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Abstract—Physical reasoning is important for effective robot
manipulation. Recent work has investigated both vision and
language modalities for physical reasoning; vision can reveal
information about objects in the environment and language serves
as an abstraction and communication medium for additional
context. Although these works have demonstrated success on a
variety of physical reasoning tasks, they are limited to physical
properties that can be inferred from visual or language inputs. In
this work, we investigate combining tactile perception with lan-
guage, which enables embodied systems to obtain physical prop-
erties through interaction and apply commonsense reasoning. We
contribute a new dataset PHYSICLEAR, which comprises both
physical/property reasoning tasks and annotated tactile videos
obtained using a GelSight tactile sensor. We then introduce
OcToPr1, a system that leverages both tactile representation
learning and large vision-language models to predict and reason
about tactile inputs with minimal language fine-tuning. Our eval-
uations on PHYSICLEAR show that OCTOPI is able to effectively
use intermediate physical property predictions to improve its
performance on various tactile-related tasks. PHYSICLEAR and
OCTOPI are available at https://github.com/clear-nus/octopi.

I. INTRODUCTION

For humans, touch is a crucial sense that provides physical
information beyond what vision can provide (e.g., material
properties, texture information, temperature), especially dur-
ing occlusion. This in turn improves our ability to perform
physical reasoning [37, 4] and act in our world. Here, we
are interested in enabling general purpose robots, specifically
those empowered with large-language models (LLMs), to
perform similar physical reasoning. While recent work has
demonstrated that LLMs and large vision-language models
(LVLMs) can provide an impressive level of commonsense
and physical reasoning [46, 55, 3, 53], they are limited to
either visual or text input modalities, and thus have limited
performance in scenarios with visual ambiguity [17].

This paper extends LVLMs to have the sense of touch. We
posit that incorporating a tactile modality into LVLMs will
enable better physical reasoning in real-world environments.
As an example, Fig. 1 illustrates how commonsense knowl-
edge is applied together with tactile information to complete a
novel physical task. Here, the robot leverages its tactile inputs
together with the LLM’s commonsense knowledge (that ripe
avocados are soft) to correctly select the ripe avocado. We use
visual-tactile sensors, i.e., the GelSight [60], which provides
image frames that reveal physical object properties such as
texture and hardness [59]. However, there remains a significant
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Fig. 1. Avocado ripeness selection by combining tactile information
with commonsense knowledge. Using inputs from its tactile sensor,
OcCTOPI identifies the left avocado as softer. Using commonsense
reasoning, OCTOPI infers that it is ripe and fulfils the user’s request.

domain gap between natural images that typical LVLMs are
trained with and the tactile data.

To bridge this gap, we contribute the PHYSICLEAR dataset,
which comprises GelSight images on a variety of real world
objects, along with object labels and part annotations. PHYSI-
CLEAR complements existing tactile datasets [59, 61, 18,
56, 19] as it provides three physical property annotations,
specifically hardness, roughness, and bumpiness, that have
been used in prior research [43, 20, 38, 10, 5, 26] and can
be potentially inferred from the GelSight data. PHYSICLEAR
also includes an training and evaluation suite comprising five
reasoning tasks, which can serve as a benchmark for the
research community.

Using PHYSICLEAR, we develop OCTOPI (Object Com-
prehension with Tactile Observations for Physical Intelli-
gence). OCTOPI is a LLaMA-based [49, 50] LVLM (Vi-
cuna [11]) equipped with a CLIP-based [39] tactile encoder,
whose representations have been aligned via projection. In
experiments, we show that OCTOPI is able to use its tactile
modality to predict object properties and reason about scenar-
ios including avocado ripeness.


https://github.com/clear-nus/octopi
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Fig. 2. PHYSICLEAR and OcCTOPI (with key contributions starred). We collect tactile videos for everyday household objects by hand
with two exploratory procedures: pressing and rotation. The videos are annotated by three annotators for three physical properties: hardness,
roughness and bumpiness. PHYSICLEAR leverages the videos and annotations for five language-driven physical description and understanding
tasks. OCTOPI is a LVLM fine-tuned on PHYSICLEAR for tactile-grounded physical understanding and reasoning.

TABLE I. Physical Property Details. The physical object properties examined, along with their descriptions and semantic categories.

Property Description Categories

Hardness how easily an object’s surface is deformed when pressed  soft, moderately hard, hard
Roughness  how rough an object’s surface is smooth, slightly rough, rough
Bumpiness  the size of bumps on an object’s surface no bumps, small bumps, big bumps

TABLE II. GelSight Dataset Comparisons. PHYSICLEAR provides physical property labels for tactile descriptions and physical reasoning
across three physical properties. We further compare against existing datasets across three diversity measures. Property diversity refers to
whether there are objects in the dataset that vary across the three properties we selected: hardness, roughness and bumpiness. Object diversity
indicates whether there is more than one type of object in the dataset. Material diversity indicates the number of different materials in the

dataset.

Dataset Property Label Availability | Property Diversity Object Diversity Material Diversity
Hardness Dataset (2016) [59] Yes (only hardness) Yes Yes Medium

Clothing Dataset (2018) [61] Yes Yes No (only clothing)  Low

ObjectFolder 2.0 (2022) [18] No No (only hard objects)  Yes Medium

Touch and Go (2022) [56] No Yes Yes High
ObjectFolder-Real (2023) [19] | No No (only hard objects)  Yes Medium
PHYSICLEAR Yes Yes Yes Medium

Contributions. In summary, this paper makes the following
key contributions:

o« A new GelSight dataset, PHYSICLEAR, that exhibits
property diversity, object diversity, and material diversity
for selected physical properties.

« OCTOPI, a framework for physical reasoning that lever-
ages vision-based tactile sensors and the commonsense
reasoning capabilities of LLMs.

e An accompanying training and evaluation suite spanning
five tasks and baseline results using OCTOPI.

We hope that PHYSICLEAR and OCTOPI will spur research
in tactile-enabled physical reasoning for embodied Al sys-
tems [14].

II. RELATED WORK

In this section, we briefly review prior work on tactile
representation learning with the GelSight sensor, large vision-
language models (LVLMs) and language/vision-guided phys-
ical reasoning. There has been significant work in tactile-
based manipulation and physical reasoning, and we refer

readers desiring information on these topics to relevant survey
papers [37, 14, 66, 47, 28].

Tactile Representation Learning with GelSight. Tactile
representation learning has advanced significantly in recent
years as robotic manipulation often requires more precision
beyond what can be provided by vision alone [44]. Among
the available tactile sensors, vision-based sensors have gained
popularity due to their high-resolution image outputs and
versatility. In particular, the GelSight sensor has been used
in recent work [32, 59, 60, 24, 61] for inferring physical
properties (e.g. hardness, texture and liquid volume) and to
manipulate objects [48]. A key benefit of the GelSight is that
its image outputs can be easily processed by modern deep
learning methods [24]. As a result, popular vision algorithms
have been used for tactile representation learning with Gel-
Sight [62, 8]. In our work, we exploit recent advances in tactile
representation learning to extend the capabilities of LVLMs to
reason about vision-based tactile input.

Large Vision-Language Models. Recent advancements in
LLMs have spurred a significant increase in efforts to integrate



vision models with LLMs, exemplified by Flamingo [1], BLIP-
2 [29], and MiniGPT-v2 [9]. These Large Vision-Language
Models (LVLMs) have shown remarkable effectiveness in
utilizing web-scale image-text data for image-based reasoning,
benefiting a range of applications from robotics [7, 15] to
medical imaging [42]. Very recent work involves developing
LVLMs that can process video content [30, 36], enabling
reasoning over dynamic visual information, or integrate multi-
modal sensory data [64].

Physical Reasoning with Language and Vision as Context.
The exploration of physical reasoning in conjunction with
language predates the emergence of LLMs. Early studies
focused on assessing model proficiency in physical reasoning.
For example, the PIQA [6] benchmark evaluates models on
physical common sense, whereas PROST[2] examines their
understanding of physical reasoning concepts. Subsequent
advancements in language grounding have led to works such
CLEVRER [58], PIP [13], SPACE [12] and Phys101 [54],
which investigate the acquisition of physical reasoning skills
from visual inputs.

In the emerging LLM era, research has focused on object-
centric physical reasoning in LLMs. This involves evaluat-
ing various LLMs for their physical reasoning capabilities,
e.g., NEWTON [52], and employing Vision-Language Models
(VLMs) to predict physical properties that are then used to
facilitate reasoning, as demonstrated in physically-grounded
VLMs [17]. Unlike previous studies that primarily address
physical reasoning through the integration of vision and lan-
guage, OCTOPI stands out as the one of the first models
capable of processing tactile images alongside language in-
structions to enable physical reasoning. There has been very
recent work [22] that uses simulated tactile inputs with LLMs,
but we focus on real tactile data. Concurrent work [16, 57] also
explores real-world tactile data but our work features physical
property annotations and a test suite comprising scenario
reasoning tasks, and experiments using OCTOPI to evaluate
the utility of physical property inference.

III. PHYSICLEAR - TACTILE AND PHYSICAL
UNDERSTANDING TRAINING & EVALUATION SUITE

This section describes PHYSICLEAR, which comprises a
tactile dataset with physical property and object-part annota-
tions, along with a training and evaluation suite.

A. Physical Property Selection

In this work, we focus on three object properties: hardness,
roughness and bumpiness. We list each property’s description
and categories in Table 1. Briefly, hardness is characterized by
the extent of surface deformation when subjected to pressure;
roughness pertains to the texture of the surface; and bumpiness
describes the prominence of surface protrusions. The hardness
of an object correlates with its compliance and thermal char-
acteristics. In contrast, roughness and bumpiness are attributes
influenced by the surface’s friction coefficient [10].

The selection of hardness, roughness, and bumpiness as
physical attributes in our research is grounded in their rele-
vance for physical reasoning [43, 20, 38, 10, 5, 26]. Generally,
static physical properties of objects are categorized into geo-
metric (e.g., size), material (e.g., hardness), and affective (e.g.,
comfort) [41]. Our study predominantly addresses material
properties, as we deemed geometric and affective properties
too challenging to ascertain using the GelSight. The choice
of these specific properties was also informed by the data
collection methodology [27], tailored to the limitations and
strengths of the GelSight sensor, including considerations for
its sensitivity and durability.

B. Dataset Collection & Annotation

To facilitate the grounding of our physical reasoning on
tactile inputs, we collected a dataset of 74 everyday objects,
totalling 408 tactile videos and corresponding videos showing
the object as the data was collected. These objects were
selected to span across our three selected properties, with vari-
ations across object types and materials. Detailed comparisons
between PHYSICLEAR and existing GelSight datasets can be
found in Table II.

The GelSight data was collected by-hand to mitigate risk
of damaging the sensors and due to the challenge of securing
different parts of irregularly-shaped objects while performing
the required sampling motions. For each selected object, we
captured up to seven tactile videos for each distinct region
identified by a human evaluator. This process involved a two-
step procedure: initially pressing the GelSight sensor against
the object to capture pressure readings, followed by rotating
the sensor to acquire shear readings. Each video generated
from a single GelSight sensor reading constitutes an individual
data point within our dataset.

Annotations of the physical properties were carried out by
three independent annotators, with the average score used
as the final annotation for each data point. Annotators were
provided with both the tactile videos and the objects. Each
property has three categories, and annotators were given the
following guidelines for labeling each property:

« Hardness: The label soft is for objects that are compress-
ible with little force, moderately hard for objects that are
compressible with moderate force, and hard for objects
that are incompressible even with a large pressing force.

« Roughness: smooth is for objects that present very min-
imal or no resistance when we slide our finger across its
surface, slightly rough for objects with slight resistance,
and rough for objects with significant resistance.

o Bumpiness: no bumps is for objects with no visible
protrusions on its surface, small bumps for objects with
protrusions smaller than = 1/4 of the tactile image upon
contact, and big bumps for objects with protrusions larger
than 1/4.

This process yielded over 1,200 annotations and we ob-
served high inter-annotator agreement scores (ICC3k of 0.894
(hardness), 0.979 (roughness), and 0.792 (bumpiness)). For
reference, a score above 0.75 is considered good or excellent



reliability. The dataset was subsequently divided into three
distinct subsets (training, validation, and testing) following an
80-10-10 split. This division resulted in 60 objects for training
and 7 objects each for validation and testing.

C. Training & Evaluation Suite

PHYSICLEAR’s training and evaluation suite comprises five
physical reasoning tasks (Table III). All five tasks use tactile
data and natural language instructions as inputs (Table IV).
Since the tactile data is in video form, we follow prior LVLM
work and represent it as a sequence of frames: X1, ..., X . We
further detail each task’s motivation, setup, evaluation details
and whether they are used for training [T] and/or evaluation
[E] below:

Object Property Description (OPD) [T, E]. This task ad-
dresses property-based description: generating both unstruc-
tured and structured descriptions of an object’s hardness,
roughness, and bumpiness from tactile videos. It parallels
existing image or video captioning tasks, which use natural
visuals, and aids the LLM in interpreting tactile signals. The
unstructured description provides more complex descriptions
in cases where they are visible in the tactile video (e.g.
“fibrous structure” for toilet paper or “grains” for a scoop of
rice). The language instructions are variants of “Describe the
physical properties of <tact_start>T7, ..., Ty <tact_end>.”
The unstructured description is generated using ChatGPT 3.5
and manually cleaned to produce a diverse description of our
objects based on our three physical properties. The structured
description of an object’s physical properties using our anno-
tations is formatted as: “Overall, it presents a hardness_label
and roughness_label surface with bumpiness_label.”

Property Comparison (PC) [T, E]. Given two tactile videos,
each of a different object, a specified physical property, and
its comparative adjective, determine whether the comparative
adjective accurately describes the two videos. From a training
perspective, this task helps a model distinguish between the
various descriptions of physical properties, thereby aligning
its comprehension of physical characteristics with our defined
categories of hardness, roughness, and bumpiness. This align-
ment ability may improve a model’s ability to interpret and
reason about the physical world in a manner consistent with
human understanding.

Property Superlative Selection (PSS) [T, E]. For three
tactile videos, each of a different object, and a specified
physical property and its superlative adjective (e.g. hardest for
the hardness property), choose the video that the superlative
adjective best describes. This task is similar to the PC task
and helps the LLM align its physical understanding with that
of our physical property descriptions. Furthermore, since prior
work has shown that LLMs might perform differently when
the polarity of the comparative adjective changes [52], this task
seeks to enhance the LLM’s resilience to various comparative
descriptions of physical properties.

Property-object Matching (POM) [T, E]. This task requires
matching physical properties to objects: given three tactile

‘ The surface feels yielding, has a notable roughness and there are many big bumps due to grains ‘
present. Overall, it presents a soft and rough surface with big bumps.
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Fig. 3. OcTOPI Framework. Our framework consists of CLIP’s vi-
sual encoder, a projection module with two linear layers, and Vicuna
v1.5 as the LLM. Language embeddings are derived through tok-
enization and then Vicuna’s word embedding layer, with <tact_start>
and <tact_end> being newly trained word embeddings indicating
the start and end of a tactile frame sequence from a single tactile
sensor. Tactile frames are fed into the visual encoder followed by
the projection module to derive tactile embeddings with the same
dimension as the word embeddings.

videos (each featuring a different object) and three specified
objects, the goal is to correctly associate each video with an
object. This helps to align a model’s existing knowledge of
object properties with our haptic perception, as our annotations
are based on human touch and serve as the reference for the
physical properties and their labels.

Property Scenario Reasoning (PSR) [E]. We provide two
tactile videos, each showcasing a different object, along with
a real-world scenario that relies on one or more of our
defined physical properties. The task is to choose the video
that represents the object whose physical properties best meet
the scenario’s demands. This approach allows us to assess a
model’s physical reasoning capabilities. Details of the scenar-
ios are presented in Table V.

IV. OCTOPI - VISION-LANGUAGE PROPERTY-GUIDED
PHYSICAL REASONING

The OCTOPI framework comprises three trained compo-
nents: 1) tactile input encoder, 2) projection module, and 3)
LLM, similar to prior LVLM models [34, 36, 63]. A summary
of our overall framework is shown in Fig. 3.

We leverage the capabilities of pre-trained vision models,
notably the CLIP [39] visual encoder ViT-L/14, as the founda-
tion for our tactile encoder to derive meaningful feature repre-
sentations. The encoder’s output is then mapped to the LLM’s
word embedding space using a projection module, typically
consisting of one or two trainable layers. Our projection mod-
ule, inspired by LLaVA [34, 33], employs two linear layers
with an intermediate GELU activation [21]. Lastly, the LLM
serves as the language understanding component in OCTOPI.
The performance of the LLM is largely influenced by its pre-
training datasets. We utilize the open-source LLaMA-based
LLM, Vicuna [11], recognized for its dialogue capabilities.

The inference process is illustrated in Fig. 3. OCTOPI
receives an instruction to evaluate the physical properties of



TABLE III. PHYSICLEAR Task Details. PHYSICLEAR contains five physical description and understanding tasks. We give each task’s
motivation and indicate whether they are used for OCTOPI’s training and/or evaluation.

Task Motivation

Training [T] Evaluation [E]

Object Property Description (OPD)
Property Comparison (PC)

Property Superlative Selection (PSS)
Property-object Matching (POM)
Property Scenario Reasoning (PSR)

LLM learns to describe tactile videos using physical properties.

Align LLM physical understanding with physical property descriptions.
Align LLM physical understanding with physical property descriptions.
Align LLM object understanding with physical property descriptions.
Evaluate LLM’s ability to resolve scenarios using physical properties.

R NENENEN
SENENENEN

TABLE IV. PHYSICLEAR Task Prompt Setup. We provide the language prompts for each task in PHYSICLEAR. The LLM (i.e.
ASSISTANT) responses for each task are ground-truth tactile descriptions, except the last response in italics for PSR. This italicized
response is generated by OCTOPI-13b, since PSR is not used for training and hence there is no ground-truth response.

Task  Prompt Setup

OPD  USER: Describe the physical properties of <tact_start>77, ..

L, Ty <tact_end>.

ASSISTANT: The surface feels somewhat hard, lacks noticeable roughness and there are no textural variations or fine ridges. Overall, it

presents a moderately hard and smooth surface with no bumps.

PC USER: Is the object in the tactile video <tact_start>11 1, ..., 77,y <tact_end> covered with bigger bumps than the one in <tact_start>

151, ..., To n <tact_end>? Describe both objects before answering.

ASSISTANT: First object: The surface feels firm and somewhat flexible, is smooth and there are big bumps and ridges. Overall, it presents a
hard and smooth surface with big bumps. Second object: The surface feels soft, exhibits no roughness and there are small imperfections and
ridges. Overall, it presents a moderately hard and slightly rough surface with small bumps. Conclusion: Yes, the first object is covered with

bigger bumps.

PSS

USER: Given three tactile videos: a) <tact_start>T1 1, ..., 77y <tact_end>, b) <tact_start>T5 1, ..., T y<tact_end>, ¢) <tact_start>

131, ..., T3, v <tact_end>. Describe each object and then select the smoothest.

ASSISTANT: a) The surface feels yielding, exhibits significant roughness and there are small bumps and ridges present. Overall, it presents

a soft and rough surface with small bumps. b) The surface feels somewhat firm and flexible, exhibits no roughness and there are big bumps on
the surface. Overall, it presents a moderately hard and smooth surface with big bumps. c) The surface feels soft and yielding, exhibits a slight
roughness and there are tiny textural variations due to the fibrous structure. Overall, it presents a soft and slightly rough surface with small

bumps. Conclusion: b) is the smoothest.

POM  USER: Given three tactile videos: a) <tact_start>T 1,..., 17 N

<tact_end>, b) <tact_start>T% 1, ..., T> ny <tact_end>, ¢) <tact_start>T3 1, ..., T3  <tact_end>>. Describe the object in each video, then
match each video to one of the following objects in alphabetical order: 1) a mandarin orange, 2) a cotton ball, 3) a roll of masking tape.
ASSISTANT: a) The surface feels firm, exhibits a slight roughness and there are small textural irregularities and fine ridges. Overall, it
presents a hard and slightly rough surface with small bumps. b) The surface feels soft and yielding, exhibits no roughness and there are no
prominent bumps or ridges. Overall, it presents a soft and smooth surface with no bumps. c¢) The surface feels soft, exhibits a slight roughness
and there are tiny bumps present. Overall, it presents a soft and slightly rough surface with small bumps. Conclusion: a) is a roll of masking

tape, b) is a cotton ball and c) is a mandarin orange.

PSR

USER: Describe these two tactile videos: a) <tact_start>T1 1, ..., 17,y <tact_end>, b) <tact_start>T3 1, ..., To n <tact_end>.

ASSISTANT: a) The surface feels hard and solid, exhibits a lack of roughness and there are no textural variations or fine ridges. Overall, it
presents a hard and smooth surface with no bumps. b) The surface feels yielding, has a subtle roughness and there are small irregularities and
bumps. Overall, it presents a soft and slightly rough surface with small bumps.

USER: In an emergency, which of the objects above can be used to break through thin ice covering a car outside? Select only one most
appropriate object for this scenario based on physical property descriptions of the two objects. Use the format ‘The most suitable object is x),

because xxx’.

ASSISTANT: The most suitable object is a) a hard and smooth surface with no bumps, because it is more likely to penetrate the thin ice

covering a car exterior and not get stuck.

TABLE V. Scenario Questions with Selected Object and/or Properties. We list the three scenarios we use to evaluate our model’s physical
reasoning capabilities. For each scenario, we either specify the target object (along with the properties it has) or the target properties to

select the target and non-target objects.

Scenario Question

Target Object Target Properties

Which object is most suitable for removing stains from a non-stick pan without scratching it?

Which object would be most easily grippable when wet and slippery?

In an emergency, which of the objects above can be used to break through thin ice covering a car outside? -

Microfiber cloth  hardness, roughness
- roughness, bumpiness
hardness

uncooked rice. The text is tokenized and fed into the LLM’s
word embedding layer to produce word [W] embeddings. A
sequence of five tactile images is processed through the tactile
encoder, with the output embeddings sent to the projection
module to obtain the final tactile [7] embeddings. Newly
trained word embeddings, represented by <tact_start> and
<tact_end>, mark the beginning and end of the tactile data,
respectively. These tactile embeddings are then merged with
the word embeddings at designated positions to form the final
instruction embeddings for the LLM.

We follow a three-step training methodology: (i) encoder
fine-tuning, (ii) tactile feature alignment, and (iii) end-to-end
fine-tuning. In the following, we describe each of these steps
in greater detail.

A. Encoder Fine-tuning

Existing LVLM models take natural videos as input and
can use CLIP’s visual encoder without modification. However,
our work involves vision-based tactile inputs, which marks a
significant distribution shift from natural images, necessitating



additional fine-tuning to derive useful representations from
these inputs.

We fine-tune our visual encoder to obtain useful represen-
tations from tactile inputs using multitask physical property
classification. We adopt the architecture of ViFi-CLIP [40] so
that our visual encoder can be trained on video inputs. In ViFi-
CLIP, frame-level embeddings from CLIP’s visual encoder are
average-pooled to obtain a video-level representation.

We then append learnable prompts to the pre-trained CLIP
visual encoder ViT-L/14 following Visual Prompt Tuning
(VPT) [25] and initialize ViFi-CLIP’s visual encoder with
the new visual encoder. Specifically, we attach 8 task-specific
learnable prompts and a shared linear layer to the input
sequence of each Transformer [51] layer in the visual encoder
and freeze the entire pre-trained Transformer backbone.

Finally, we add three separate classification heads to ViFi-
CLIP, each of which predicts a label for one property (i.e.
hardness, roughness or bumpiness), and train all three classifi-
cation heads simultaneously using the cross-entropy loss. The
model achieving the highest combined validation accuracy —
correctly predicting all three properties for an object — is
selected.

B. Tactile Feature Alignment

We discard the fine-tuned CLIP’s classification layers and
use the outputs from its visual encoder as output embeddings.
To align the output embeddings from the fine-tuned visual
encoder with the LLM, the projection module is trained on
language annotations while the encoder and the LLM are
frozen. We also fine-tune the embedding layer due to the two
new word tokens (i.e. <tact_start> and <tact_end>).

C. End-to-end Fine-tuning

Finally, we used end-to-end fine-tuning to improve the
coherence of the LLM’s responses and increase the similarity
between its responses and the language annotations. In this
stage, only the visual encoder is frozen while the word
embedding layer, projection module, and LLM are fine-tuned.
We fine-tune the LLM using low-rank adaptation (LoRA) [23]
for parameter-efficient fine-tuning.

V. EXPERIMENTAL SETUP

In this section, we evaluate the physical property prediction
and reasoning capabilities of our proposed method. We design
several experiments to answer the following questions:

1) Are our physical property predictions useful for OCTOPI
to reason about everyday scenarios?

2) Can OCTOPI be used in real robots to help them accom-
plish tasks using physical reasoning?

3) Can OcTOPI’s understanding of the physical properties
generalize to the unseen daily life objects?

A. Data Processing

The tactile videos were processed into frames. To focus on
a few salient frames for better efficiency, we selected frames
that have the top 30% total pixel intensity difference with their

TABLE VI. Results on PHYSICLEAR Physical Understanding
Tasks. OCTOPI’s performance on physical understanding tasks im-
proves with object property descriptions (OPD). Performance also
increases with larger LLM size, with OCTOPI-13b outperforming
OCTOPI-7b across all three tasks.

Random OcTOoPI-7b OcTOPI-7b (no OPD)
PC 3333 48.10 46.51
PSS 33.33 74.67 39.88
POM 16.67 44.39 23.23
Random OcToPI-13b  OcCTOPI-13b (n0o OPD)
PC 3333 55.06 40.70
PSS 3333 84.00 39.88
POM 16.67 60.43 18.71

preceding frames. We randomly sampled 5 frames from these
salient frames during training and selected 5 frames at uniform
intervals from the first salient frame during evaluation. Data
augmentation was performed during training in the form of
random horizontal and vertical flips with 50% chance for each
flip.

B. Training Hyperparameters

Encoder fine-tuning was performed for 30 epochs using the
AdamW optimizer [35] with no weight decay, a learning rate
of 1073, batch size of 32, and a cosine annealing learning
rate schedule. During tactile feature alignment, the projection
module is trained using 8k PHYSICLEAR samples using the
AdamW optimizer [35] with no weight decay, a learning rate
of 2 x 1075, batch size of 16, and a cosine annealing learning
rate schedule.

For end-to-end fine-tuning, both the projection module and
the LLM’s LoRA parameters are trained using 3k PHYSI-
CLEAR samples using the AdamW optimizer [35] with no
weight decay, batch size of 16 and a cosine annealing learning
rate schedule. Learning rates of 2 x 1075 and 2 x 10~ were
used for the projection module and the LLM, respectively. We
use a scaling factor of 256, a rank of 128, and a dropout rate
of 0.05 for LoRA.

C. Training Requirements

Encoder fine-tuning took 6 hours and required less than
5GB of GPU VRAM. Tactile feature alignment together with
end-to-end fine-tuning took 5 hours for OCTOPI-7b and 6.5
hours for OCTOPI-13b. We used 1 NVIDIA RTX A6000 for
OcCTOPI-7b and 2 NVIDIA RTX A6000s for OCTOPI-13b.

VI. EXPERIMENTAL RESULTS

To address the above questions, we evaluated OCTOPI
using (i) accuracy on the physical understanding tasks in
PHYSICLEAR’s test set, (ii) accuracy on scenario reasoning
tasks, (iii) task success rate on a real robot, and (iv) property
prediction accuracy on unseen objects. We tested two versions
of OcTOPI, OCTOPI-7b and OCTOPI-13b, which use Vicuna-
7b v1.5 and Vicuna-13b v1.5 as their LLMs respectively.



TABLE VII. Results on PHYSICLEAR Scenario Reasoning Tasks.
During scenario reasoning, we do not provide ground-truth property
descriptions. Our experiments show that leveraging object properties
significantly improves scenario reasoning for OCTOPI.

Random OcTOPI-7b  OCTOPI-13b
PSR 50.00 69.57 67.39
PSR (w/o OPD) 50.00 63.04 39.13

A. Tactile-grounded Physical Understanding with Object
Property Descriptions

During tactile feature alignment and end-to-end fine-tuning,
we trained OCTOPI with comparison tasks (i.e. PC, PSS and
POM) to align its physical understanding of our physical
properties and objects with our labels. We evaluated OCTOPT’s
physical understanding with the same single-step prompts used
during training and on 500 question-answer pairs in total
across the three tasks. The results for physical understanding
of unseen test objects are shown in Table VI.

Our results show that both OCTOPI-7b and OCTOPI-13b
perform well on all three physical understanding tasks when
they are trained to predict property descriptions. Using phys-
ical property descriptions, OCTOPI-7b achieves accuracies of
48.10% on PC, 74.67% on PSS and 44.39% on POM. OCTOPI-
13b outperforms OCTOPI-7b by 6.96% on PC, 9.33% on PSS
and 16.04% on POM. This suggests that OCTOPT’s physical
understanding improves significantly with LLM size.

Further, we explored the effect of using physical property
descriptions by fine-tuning both OCTOPI-7b and OCTOPI-
13b on the physical understanding tasks without intermediate
physical property predictions. We found that predictions based
on object properties notably improve physical understanding
in both OCTOPI-7b and OCTOPI-13b.

B. Scenario Reasoning

We assessed the usefulness of our physical property cat-
egories by testing how OCTOPI can reason about everyday
scenarios using the physical properties. For reference, the
different scenario questions are provided in Table V with the
prompts shown in Table IV.

Our results are summarized in Table VII. For both OCTOPI-
7b and OCTOPI-13b, including the object property signif-
icantly improves performance, which supports our overall
hypothesis that leveraging these properties is helpful for these
tasks. Interestingly, we observed that the 7b model marginally
outperformed the 13b model.

We provide two qualitative examples to show OCTOPI-13b
performing commonsense physical reasoning effectively. In
the first task, we provide a tactile video of a scoop of uncooked
rice and first instruct it to describe the tactile video. We then
follow up with an instruction to OCTOPI-13b to determine if
the rice is uncooked or cooked. OCTOPI-13b is able to reason
that the scoop of rice is uncooked due to its rough surface, as
shown in Fig. 4.

Next, we gave OCTOPI-13b two tactile videos correspond-
ing to two different parts of the same toothbrush - the handle
and the bristles. It is instructed to describe both objects using

ot |11 1o
] N J

Users

The surface feels yielding, has a notable roughness and there are many
big bumps due to grains present. Overall, it presents a soft and rough @

surface with big bumps.
Octopt

f
@ Is it likely to be cooked or uncooked rice? ‘

Users
Itis more likely to be uncooked rice as the surface feels yielding and @

has a notable roughness, which are characteristics of uncooked rice.
Octop1

Fig. 4. Rice (Cooked v.s. Uncooked) Reasoning. OCTOPI-13b is
prompted to reason about whether a scoop of rice is more likely
to be cooked or uncooked based on a tactile video of a scoop on
uncooked rice. It reasons about the rice state correctly without being
trained to do so.

Givena)-----
i N
Users  and b)

Describe them.

a) The surface feels soft, exhibits a notable roughness and there are tiny
bumps and ridges present. Overall, it presents a soft and rough surface
with small bumps. b) The surface feels solid and sturdy, lacks noticeable
roughness and there are no prominent bumps or ridges. Overall, it
presents a hard and smooth surface with no bumps.

Octop1

Both are parts of a toothbrush. Which is more likely to be the handle and
\‘, “~, which is more likely to be the bristles?

Based on the descriptions provided, the surface in a) is more likely to
be the bristles, while the surface in b) is more likely to be the handle. @
The bristles are typically soft and rough, with small bumps, while the

handle is usually hard and smooth without any bumps. Octopi

Fig. 5. Toothbrush Part Reasoning. Given a tactile video of a
toothbrush’s handle and the same toothbrush’s bristles, OCTOPI-13b
is prompted to reason which tactile readings belong to the handle
and which belongs to the bristles.

the physical properties. We then instruct it to determine which
tactile video belongs to each object part using the physical
properties. Fig. 5 shows that OCTOPI-13b is able to reason
about the property-object match correctly.

C. Avocado Ripeness Classification

To evaluate OCTOPI’s usefulness as a tactile-grounded
physical reasoning system for real world tasks, we integrated
two GelSight sensors on a 7-DoF Franka Emika Panda robot
and used it for avocado ripeness classification. While ripe
avocados generally appear in a shade of brown, their ripeness
is difficult to determine using vision alone. At the same time,
ripe avacados are softer then unripe ones and thus, tactile
sensations can improve classification.

We performed property prediction and ripeness classifica-
tion evaluations using a set of 10 avocados with 20 tactile
samples collected from each avocado (i.e. 200 total samples).
During ripeness classification, 100 pairs of avocado samples
were selected and OCTOPI was tasked to identify which
avocado is riper. Each pair contains avocados in different
stages of ripeness. At test time, the Franka robot grasped each
avocado once to collect the tactile readings, before passing it
to the model. The model gave instructions on which avocado



TABLE VIII. Avocado Property Prediction and Ripeness Classifi-
cation Results. OCTOPI-13b predicts avocado properties reasonably
well with only a pressing motion. For avocado ripeness classification,
OCTOPI-13b is able to leverage its commonsense knowledge to use
both hardness and bumpiness properties.

Random OctOPI-13b  PG-InstructBLIP
Property Prediction 3.70 35.50 0.00
Hardness 33.33 57.50 37.50
Roughness 33.33 71.00 3.00
Bumpiness 33.33 64.00 9.50
Ripeness Classification 50.00 63.00 -

to place in the ripe bin, and this was relayed through ROS for
execution.

Table VIII shows OCTOPI-13b’s performance on both avo-
cado property prediction and avocado ripeness classification.
We split the evaluation into two parts and evaluate the avocado
property prediction and ripeness classification separately.

For avocado property prediction, OCTOPI-13b achieves an
accuracy of 35.50%, which is significantly higher than that
of the random baseline (3.70%). Unlike the PHYSICLEAR
dataset, these tactile videos are collected with only pressing
and without any rotation. This suggests that OCTOPI-13b’s
physical property prediction capability is robust to differences
in tactile exploratory procedures.

OcCTOPI-13b obtains a ripeness prediction accuracy of
63.00%. To set up this task, we first elicit OCTOPI's com-
monsense reasoning for avocado ripeness using our properties
by querying “You will be given tactile descriptions that consist
of three physical properties: hardness, roughness, bumpiness.
Hardness categories in increasing hardness: soft, moderately
hard, hard. Roughness categories in increasing roughness:
smooth, slightly smooth, rough. Bumpiness categories in in-
creasing bumpiness: no bumps, small bumps, big bumps.
Which of these properties help to determine avocado ripeness?
Rank them.” OCTOPI-13b responds with “The properties that
help determine avocado ripeness are hardness and bumpiness.
Roughness is not a reliable indicator of avocado ripeness. In
terms of hardness, a ripe avocado will be moderately hard,
while an unripe avocado will be hard. In terms of bumpiness,
a ripe avocado will have small bumps, while an unripe avocado
will have no bumps or small bumps.” This exchange is pro-
vided as context to OCTOPI-13b during ripeness classification.

For comparison, we evaluated a physically-grounded vision-
language model, PG-InstructBLIP [17], on property predic-
tions of our avocados. PG-InstructBLIP was trained to infer a
predetermined set of physical properties from visual images
of real objects in the EgoObjects dataset [65]. Table VIII
shows PG-InstructBLIP’s performance on property prediction
for our avocados was poor. Possible reasons for this are that
(i) the definitions of the physical properties may not be well-
aligned with PHYSICLEAR, and/or (ii) the physical properties
of avocados are not clearly apparent using only the visual
modality. We could not coax the PG-InstructBLIP model
to directly classify avocado ripeness despite trying various
prompts; it would always pick the first object.

TABLE IX. Results on PHYSICLEAR Object Property Descrip-
tion Test Set. FT CLIP is the combination of the fine-tuned CLIP
visual encoder and the three separate trained classification layers.
OCTOPI-7b and OCTOPI-13b perform above the random baseline for
object property predictions and have similar performance to the fine-
tuned CLIP. OCTOPI-13b performs better than OCTOPI-7b on the
prediction task.

Random FT CLIP OctorI-7b  OCTOPI-13b
Combined 3.70 57.89 47.37 55.26
Hardness 33.33 86.84 71.05 73.68
Roughness 33.33 76.32 73.68 78.95
Bumpiness 33.33 71.05 81.58 78.95

TABLE X. CLIP Fine-tuning Ablation Results on Object Property
Prediction. FT refers to fine-tuned. Using the CLIP fine-tuned on
property prediction improves OCTOPI’s performance in property
prediction.

OcTorI-7b (FT CLIP) OcTOoPI-7b (base CLIP)

Combined 47.37 39.47
Hardness 71.05 81.58
Roughness 73.68 52.63
Bumpiness 81.58 55.26
Ocropri-13b (FT CLIP) OcTOoPI-13b (base CLIP)
Combined 55.26 50.00
Hardness 73.68 76.32
Roughness 78.95 65.79
Bumpiness 78.95 76.32

D. Object Property Description Prediction

The physical understanding and scenario reasoning capabil-
ities of OCTOPI depends on its initial physical property pre-
dictions. We evaluated OCTOPTI’s physical property prediction
on the PHYSICLEAR test set and show the results in Table
IX. Both OCTOPI-7b and OCTOPI-13b perform well above
the random baseline for combined and individual property
prediction and have similar performance to the fine-tuned
CLIP model, indicating that OCTOPI can be used for object
property prediction. OCTOPI-13b has a higher combined accu-
racy (i.e. all three physical properties are correctly predicted
for a given object) when compared to OCTOPI-7b, suggesting
there are performance gains with larger LLMs for tactile signal
grounding (apart from the bumpiness property).

VII. ABLATIONS

In this section, we describe ablation studies to examine (i)
the impact of the encoder’s learned representations on physical
property prediction and (ii) the influence of end-to-end fine-
tuning data quantity on physical reasoning. For the following
sections, we report test accuracy on unseen objects.

A. Ablation: The Impact of Encoder Fine-tuning

We used vision-based tactile inputs in this work and pre-
trained vision foundation models (i.e. CLIP) have shown
impressive performance on vision tasks. To test whether ad-
ditional fine-tuning improves the pre-trained CLIP encoder’s
representations for physical property prediction using tactile
images, we conducted ablation experiments. We compared the
performance of two OCTOPI versions — one trained with the
off-the-shelf CLIP encoder and the other trained with the fine-
tuned CLIP encoder.



TABLE XI. CLIP Fine-tuning Ablation Results on Physical Un-
derstanding Tasks. Using a fine-tuned CLIP improves OCTOPI’s
performance in physical understanding tasks for both OCTOPI-7b and
OcCTOPI-13b.

TABLE XIII. End-to-end Fine-tuning Physical Understanding Re-
sult Comparisons. End-to-end fine-tuning for physical understanding
tasks significantly improves physical understanding for both OCTOPI-
7b and OCTOPI-13b.

OcTOPI-7b (fine-tuned CLIP) OcTOPI-7b (base CLIP) Rand.  OcTOPI-7b (LoRA) OcTOPI-7b (w/0o LoRA)
PC 48.10 30.38 PC 33.33 48.10 40.51
PSS 74.67 42.67 PSS 33.33 74.67 30.00
POM 44.39 36.36 POM  16.67 44.39 12.30
PSR 69.57 69.57 PSR 50.00 69.57 63.04
OcCTOPI-13b (fine-tuned CLIP) OcCTOPI-13b (base CLIP) Rand. OcTOPI-13b (LoRA) OCTOPI-13b (w/o LoRA)
PC 55.06 47.47 PC 33.33 55.06 52.53
PSS 84.00 75.33 PSS 33.33 84.00 77.33
POM 60.43 57.22 POM  16.67 60.43 34.76
PSR 67.39 45.65 PSR 50.00 67.39 60.87

TABLE XII. End-to-end Fine-tuning Physical Property Prediction
Result Comparisons. End-to-end fine-tuning with LoRA generally
improves physical property prediction accuracies.

OcToPI-7b (w/ LoRA) OcCTOPI-7b (w/o LoRA)

Combined 47.37 39.47
Hardness 71.05 65.79
Roughness 73.68 76.32
Bumpiness 81.58 71.05
OcToPI-13b (w/ LoRA)  OcCTOPI-13b (W/0 LoRA)
Combined 55.26 23.68
Hardness 73.68 36.84
Roughness 78.95 73.68
Bumpiness 78.95 71.05

In Table X, our Object Property Description results show
that OCTOPI-7b trained with a fine-tuned CLIP encoder out-
performs one trained with an unmodified CLIP encoder by
7.90% on combined accuracy. Similarly, OCTOPI-13b with
the fine-tuned CLIP visual encoder performs better on the
combined, roughness, and bumpiness predictions, with the
combined accuracy being 5.26% higher. This suggests that a
fine-tuned CLIP generally improves its learned representations
for physical property prediction in an end-to-end LVLM.

We further tested both OCTOPI versions on physical under-
standing tasks with results in Table XI. For OCTOPI-7b, the
version trained with a fine-tuned CLIP encoder performs better
across the three physical understanding tasks (by 17.72% on
PC, 32.00% on PSS, 8.03% on POM). Similarly, OCTOPI-13b
with the fine-tuned CLIP encoder has a better performance
for physical understanding tasks, which suggests that fine-
tuning generally helps physical understanding and physical
reasoning performance. Further encoder analysis can be found
in Appendix E.

B. Ablation: The Impact of End-to-end Fine-tuning

Table XII shows OCTOPI’s performance on the property
prediction task before and after end-to-end fine-tuning with
LoRA. For both OCTOPI-7b and OCTOPI-13b, the fine-tuned
variants generally performed better. We see sharp improve-
ments for OCTOPI-13b with improvements across the proper-
ties. Our results suggest that end-to-end fine-tuning improves
physical property prediction accuracy. Similar to the property
prediction task, we observed that fine-tuning with LoRA also
improves OCTOPI’s performance on physical understanding
tasks (Table XIII).

VIII. CONCLUSION AND DISCUSSION

In this work, we extended large vision-language models
(LVLMs) to process and describe tactile inputs using phys-
ical properties. We proposed a tactile dataset called PHYSI-
CLEAR, comprising data from vision (Camera) and tactile
(GelSight) sensors collected from everyday objects, along
with physical property annotations. We also present OCTOPI,
a large tactile-language model trained using datasets like
PHYSICLEAR to perform physical property reasoning using
tactile inputs.

Our experiments show that OCTOPI is able to describe
tactile signals from novel unseen objects and that inferred
physical properties can be used for physical reasoning and
robot task completion in scenarios with visual ambiguity.
We studied the impact of different components in OCTOPI,
and found that using a task-specific visual encoder that is
fine-tuned on our labels improves performance significantly
across all tasks. This suggests that improvements to the visual
encoder will yield benefits. In addition, parameter-efficient
LLM fine-tuning consistently improved performance.

Our work opens up future work in tactile robotics. We are
currently working on tactile encoder improvement and more
diverse exploratory procedures to obtain additional physical
properties. It would also be interesting to combine different
datasets (e.g., those using other tactile sensors [44, 45]),
along with other modalities such as robot proprioception. We
plan to also perform physical understanding alignment with
object images and LLM fine-tuning with additional physical
understanding data [52, 31].
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