
Data on the Outside versus Data on the Inside

Pat Helland

Microsoft Corporation
One Microsoft Way

Redmond, WA
USA

PHelland@Microsoft.com

Abstract

Recently, a lot of interest has been shown in
SOA (Service Oriented Architectures). In these
systems, there are multiple services each with its
own code and data, and ability to operate
independently of its partners. In particular,
atomic transactions with two-phase commit do
not occur across multiple services because this
necessitates holding locks while another service
decides the outcome of the transaction. This
paper proposes there are a number of seminal
differences between data inside a service and
data sent into the space outside of the service
boundary. We then consider objects, SQL, and
XML as different representations of data. Each
of these models has strengths and weaknesses
when applied to the inside and outside of the
service boundary. The paper concludes that the
strength of each of these models in one area is
derived from essential characteristics underlying
its weakness in the other area.

1. Introduction

Service Oriented Architectures (SOA) is an exciting topic
of discussion lately. While we can easily look to the past
and see examples of large enterprise solutions that we can
now characterize as SOA, the discussion of this
applications style as a design paradigm is relatively
recent. This section attempts to describe what is meant by
SOA and introduces the notions of data residing inside
services and data residing outside services.

1.1 Service Or iented Architectures

Service Oriented Architecture characterizes a collection
of independent and autonomous services. Each service
comprises a chunk of code and data that is private to that
service. Services are different than the classic application
living in a silo and interacting only with humans in that
they are interconnected with messages to other services.

Services communicate with each other exclusively
through messages. No knowledge of the partner service is
shared other than the message formats and the sequences
of the messages that are expected. It is explicitly allowed
(and, indeed, expected) that the partner service may be
implemented with heterogeneous technology at all levels
of the stack including hardware, operating system,
database, middleware, and/or application vendor or
implementation team.

The essence of SOA lies in independent services
which are interconnected with messaging.

1.2 Bounding Trust via Encapsulation

Services interact via a collection of messages whose
formats (schema) and business semantics are well
defined. Each service will only do limited things for its
partner services based upon the well defined message.

The act of defining a limited set of behaviors provides
a very firm encapsulation of the service. The only way to
interact with the service is via the prescribed messages
each of which will invoke application logic to decide if
and when to access the data encapsulated within the
service. Data is, in general, never allowed out of a service
unless it is processed by application logic.

When approaching your bank’s ATM, you are
accustomed to only having a fixed set of operations to
be performed (e.g. withdrawal, deposit, etc.). Banks
do not allow direct access to reads and writes of their
corporate database via ATMs. This is service oriented
architecture and encapsulation to bound trust.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2005 CIDR Conference

1.3 Encapsulating Both Changes and Reads

Services encapsulate changes to their data via the
application logic for the service. This is done to ensure
the integrity of the data that is owned by the service and
the integrity of the work performed by the service. It is
essential that only the trusted application logic of the
service perform changes to the data.

In addition, services encapsulate the reading of their
data to control the privacy of what is exported. While the
subject of business intelligence analytics is beyond the
scope of this paper, most environments based on service
orientation cannot avail themselves of relative simplicity
of a single database when attempting to analyze their data.
The placement of the underlying data on heterogeneous
operating systems and databases means that there are new
challenges in performing cross-service analysis.

Frequently, services will choose to export carefully
sanitized subsets of their data for consumption by partner
services. We will explore this phenomenon later in this
paper but the main point to be made now is that an
untrusted partner service cannot simply read the contents
of the service’s private data unless intermediated by
application logic.

1.4 Trust and Transactions

To participate in an ACID transaction requires a
willingness to hold database locks until the transaction
coordinator decides to commit or abort the transaction.
For the non-coordinator, this is a serious ceding of
independence and requires a lot of trust that the
coordinating system will make a decision in a timely
fashion. Being constrained to hold active locks on
records in the database can be devastating for the
availability of a system.

In this paper we are considering the relationship across
applications and data that are unwilling to trust each other
enough to jointly participate in a two phase commit. The
use of the word “service” in this paper is hereby clarified
to carry the assumption that ACID transactions are not
shared across service boundaries1.

1.5 Data Inside and Outside Services

The premise of this paper is that data residing inside a
service is different in many essential ways from data
residing outside services.

Data on the Inside refers to the encapsulated private
data contained within the service itself. As a sweeping

1 Sometimes, the word “service” is used in a fashion that
includes the potential for shared ACID transactions.
Notably, the proposed WS-Transaction standard
facilitates this. There will always be environments that
are willing to share ACID transactions and others which
are not. Hence, this becomes a debate about the definition
and implications of the nomenclature and specifically, the
interpretation of the word “service” .

statement, this is the data that we have always considered
as “normal data” . The classic data contained in a SQL
database and manipulated by a typical application is
inside data.

Data on the Outside refers to the information that
flows between these independent services. Since we
defined services as being connected by messaging, it is
reasonable to consider all outside data as being
transmitted with a message2.

1.6 Operators and Operands

When messages flow between services, they contain
operators. Operators correspond to the intended purpose
for the message. Frequently, the operator reflects a
business function in the domain of the service. For
example, a service implementing a banking application
may have operators in their messages for deposits,
withdrawals, and other such banking business functions.
Sometimes, operators reflect more mundane reasons for
sending messages such as “here’s Tuesday’s price-list” .

Messages may contain operands to the operators. The
operands are additional information required by the
operator message to fully qualify the intent of the sending
service. Operands are typically obtained from reference
data published by a service to facilitate its later invocation
with an operator message. We will address the topic of
reference data in more depth below.

2 Think about the role of paper and humans in connecting
applications running in their own silos. Looking back at
many enterprise applications, data and business operations
flow between the applications using printouts and people.
It is reasonable to consider the contents of a printout as
outside data and apply the arguments about the nature of
outside data made in this document equally to paper
representations. For the purposes of discussion with this
document, we will stick to an assumption of messages as
the means for sharing outside data. That is not meant to
preclude other representations of outside data but rather to
sharpen our focus for discussion.

Service

Operator

Deposit

Operands

Reference
Data

Service

Operator

Deposit

Operands

Reference
Data

Service

Operator

Deposit

Operands

Reference
Data

Operator

Deposit

Operator

DepositDepositDeposit

Operands

Reference
Data

Reference
Data

2. Data: Then and Now

This section examines the temporal implications of not
sharing ACID transactions across services. We
retrospectively examine the nature of work inside the
boundaries of an ACID transaction and observe that this
provides a crisp sense of “now” for operations against
inside data.

However, it is different for data on the outside of the
service. The fact that it is unlocked means that the data is
no longer in the “now” . Furthermore, operators are
requests for operations which have not yet occurred and
actually live in the future (assuming they come to
fruition).

Finally, we consider the fact that different services
live in their own private temporal domains and that this is
an intrinsic part of service oriented architecture. It carries
implications on the way we must think about applications.

2.1 Transactions, Inside Data, and “ Now”

Transactions have been historically defined using ACID
properties (Atomic, Consistent, Isolated, and Durable)3.
These properties reflect the semantics of the transaction.
Much work has been done to describe transaction
serializability in which executing transactions on a system
or set of related systems perceive their work is applied in
a serial order even in the face of concurrent execution.4

Transactional serializability makes you feel alone. A
rephrasing of serializability is that each transaction sees
all other transactions in one of three categories:
• Transactions whose work preceded this one,
• Transactions whose work follows this one, or
• Transactions whose work is completely independent

of this one.
This looks just like the executing transaction is all alone.

ACID transactions live in the “now” . As time
marches forward and transactions commit, each new
transaction perceives the impact of the transactions that
preceded it. The executing logic of the service lives with
a clear and crisp sense of “now” .

2.2 Outside Data: a Blast from the Past

Messages may contain data extracted from the local
service’s database. While it is processed by application
logic, frequently the contents of a message are derived
from the contents of data inside the service’s database.
This data will be unlocked as the outgoing message is
created, allowing it to be changed.

By the time a partner service sees a message whose
contents are based on the sender’s data, the unlocked data
may, in fact, be changed by subsequent transactions. It is
no longer known to be accurate. The contents of a

3 See [Gray and Reuter].
4 See [Bernstein, Hadzilacos, Goodman].

message are always from the past! They are never from
“now”.

There is no simultaneity at a distance!
-- Similar to the speed of light bounding information
-- By the time you see a distant object, it may have
 changed!
-- By the time you see a message, the data may have
 changed!

Services, transactions, and locks bound simultaneity!
-- Inside a transaction, things are simultaneous
-- Simultaneity exists only inside a transaction!
-- Simultaneity exists only inside a service!

All data seen from a distant service is from the “past” . By
the time you see data from a distant service, it has been
unlocked and may change.

Each service has its own perspective. Its inside data
provides its framework of “now” . Its outside data
provides its framework of the “past” . My inside is not
your inside just as my outside is not your outside.

Going to SOA is like going from Newton’s physics to
Einstein’s physics.
-- Newton’s time marched forward uniformly with
 instant knowledge at a distance.
-- Before SOA, distributed computing strove to make
 many systems look like one with RPC, 2PC, etc.
-- In Einstein’s universe, everything is relative to
 one’s perspective.
-- SOA has “now” inside and the “past” arriving in
 messages.

2.3 Operators: Hope for the Future

Message operators define requests for work from a
service. If Service-A sends a message with an operator
request to Service-B, it is hopeful that Service-B will do

the requested operation. It is hopeful for the future.
If Service-B complies and performs the work, that

work becomes part of Service-B’s future and its state is
forever changed.

Once Service-A receives a reply back describing
either success or failure of the operation, Service-A’s
future is changed.

Hopeful for
the Future…
Decides to
Issue Request

Hopes Fulfilled,
the Future is Now

Minding
Own
Business
Future
Altered
by Doing
Request

Request

Service
A

Resp

Service
B

Hopeful for
the Future…
Decides to
Issue Request

Hopes Fulfilled,
the Future is Now

Minding
Own
Business
Future
Altered
by Doing
Request

RequestRequestRequest

Service
A

RespRespResp

Service
B

2.4 Between Services: L ife in the “ Then”

Operands may live in either the past or the future
depending on their usage pattern. They live in the past if
they have copies of unlocked information from a distant
service. They live in the future if they contain proposed
values that hopefully will be used if the operator is
successfully completed.

Between the services, life is in the world of “ then” .
Operators live in the future. Operands live in either the
past or the future. Life is always in the “ then” when you
are outside the confines of a service. This means that data
on the outside lives in the world of “ then” . It is past or
future but it is not now.

Each separate service has its own separate “now” .
The domains of transaction serializability are disjoint and
each has its own temporal environment. The only way
they interact is through data on the outside which lives in
the world of “ then” .

2.5 Services: Dealing with “ Now” and “ Then”

Services must cope with making the “now” meet the
“ then” . Each service lives in its own “now” and interacts
with incoming and outgoing notions of “ then” . The
application logic for the service must reconcile these!

Example#1: Accepting an Order
-- A business publishes daily prices.
-- It probably wants to accept yesterday’s prices for a
 while after midnight!
-- The service’s application logic must manually cope
 with the differences of prices during the overlap.
Example#2: “Usually ships in 24 hours”
-- Order processing has old information.
-- Available inventory is deliberately fuzzy.
-- Both sides can cope with different time domains.

The world is no longer flat!
-- SOA is recognizing that there is more than one
 computer working together!
-- Multiple machines mean multiple time domains.
-- Multiple time domains mandate we cope with
 ambiguity to allow coexistence, cooperation, and
 joint work.

3. Data on the Outside: Immutability

This section discusses some interesting properties of data
on the outside. First, we address the need for each data
item to be uniquely identified and to have immutable
contents that do not changes as copies of it move around.
Next, we describe anomalies that can be caused in the
interpretation of data in different locations and at different
times and introduce the notion of “stable” data which
avoids these anomalies. After this, we move on to discuss
schema and the messages it describes. This leads us to
the mechanisms by which one piece of outside data can
refer to another piece of data and the implications of
immutability. Finally, we examine what outside data
looks like when it is being created by a collection of
independent services each in their own temporal domain.

3.1 Immutable and/or Versioned Data

Data may be immutable. Once immutable data is written
and given an identifier, the contents of the data will
always remain the same for that identifier. Once
immutable data is written, it cannot be changed. In many
environments, the immutable data may be deleted and the
identifier will subsequently be mapped to an indication of
“no present data” but it will never return data other than
the original contents.

Immutable data is the same no matter when it is
referenced and no matter where it is referenced.

Versioned data is immutable. If you specify a specific
version of some collection of data, you will always get the
same contents.

In many cases, a version independent identifier is used
to refer to a collection of data. An example is the New
York Times. A new version of the Times is produced
each day (and, indeed, due to regional editions, multiple
versions are produced each day).

To bind a version independent identifier, to the
underlying data, it is necessary to first convert to a version
dependent identifier. For example, the request for a
recent New York Times is converted into a request for the
New York Times on January 4th, 2005, California Edition.
This is a version dependent identifier which yields the
immutable contents of that region’s edition of that day’s
paper. The contents of this edition for that day will never
change no matter when you request it or where you
request it. Either the information about the contents of
that specific newspaper is available or it is not. If it is
available, the answer is always the same.

3.2 Immutability, Messages, and Outside Data

One reality of messaging is that messages sometimes get
lost. To ensure their delivery, they must be retried. It is
essential that retries of the messages have the same
contents. The message itself must be immutable.

Once a message is sent, it cannot be unsent anymore
than the President of the United States can un-say

No Notion
of “Now”

in Between
Services!

Service
#1

Service
#3

Service
#4

Service
#2

No Notion
of “Now”

in Between
Services!

Service
#1
Service
#1

Service
#3
Service
#3

Service
#4
Service
#4

Service
#2
Service
#2

something on television. It is best to consider each
message as uniquely identified and that identifier yields
immutable contents for the message. This means the
same bits are always returned for the message.

3.3 Stability of Data

Immutability isn’ t enough to ensure a lack of confusion.
The interpretation of the contents of the data must be
unambiguous. Stable data has an unambiguous and
unchanging interpretation across space and time.

The words “President Bush” have a different meaning
in 2005 than they did in 1990. These words are not
stable in the absence of additional qualifying data.

To ensure the stability of data, it is important to design for
values that are unambiguous across space and time. One
excellent technique for the creation of stable data is the
use of time-stamping and/or versioning. Another
important technique is to ensure that important identifiers
are never reused.

Observation: A monthly bank statement is stable data.
Its interpretation is invariant across space and time.
Advice: Don’ t recycle customer-IDs.
Observation: Anything called “current”
(e.g. current-inventory) is not stable.

3.4 Schema and Immutable Messages

As discussed above, when a message is sent, it must be
immutable and stable to ensure the correct interpretation
of the message. In addition, the schema for the message
must be immutable. For this reason, it is recommended
that all message schemas be versioned and each message
use the version dependent identifier of the precise
definition of the message format.

3.5 References to Data, Immutability, and DAGs

Sometimes it is essential to refer to other data. When
referencing other data from outside data, it is essential
that the identifier used for the reference specifies data that
is, itself, immutable.

If you find an immutable document that tells you to
read “ today’s New York Times” to find out more
details, that doesn’ t do you any good without more
details (specifically the date and region for the paper).

As new data is generated, it may have references to
complex graphs of other data items, each of which is
immutable and uniquely identified. This creates a DAG
(Directed Acyclic Graph) of referenced data items. Note
that this model allows for each data item to refer to its
schema using simply another arc in the DAG.

Over time, independent services, each within their
own temporal domain, will generate new data items
blithely ignorant of the recent contributions of other
services. It is the creation of new immutable data items
which are interrelated by their membership in this DAG
that gives outside data its special charm.

4. Data on the Outside: Reference Data

Reference data refers to a type of information that is
created and/or managed by a single service and published
to other services for their use.

Each piece of reference data has both a version
independent identifier and multiple versions, each of
which is labeled with a version dependent identifier. For
each piece, there is exactly one publishing service.

This section will first discuss the publication of
versions. Then we will move on to discuss the various
usages of reference data.

4.1 Publishing Versioned Reference Data

The idea here is quite simple. A version independent
identifier is created for some data. One service is the
owner of that data and periodically publishes a new
version which is labeled with a version dependent
identifier. It is important that the version’s identifier is
known to be increasing as subsequent versions are
transmitted.

When a version of the reference data is transmitted, it
must be assumed to be somewhat out of date. The
information is clearly from the “past” and not “now” . It is
reasonable to consider these versions as snapshots.

4.2 Usages of Reference Data

There are three broad categories of usage for reference
data that I’ ve thought of so far:
• Operands contain information published by a service

in anticipation that hopefully another service will
submit an operator using these values.

• Historic Artifacts describe what happened in the past
within the confines of the sending service.

• Shared Collections contain information that is held in
common across a set of related services that gradually
evolves over time. One service is the custodian and
manages the application of changes to a part of the
collection. The other services use somewhat old
versions of the information.

We will examine these in greater depth below.

4.3 Operands

As discussed above, messages contain operators which
map to the functions provided by the service. These
operators frequently require operands as additional data
describing the details of the requested work.

Operands are gleaned from reference data that is
typically published by the service that is being invoked.

Example: A department store catalog is reference data
used to fill out the order-form.
Example: An online retailer’s price-list, product-
catalog, and shipping-cost-list are operands.

4.4 Histor ic Ar tifacts

Historic artifacts report on what happened in the past.
Sometimes these snapshots of history need to be sent from
one service to another.

Serious privacy issues can result unless proper care is
exercised in the disclosure of historic artifacts from one
service to another. For this reason, many times this usage
pattern is seen across services that have some form of
trust relationship.

Example: Quarterly results of sales.
Example: A monthly bank statement.
Example: Inventory status at the end of the quarter.

4.5 Shared Collections

The most challenging usage pattern for reference data is
the shared collection. In this case, many different services
need to have a recent view of some interesting data.
Frequently cited examples include the employee database
and the customer database. In each of these, lots of
separate services both want to examine the contents and
also change the contents of the data in these collections.

Many large enterprises experience this problem writ
large. Lots of different applications think they can
change the customer database and, now that these
applications are running on many servers, there are
many replicas of the customer database (frequently
with incompatible schemas). Changes made to one
replica gradually percolate to the others with
information loss due to schema transformations and
also due to conflicting changes.

Shared collections offer a mechanism for rationalizing the
desire to have multiple updaters and allowing controlling
business logic to enforce business policies on the data.

In a shared collection, there is one special service that
actually owns the authoritative perspective of the
collection. It enforces business rules that ensure the
integrity of the data. The owning service will periodically
publish versions of the collection and supports incoming
requests whose operators request changes.

Note that this is NOT optimistic concurrency control.
The owning service has complete control over the
changes to be made to the data. Some fields may be
updateable and others may not. Business constraints may
be applied as each requested change is considered.

Consider changes to the customer’s address. This is
not just a simple update but complex business logic:
-- First, you don’ t simply update an address, you
 append the new address while remembering that
 the old address was in effect for a range of dates.
-- Changing the address may affect the tax location.
-- Changing the address may affect the sales district.
-- Shipments may need to be rerouted.

5. Data on the Inside

As described above, inside data is encapsulated behind the
application logic of the service. This means that the only
way to modify the data is via the service’s application
logic. Sometimes a service will export a subset of their
inside data for use on the outside as reference data.

This section examines a number of facets of data on
the inside. First, we look at the temporal environment in
which SQL’s schema definition language operates. Then,
we consider how outside data is handled as it arrives into
a service. Finally, we consider by the extensibility we see
in data on the outside and the challenges with storing
copies of that data inside in a shredded fashion to
facilitate its use in relational form.

5.1 SQL, DDL, and Ser ializability

SQL’s DDL (Data Definition Language) is transactional.
Like other operations in SQL, updates to the schema via
DDL occur under the protection of a transaction and are
atomically applied. These schema changes may make
significant difference in the ways that data stored within
the database is interpreted.

It is an essential quality of DDL that transactions that
precede a DDL operation are based on the schema that
existed before and transactions that follow the DDL
operation are based on the schema as changed by the
operation. In other words, changes to the schema
participate in the serializable semantics of the database.

SQL and DDL live in the “Now”. Each transaction is
meaningful only within the context of the schema defined
by the preceding transactions. This notion of “now” is the
temporal domain of the service comprising the service’s
logic and its data contained in this database.

5.2 Stor ing Incoming Data

When data arrives from the outside, most services copy it
inside their local SQL database. While inside data is not,
in general, immutable, most services choose to implement
a convention by which they immutably retain the data. It
is not uncommon to see the incoming data syntactically
converted to a more convenient form for the service. .

Many times, an incoming message kept as an exact
binary copy for auditing and non-repudiation while still
converting the contents to a form easier to use within the
service itself.

Inside Data

Incoming
Data

Inside Data

Incoming
Data

Incoming
Data

5.3 Extensibility versus Shredding

Frequently, the outside data is kept in a hierarchical
representation like XML. XML has a number of
wonderful qualities for this including extensibility.
XML’s extensibility allows for other services to add
information to a message that was not declared in the
schema for the message. Basically, the sender of the
message added stuff that you didn’ t expect when the
schema was defined. Extensibility is in many ways like
scribbling on the margins of a paper form. It frequently
gets the desired results but there are no guarantees.

As incoming outside data is copied into the SQL
database, there are advantages to shredding it. Shredding
is the process of converting the hierarchical data into a
relational representation. It is interesting to note that
normalization is not of the same importance for copied
incoming data since the intent is to simply append the
information and never change it. Shredding is, however,
of great interest for business analytics. The better the
relational mapping, the better you will be able to analyze
the data.

It is interesting that extensibility fights shredding. It is
hard to map unplanned extensions to planned tables.
Many times, partial shredding is performed wherein the
incoming information that does comply with well known
and regular schema representations is cleanly shredded
into a relational representation and the remaining data
(including extensions) is kept without shredding.

6. Representations of Data

Let’s consider the characteristics of three prominent
representations of data: XML, SQL, and Objects.

6.1 Representing Data in XML

XML (eXtensible Markup Language)5 is a standard for
representing hierarchical collections of data as XML-
Documents. Its foundation is the InfoSet standard which
defines the abstract dataset prescribing the semantics of
parents, children, elements, attributes, and the rest of the
details of the way data can be held in a tree in XML.
While the InfoSet does define the semantics, it does not
define the syntax of a message transmission. This may be
of a proprietary form or may comply with the syntactic
representation whose angle-brackets we know and love.

In addition, XML-Schema6 defines a datatype library
and schema definition mechanism. The cool thing about
XML-Schema is the composeability of schemas. It is
expected that the definition of a schema will likely
include other definitions and this is made easy and
convenient with embedded identifiers (URIs –Universal

5 See [XML].
6 See [XML-Schema]

Resource Identifiers7) that can easily be used to reference
immutable documents.

It is this combination of hierarchy, explicit and well
defined identifiers (URIs), clear mechanism for
leveraging old schema within the new schema, and
extensibility that has given XML its prominence in
representing outside data.

6.2 Representing Data in SQL

SQL represents relationships by values contained in
fields. Being value-based allows it to “relate” different
records to each other by their value. This is the essence of
the “relational” backbone of SQL. It is precisely this
value-based nature of the representation that enables the
amazing query technology we have seen emerge over the
last few decades. SQL is clearly the leader as a
representation for inside data.

6.3 Bounded and Unbounded Data Representations

It is illustrative to contrast SQL’s value-based mechanism
with XML’s identity and reference-based mechanism.

Relational representations must be bounded. For the
value-based comparisons to work correctly there must be
both temporal and spatial bounds. Value-based
comparisons are only meaningful if the contents of both
records are defined within the same schema. Multiple
schemas can only have well defined meaning when they
can (and are) updated within the same temporal scope (i.e.
updated with ACID semantics in the same serializability
domain). This effectively yields a single schema. SQL is
semantically based on a centrally managed single schema.

Efforts in recent years to implement distributed
database systems attempt to blur the distinction between a
single system and multiple systems. By using two phase
commit and other variants, they create a single temporal
domain in which there is a well defined schema that can
be centrally updated. This is extending the periphery of
the boundary across multiple machines (at the potential
risk of performance and/or availability) but does not
negate this argument that relational representations work
only within a clearly defined boundary.

XML is unbounded. In XML, data is referenced using
URIs and not values. These URIs are universally defined
and unique. They can be used on any machine to
uniquely identify the referenced data. When used with
the proper discipline, this can result in the creation of
directed acyclic graphs of XML-documents each of which
may be created by independent services living in
independent temporal domains.

A further aspect to the unbounded nature of XML lies
in the open schema definition which allows for the
composition of schema pieces from different origins into
a new schema. The ability to independently define
schema without consulting other services complements

7 See [URIs]

the compositional nature of XML-Schema and leads to a
vibrant environment for the independent generation of
interrelated documents.

6.4 Encapsulation and Anti-Encapsulation

It is interesting to consider encapsulation as it relates to
SQL, XML, and the implementation of services.
• SQL is essentially about anti-encapsulation. The

whole idea of allowing SELECT WHERE or
UPDATE WHERE which involves joining anything
in the database with anything else in the database is,
by its nature, anti-encapsulation. It seems to be a
deeply engrained aspect of the philosophy of
databases that all data is accessible at all times.

• XML is strongly oriented towards anti-encapsulation.
The whole notion of a publicly defined schema fights
against the idea of keeping data private and
controlling it.

• Components and objects emphasize encapsulation.
Of course, there is a long tradition of cheating. The
passing of references into an object which allows the
manipulation of the shared object breaks
encapsulation and easily introduces anomalies. The
habit of different objects modifying the same data in
the database blithely ignoring the fact that this is
manipulating shared state is another major source of
anomalous behavior.

6.5 A Service’s View of Encapsulation

Services offer very strong and rigid encapsulation. The
basic notion is that there is no access whatsoever to the
underlying data unless it is mediated by the application
logic of the service. There is no visibility to the internals
of the service.

Within a service anti-encapsulation is OK in its place.
SQL’s penchant for anti-encapsulation is contained inside
the service and only visible to the service’s application
logic. Hence, this has no impact on the external behavior
provided by the service and does not pose a vulnerability
to its periphery. XML’s anti-encapsulation only applies
to the messages flowing in and out of a service. Other
mechanisms for providing authentication, authorization,
and ensuring privacy are used to protect the messages.
Once a receiving service can pass the relevant security,
XML’s anti-encapsulation empowers the semantic
connection between heterogeneous services by easing the
understanding of the intended purpose of the message
through shared schema.

6.6 Character istics of Inside and Outside Data

Let’s consider the various characteristics we have
discussed for inside and outside data. Please refer to the
figure below:

 Outside
Data

Inside
Data

Immutable? Yes No

Identity-Based References Yes No

Open Schema? Yes No

Represent in XML? Yes No

Encapsulation Useful? No Yes

Long-Lived Evolving Data
with Evolving Schema?

No Yes

Business Intelligence
Desirable over Data?

Yes Yes

Durable Storage in SQL
Inside the Service?

Yes: Copy
of XML
Kept in
SQL

Yes

Immutability, identity-based references, open schema, and
XML representation all apply to outside data and not to
inside data. This is all part of a package-deal in the form
of the representation of the data and it suits the needs of
outside data very well. The immutable data items can be
copied throughout the network and new one’s generated
by any service. Indeed, the open and independent schema
mechanisms allow independent definition of new formats
for messages, further empowering the independence of
separate services.

Next, we consider encapsulation and realize that
outside data is not protected by code. There is no
formalized notion of ensuring that access to the data is
mediated by a body of code. Rather, there is a design
point that if you have access to the raw contents of a
message, you should be able to understand it. Inside data
is always encapsulated by the service and its application
logic.

Consider data and its relationship to its schema.
Outside data is immutable and, each data item’s schema
remains immutable. Note that the schema may be
versioned and the new version applied to subsequent
similar data items but that does not change the fact that
once a specific immutable item is created, its schema
remains immutable. This is in stark contrast to the
mechanisms employed by SQL for inside data. SQL’s
DDL is designed to allow powerful transformations to
existing schema while the database is populated.

Next, we consider the desirability of performing
business intelligence analysis over the data. Experience
shows that those analysis folks want to slice and dice
anything they can get there hands on. Existing analytics
operate largely over inside data and inside data will

certainly continue as fodder for analysis. There is little
doubt of the utility of analyzing outside data, as well.

This leads us to the final column wherein we conclude
that the typical storage mechanism for both inside and
outside data will be inside SQL. The only twist for
outside data is that it will be copied into SQL’s
representation. The copy of the incoming data will then
be kept unchanged which provides immutable semantics.

6.7 The Ruling Tr iumvirate of Data Representations

Now, let’s compare the strengths and weaknesses of the
three representations of data, SQL, XML, and Objects.
• SQL with its bounded schema is fantastic to compare

anything with anything (but only within bounds).
• XML with its unbounded schema supports

independent definition of schema and data.
Extensibility is cool, too.

• Objects offer encapsulated data and ensure the
enforcement of the business rules via application
logic. Objects also ease the composition of logic.

 Arbitrary
Queries

Independent
Definition of
Shared Data

Encapsulation
(controls data)

SQL Outstanding Impossible
Not via SQL

(done by DBA)

XML Problematic Outstanding Impossible

Objects Impossible Impossible Outstanding

Consider what it takes to per form arbitrary quer ies:
• SQL is outstanding due to its value based nature and

tightly controlled schema which ensure alignment of
the values hence facilitating the comparison
semantics that underlie queries.

• XML is problematic because of schema
inconsistency. It is precisely the independence of the
definition that poses the challenges of alignment of
the values. Also, the hierarchical shape and forms of
the data may, too, be a headache.

• Objects are impossible to query unless a new
definition is made of how they define data to be
queried. Encapsulation is all about hiding the data.

Next, consider independent definition of shared data:
• SQL is impossible because it has centralized schema.

As discussed above, this is intrinsic to its ability to
support value-based querying in a tightly controlled
environment.

• XML is outstanding! It specializes in independent
definition of schema and independent generation of
documents containing the data.

• Objects are impossible since encapsulation is all
about NOT sharing data.

Finally, consider encapsulation to control data access:
• SQL doesn’ t really do encapsulation. Realistically,

all you get is table-level access control. Smart
database administrators ensure this means that only
the correct applications can run under the user-id of
the accounts configured to access the tables. That is
the coarse-grained encapsulation that is really used.

• XML is all about anti-encapsulation. Firstly, XML
has no concept of code to ensure is encapsulating the
document. Secondly, XML is designed to facilitate
the sharing of documents and their schema. It’s
really not oriented towards encapsulation!

• Objects are outstanding at encapsulation! That’s
what they were designed for in the first place.

Each model’s strength is simultaneously its weakness!
What makes SQL exceptional for querying makes it
dreadful for independent definition of shared data. XML
is wonderful for the independent definition and creation
of data but is anti-encapsulated. Encapsulation is the key
to the success of object systems and yet it prevents
querying. You cannot try harder to add features to one of
these models to address the weaknesses without
undermining its strengths!

7. Conclusion

This paper describes the impact of Service Oriented
Architecture (SOA) on the treatment of data. First, we
introduced the notions of inside data as distinct from
outside data. After discussing the temporal implications
of not sharing transactions across the boundaries of
services, we considered the need for immutability and
stability in outside data. This led to a depiction of outside
data as a DAG (Directed Acyclic Graph) of data items
being independently generated by disparate services.

Following this introduction of the basic concepts
behind outside data, we examined the notion reference
data and its usage patterns in facilitating the
interoperation of services.

Next, we presented a brief sketch of inside data with a
discussion of the challenges of shredding incoming data
in the face of extensibility.

Finally, we discussed XML, SQL, and Objects as
representations of data and compared and contrasted their
strengths. This led us to the conclusion that each of these
models has strength in one usage that complements its
weakness in another usage.

This conclusion should not surprise us when we
realize that most application developers are pretty smart.
It is common practice today to use XML to represent data
on the outside, objects to implement the business logic of
the services, and SQL to store the data on the inside. We
simply need all three of these representations and we need
to use them in a fashion that plays to their respective
strengths!

8. References

[Bernstein, Hadzilacos, Goodman]
 Concurrency Control and Recovery In Database
 Systems by Philip A. Bernstein, Vassos Hadzilacos,
 and Nathan Goodman (see
 http://research.microsoft.com/pubs/ccontrol/)

 [Gray and Reuter]. Jim Gray, Andreas Reuter:

Transaction Processing: Concepts and Techniques.
Morgan Kaufmann 1993, ISBN 1-55860-190-2

[URIs] http://www.w3.org/Addressing/

[XML] - http://www.w3.org/TR/REC-xml/

[XML-InfoSet] -- http://www.w3.org/TR/xml-infoset/

[XML-Schema] http://www.w3.org/TR/xmlschema-1/

