (from bright to moder-
ate, from moderate to dark), = for brightness equivalence.
A derivative device obtained by applying Algorithm 1 to
Figure 12a with this variator is shown in Figure 12b. 2

Figure 12c presents a device that, though different from the
straightforward derivative in Figure 12b, also implements the
functionality in Figure 12a under delta relation associated with
D`. That is to say, it also output simulates modulo —

��D`
F and

is, thus, also a derivative. Figure 12c, being smaller that either

12a or 12b, might be desirable for practical purposes. But now
consider that the ‘=’ element of the variator is produced when
there is no change in light levels. If events are triggered when
the robot moves from one room (or region) to the next, then
there may not be too many of them. On the other hand, if the
robot is using these readings to localize, that is, to actually
determine that it may have transitioned from one room or
region to the next, then many such elements will likely be
generated.

Particularly when there are cycles on elements such as the
‘=’ symbol, as these are ‘neutral’ changes in the signal, this
may induce oscillatory behavior in the device as it fluctuates
between states, flip-flopping rapidly. One may ask, thus,
whether there are sensori-computational devices that can avoid
this issue.

Definition 36 (vertex stable). For an F = (V,V0,Y,t,C,c)
and a set N ✓ Y (F), we say F is vertex stable with re-
spect to N when, for all s1s2 . . .sn�1sn 2L (F) with sn 2 N,
VF(s1s2 . . .sn�1) = VF(s1s2 . . .sn).

Intuitively: having handled an input stream of symbols,
processing an additional element from N does not cause a
vertex stable device to move to a new vertex.

Remark 10. The concept of vertex stability is related to, but
distinct from, the concept of the N-pump (from Definition 22).
For instance, a vertex stable sensori-computational device may
not always be ready for an element from N. On the other hand,
simulating modulo the N-pump relation need not imply the
device is vertex stable; Figure 13 provides such an example.

Figure 12d is another derivative for the driving drone
scenario (and is smaller even than Figure 12c). It has not
only a multi-state cycle on the ‘=’ symbol, but this time
the oscillatory behavior produces fluctuations in the output
stream, with values going: blue, brown, blue, brown, . . . .
Given that these describe actions for the robot to take-off, and
then land, then take-off, . . . this is highly undesirable behavior.
One naturally asks whether a device exists which avoids this
issue:

Definition 37 (output stable). For an F = (V,V0,Y,t,C,c)
and a set N ✓ Y (F), we say F is output stable with re-
spect to N when, for all s1s2 . . .sn�1sn 2L (F) with sn 2 N,
C (F,s1s2 . . .sn�1)=C (F,s1s2 . . .sn) and |C (F,s1s2 . . .sn)|=1.

This concept is related to the notion of chatter in switched
systems, and work that schedules events of a switched system
in order to be non-chattering [2].

Further we note, both Figures 12c and 12d differ from
Figure 12b in that they provide a single output per state. One
is always free to make a singleton prescription:

Property 38. For any device F = (V,V0,Y,t,C,c), suppose
one constructs Fsing = (V,V0,Y,t,C,csing), where csing is a
version of c restricted to singleton choices, viz., picked so
that for all v 2 V , csing(v) ✓ c(v) and |csing(v)| = 1. Then
Fsing ⇠ F (mod id).
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Fig. 12: Sensori-computational devices to choose appropriate locomotion modes for the driving drone in Figure 11, with
blue=fly, brown=drive; (a) works in the original signal space. The other three are derivatives that operate in the space of
changes as expressed via variator D`. Applying DELTAD`(a) gives (b). Both (c) and (d) choose a single output for each vertex;
(c) is output stable, while (d) is not.
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Fig. 13: A device that output simulates Ftiny modulo P{n} .
(Recall that device Ftiny is the one in Figure 6.) It is neither
vertex stable nor output stable with respect to {n}. The device
can be made output stable, without becoming vertex stable, by
altering the orange to become blue. Thereupon, vertex stability
is possible if the two blue vertices are merged.

Hence, if one seeks an output stable sensori-computational
device, then finding a vertex stable one will suffice (because,
formally, Theorem 8 can be applied at last step to change to
a singleton version).

The universal monoid integrator (from Algorithm 5) has
blocks that encode the transitions arising from the action of
the monoid. Being a monoid action, the 1D element is neutral,
which manifests in a simple fact: vertices in the third layer,
after FILLLEAVESD(·), have self loops labeled with 1D. This
specific structure leads to the following observation.

Theorem 39. For any device F with monoidal variator (D, •),
1D 62 Y (F), which is

�
—
��D
F #s�

��
F

�
-simulatable, there exists a

single F 0 such that:
1) F 0 ⇠ F

⇣
mod —

��D
F #∂�

��
Y (F)

⌘
,

2) F 0 ⇠ F
�

mod —
��D
F # P{1D}

�
,

3) F 0 ⇠ F
�

mod —
��D
F # p{1D}

�
,

4) F 0 is vertex stable with respect to {1D}, and
5) F 0 is output stable with respect to {1D}.

VIII. SUMMARY AND OUTLOOK

This paper’s focus has been less on sensors as used by
people currently but rather on whether some hypothetical event
sensor might be useful were it produced. So: what then is
an event sensor, exactly? The preceding treatment has shown
that there are several distinct facets. At the very core is the
need to have some signal space on which differences can be
meaningfully computed. This requires some basic statefulness,
even if it is very shallow (like Example 5, the single-pixel cam-
era). We formalize this idea in the concept of an observation

variator. Also important is the model of event propagation.
In this paper four separate cases have been identified and
distinguished, namely: tightly coupled synchronous, event-
triggered, polling, and asynchronous cases. At least in our
framework, some of these choices depend on variators having
certain properties with which to encode or express aspects of
signal differences. Our model expresses these cases through
relations. The notion of output simulation modulo those re-
lations leads to decision questions, for which we were able
to provide algorithms that give solutions if they exist. There
remain other properties of interest and practical importance
(such as vertex and output stability) which one might like
to impose as constraints on the sensori-computational devices
one seeks. We can meet these constraints when the variator
possesses the algebraic structure of a monoid, as our final
theorem is constructive.

More work remains to be done, but a start has been made on
the question of whether information conflated in the process
of forming an event sensor —the process of eventification—
harms input–output behavior. We especially believe that this
paper’s extension of the notion of output simulation, and the al-
gorithms we describe, ought to serve as a useful foundation for
future work. One important limitation of the theory developed
in this paper is that, as it depends on sequences of symbols,
discrete time appears from the very outset. To directly model
truly analog devices (as distinct from eventified digital ones)
a theory dealing with continuous time may be required. Since
the vast majority of robots process streams of digitized data,
this may be a question of what one decides to treat as the
atomic elements that generate observations. But one might
also imagine a hybrid theory, connecting a continuous time
approach with the model presented in this work.
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