Field of Science

Showing posts with label Asterales. Show all posts
Showing posts with label Asterales. Show all posts

Centaurea acaulis, Stemless Star-thistle

In an earlier post, I commented on the diversity of species of the star-thistle genus Centaurea. Among the many, many species that have been assigned to this genus is the stemless star-thistle Centaurea acaulis* of northern Africa.

*Though dissolution of the polyphyletic Centaurea may lead to this species changing places. Banfi et al. (2005) listed it under the name of Colymbada acaulis.

Patch of stemless star-thistles Centaurea acaulis, from L'herbiel de Gabriel.


Centaurea acaulis is an inhabitant of dry, rocky habitats that is native to Tunisia and northeastern Algeria. As indicated by both the vernacular and botanical names, its growth habit lacks a central stem. Instead, the long, lobed leaves (which can be up to about a foot in length going by photos provided by Agut Escrig et al., 2021) lie prostrate on the ground. These leaves end in a large, ovate apical section with lobes running down the side of the central rib, becoming smaller towards the base. Flower heads are solitary and carry a mass of bright yellow florets. The involucral bracts (the 'scales' around the outside of the base of the flower head) are flat and green with darker longitudinal veins. The distal section of the bracts is triangular with a membranous, ciliate margin and typically (though not always) ends in a long spine. A closely related species found in northwestern Algeria and Morocco, C. oranensis, has historically been treated as a subspecies of C. acaulis (under the name C. acaulis ssp. boissieri, because botanical nomenclature is weird). However, C. oranensis was raised to species level by Greuter & Aghababian (in Greuter & von Raab-Straube, 2005) on the basis of its distinct involucral bracts, which are distally blackish, ovate and concave, with a margin of dense, long, stiff setae.

Close-up of flower head of Centaurea acaulis, copyright Stephen Mifsud.


Recent years have seen this species extending its range northwards with populations now found in Spain, Italy and Malta. In Malta, it was initially found grown in a disturbed area with particularly alkaline soil (Buttigieg & Lanfranco 2001). The mechanism of its arrival is uncertain. It could have dispersed naturally across the Mediterranean, or it may have arrived mixed into bird seed. However it got there, one might expect that as the south of Europe becomes increasingly hotter and drier, the stemless star-thistle will continue to spread.

REFERENCES

Agut Escrig, A., J. P. Solís Parejo & P. Urrutia Uriarte. 2021. Noticias sobre la presencia de Centaurea acaulis L. (Asteraceae) en la Península Ibérica. Flora Montiberica 81: 51–54.

Banfi, E., G. Galasso & A. Soldano. 2005. Notes on systematics and taxonomy for the Italian vascular flora. 1. Atti Soc. It. Sci. Nat. Museo Civ. Stor. Nat. Milano 146 (2): 219–244.

Buttigieg, R., & E. Lanfranco. 2001. New records for the Maltese flora: Centaurea acaulis L. (family: Asteraceae). Central Mediterranean Naturalist 3 (3): 147–148.

Greuter, W., & E. von Raab-Straube (eds) 2005. Euro+Med notulae, 1. Willdenowia 35: 223–239.

Herbs of Dragons and Worms

Preparing for this post has inspired me to some low-key experimentation. When it came time to assign myself its topic, I landed on the plant genus Artemisia. This is the genus that, among others, includes the culinary herb tarragon, Artemisia dracunculus. Which got me thinking that I wasn't sure if I'd ever actually eaten tarragon. I asked Christopher if he was familiar with it; he responded that all he knew about tarragon was that you had to consume it in the 1970s. Without access to a functioning Delorean, I did the next best thing and prepared a dish of tarragon chicken myself. The verdict: very tasty, though I could appreciate why tarragon might have a reputation for being somewhat difficult as it had a light flavour that I could imagine being easily overwhelmed.

Tarragon Artemisia dracunculus, copyright Cillas.


Tarragon is not the only species of Artemisia of significance to humans. This genus of composite-flowered plants comprsises over five hundred species and subspecies of herbs and small shrubs. The greatest diversity is found in arid and semi-arid regions of the Northern Hemisphere temperate zone (Sanz et al. 2008). The genus is characterised by its distinctive pollen with surface spinules reduced or absent. This pollen type is associated with the wind pollination typical of the genus, though some species do exhibit features such as sticky pollen and colourful flower-heads associated with insect visitation (Hayat et al. 2009). The flower-heads or capitula (a reminder that the 'flowers' of composite plants such as daisies and thistles actually represent a fusion of multiple flowers) of Artemisia are either disciform, with an outer circle of reduced ray florets surrounding the inner disc florets, or discoid, with disc florets only. In disciform capitula, the outer limb of the ray florets is reduced to a membranous vestige, not readily visible without minute examination. The ray florets are female whereas the disc florets are ancestrally hermaphroditic (more on that shortly). In discoid capitula, where the ray florets have been lost, all florets are uniformly hermaphroditic.

Mugwort Artemisia vulgaris, copyright Christian Fischer.


Historically, there has been some variation in the classification of Artemisia but a popular system divides the genus between five subgenera. A phylogenetic analysis of Artemisia and related genera by Sanz et al. (2008) found that the genus as currently recognised is not monophyletic, with a handful of small related genera being embedded within the clade. Time will tell whether this inconsistency is resolved by subdividing Artemisia or simply rolling in these smaller segregates, but for the purposes of this post they can be simply set aside. The subgenus Dracunculus, including tarragon and related species, falls in the sister clade to all other Artemisia. As well as being united by molecular data, members of this clade are distinguished by disciform capitula in which the central disc florets have become functionally male (female organs have been rendered sterile).

Wormwoood Artemisia absinthium, copyright AfroBrazilian.


The second clade encompasses the subgenera Artemisia and Absinthium, with disciform capitula, and Seriphidium and Tridentatae, with discoid capitula. Not all authors have supported the distinction of Artemisia and Absinthium, and Sanz et al. identify both as non-monophyletic, both to each other and to the discoid subgenera. Because of their similar flower-heads, most authors have presumed a close relationship between the Eurasian Seriphidium and the North American Tridentatae (commonly known as sagebrushes). Some have even suggested the former to be ancestral to the latter. However, Sanz et al.'s results questioned such a relationship, instead placing the Tridentatae species in a clade that encompassed all the North American representatives of the Artemisia group.

As well as the aforementioned tarragon, economically significant representatives of Artemisia include wormwood A. absinthium, best known these days as the flavouring agent of absinthe (though historically it has also been used for more innocuous concoctions). Mugworts (A. vulgaris and related species) have also been used for culinary and medicinal purposes. Sagebrushes are a dominant component of the vegetation in much of the Great Basin region of North America, providing crucial habitat for much of the region's wildlife. Artemisia species have shaped the lives of many of their co-habitants, both animal and human.

REFERENCES

Hayat, M. Q., M. Ashraf, M. A. Khan, T. Mahmood, M. Ahmad & S. Jabeen. 2009. Phylogeny of Artemisia L.: recent developments. African Journal of Biotechnology 8 (11): 2423–2428.

Sanz, M., R. Vilatersana, O. Hidalgo, N. Garcia-Jacas, A. Susanna, G. M. Schneeweiss & J. Vallès. 2008. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57 (1): 66–78.

Goldenrod

Growing up as a child in rural New Zealand, I remember the community social events that would sometimes be held at the local district hall. On one evening, if I recall correctly, the event being held was a quiz night modelled after then-popular game show It's in the Bag. For those unfamiliar with this long-running institution, contestants on the show who successfully answered a series of general knowledge questions asked by Selwyn Toogood, a large avuncular man with an appropriately fruity voice, would be offered the choice between a cash prize up front or a 'bag' containing an unknown prize. This prize could potentially be something worth a lot more than the money on offer, such as a trip away or a home appliance (game shows in the 1980s often included whiteware among their top tier prizes). On the other hand, it could be worth a lot less, potentially even being effectively worthless (as viewers at home, of course, we always hoped for the latter). On this occasion, one of the 'prizes' on offer was a packet of seeds from 'the pretty yellow flowers that grow so vigorously in the region'. Everyone in the audience would instantly recognise the flowers in question as ragwort Senecio jacobaea, a pernicious weed much maligned due to its toxicity to livestock. Ragwort probably arrived in New Zealand as a contaminant in grass seed, but for today's post, I'm looking at another member of the daisy family which became a weed after being more deliberately spread around.

Tall goldenrod Solidago gigantea, copyright Pethan.


Solidago, the goldenrods, is a genus of perennial herbs with a woody caudex or rhizome and usually bright yellow flowers. About 100 to 120 species are currently recognised in the genus, the great majority of which are native to North America. Other species are found in South America and Eurasia, and a number of the North American species have been spread around the world by human activity. The number of species to be recognised is somewhat disputed because, as with many decent-sized plant genera, goldenrods have a tendency to laugh in the face in clear species concepts. Differences between species can be difficult to observe and hybrids are not uncommon. Individuals belonging to the same species may vary notably with geography and growth conditions and determining whether variation is genetic or environmental has historically required extensive growth experiments cultivating seed collections at varying locations. Vegetative spreading through rhizomes may lead to isolated populations of near-clonal individuals that may come to be recognised as 'microspecies'. As a result, what one author may recognise as a number of distinct species may be treated by another author as variants of a single species. For example, a study of altitudinal variants of the European S. virgaurea in Poland by Kiełtyk & Mirek (2014) lead them to recognise two species that had previously been confused, the lowland S. virgaurea and the montane S. minuta. The two were best distinguished by relatively fine-scale features of the flower heads, most notably the number of tubular florets in each head.

Canada goldenrod Solidago canadensis, copyright Olivier Pichard.


In a review of the North American Solidago species, Semple & Cook (2006) divided the genus between two sections. The smaller section Ptarmicoidei, including only half a dozen species, is characterised by clustering of flower heads in flat-topped arrays. The remaining species in the much larger section Solidago may have heads in rounded, conical or club-shaped arrays, or bear flower heads in axillary clusters. The distinctiveness of section Ptarmicoidei is enough that some authors have placed it as a separate genus Oligoneuron. Research is ongoing concerning the phylogeny of Solidago and its precise relationships with related genera.

Historically, the European Solidago virgaurea was valued for its supposed medicinal qualities (hence the genus name, which can be translated as 'becoming whole'). But while the dried flowers may still be used in making herbal tea, goldenrod does not seem to be currently regarded as of much pharmaceutical significance. As long ago as 1597, John Gerard noted in his Herball that the once highly prized herb had plummeted in value and regard once it was found to be growing wild in England, making it a mere local weed instead of an exotic import*. In the 1920s, Thomas Edison experimented with using goldenrod as a source of rubber. Investigations in this line were later continued in the 1940s by agrarian scientist George Washington Carver (under the patronage of Henry Ford), partially to counter rubber shortages during World War II. However, rubber yield from goldenrod is low and the rubber produced of low quality, so it never became a commercially significant source.

*'...in my remembrance, I haue known the dried herbe which came from beyond the ſea ſold in Bucklersbury in London for halfe a crowne an ounce. But ſince it was found in Hampſtead wood, euen as it were at our townes end, no man will giue halfe a crowne for an hundred weight of it: which plainely ſetteth forth our inconſtancie and ſudden mutabilitie, eſteeming no longer of any thing, how pretious ſoeuer it be, than whileſt it is ſtrange and rare. This verifieth our Engliſh proverbe, Far fetcht and deare bought is beſt for Ladies.'

Woundwort Solidago virgaurea var. leiocarpa, copyright Alpsdrake.


As alluded to above, a number of North American goldenrod species have been carried to temperate regions around the world as ornamentals or to provide nectar for bees. Unfortunately, some of these species have become significant invasive weeds in their adopted homes. Canada goldenrod Solidago canadensis can have an allelopathic effect on surrounding vegetation, producing water-soluble compounds that may inhibit the germination and growth of seeds (Werner et al. 1980). It may also act as a reservoir for pathogens of crop plants. Goldenrod is also commonly accused of causing hay fever but, in this regard at least, it seems to be largely innocent. Goldenrod plants shed relatively little pollen; as the flowers are insect-pollinated, the pollen is relatively unlikely to enter the air column. Instead, it seems that the conspicuous goldenrod flowers are blamed for the more copious pollen shed by less visible plants such as ragweeds flowering at the same time.

REFERENCES

KieÅ‚tyk, P., & Z. Mirek. 2014. Taxonomy of the Solidago virgaurea group (Asteraceae) in Poland, with special reference to variability along an altitudinal gradient. Folia Geobotanica 49: 259–282.

Semple, J. C., & R. E. Cook. 2006. Solidago Linnaeus. In: Flora of North America Editorial Committee (eds) Flora of North America vol. 20. Asteraceae, part 2. Astereae and Senecioneae pp. 107–166. Oxford University Press: New York.

Werner, P. A., I. K. Bradbury & R. S. Gross. 1980. The biology of Canadian weeds. 45. Solidago canadensis L. Canadian Journal of Plant Science 60: 1393–1409.

Canterbury Bells

Bellflowers or harebells are one of the classic plants associated with the English country garden. For today's post, I'll be covering the family of plants that bellflowers belong to.

Fairy's thimble Campanula cochleariifolia, copyright Jerzy Opioła.


The Campanulaceae are a family of over 2300 plant species found almost worldwide (Crowl et al. 2016). The family is, however, divided between five subfamilies that some authors would treat as separate families, in which case 'Campanulaceae' would be restricted to the 600 or so species of the subfamily Campanuloideae. It is this subfamily that includes the bellflowers. The vernacular name, of course, refers to the shape of the flowers produced by these plants, as indeed does the botanical name: Campanula translates as 'little bell'. These flowers are radiately symmetrical with all petals more or less the same size and shape and evenly arranged in a circle. Other subfamilies of the Campanulaceae in the broad sense, the largest of which is the lobelias of the Lobelioideae, produce more bilaterally symmetrical flowers with petals differing in size and/or with some petals closer together than others. Fruits are most commonly a capsule, with the seeds dispersed by wind, but some lobelioids produce fleshy fruits that attract birds. The lobelioids are most diverse in the southern continents, and it is thought that this may have been the original home of the family as a whole when it arose sometime close to the end of the Cretaceous, possibly in Africa. At some time in the early Cenozoic, however, the campanuloids arrived in and underwent a significant radiation in the Palaearctic. This dispersal may be related to the different flower morphology of the campanuloids, as they adapted from the bird, bat and butterfly pollinators of the tropics to the bee and fly pollinators of more temperate habitats.

Glandular threadplant Nemacladus glanduliferus var. orientalis, copyright Stan Shebs.


The genetics of Campanulaceae, specifically of their chloroplasts, should also not go unnoticed. The structure of the chloroplast genome in plants is usually very stable, with few changes in gene arrangement and order. However, at various points in the history of Campunulaceae, large chunks of foreign DNA have been inserted in the original plastid chromosome, with a number of these insertions also associated with inversions in the direction of adjoining sections of the original genes (Knox 2014). This kind of insertion is unique among flowering plants: changes in the gene content of plastids more usually involve genes being transferred out of the plastid. The source of this extra DNA is uncertain: it may have come from the plant's own nucleus, or it may have come from an as-yet-unknown endosymbiont. Also unknown is the functional significance of these rearrangements, if any. Some insertions have clearly resulted in pseudogenes, with their sequences rapidly breaking down through subsequent genetic drift. But others have preserved the structure of functional genes, suggesting continued selection for their retention.

Cyanea duvalliorum, an arborescent Hawaiian lobeliad, copyright Forest & Kim Starr.


The majority of Campanulaceae are small perennial herbs. Two genera of distinctive enough to be assigned to their own subfamilies include annual herbs: the threadplants Nemacladus of southwestern North America, and the little-known Chilean Atacama desert endemic Cyphocarpus. Some members of the Lobelioideae are woody subshrubs, and at some point one of these woody lobelioids managed to make its way to the Hawaiian archipelago where it gave rise to one of the world's most remarkable insular radiations, and the single largest such radiation in plants. Over 120 species of lobeliads are known from the Hawaiian islands, varying from single-stemmed succulents to straggling vines to trees over 18 metres in height. There are inhabitants of lowland forests, of upland bogs, and of rocky cliffs. There are species producing fruit as dry capsules; others produce fleshy berries. So varied are the Hawaiian lobeliads that previous authors have inferred their origin from multiple seperate colonisations, but a study by Givnish et al. (2009) supported a single origin from a single colonist arriving about thirteen million years ago. This would have been before any of the current major Hawaiian islands existed (the oldest, Kaua'i, is a little less than five million years old); the implication is that the ancestor of the Hawaiian lobeliad arrived on a pre-existing island, perhaps corresponding to the modern Gardner Pinnacles or French Frigate Shoals. As the lobeliads diversified, they continued to disperse onto new islands as they arrived, while their original homeland eroded away.

Sadly, a depressing percentage of the species forming this incredible radiation are now threatened with extinction, the victims of pressures such as loss of habitat, the decline of their pollinators and dispersers, or grazing by introduced mammals. The cliff-dwelling pua 'ala Brighamia rockii of Moloka'i is now restricted to five locations with an estimated total wild population of less than 200 individuals. A related species on Kaua'i, the olulu Brighamia insignis, may be extinct in the wild, having last been recorded in the form of a single individual in 2014 (it still survives in cultivation). As we earlier saw with the Hawaiian honeycreepers, there is barely a single section of the Hawaiian biota not marked by tragedy.

REFERENCES

Crowl, A. A., N. W. Miles, C. J. Visger, K. Hansen, T. Ayers, R. Haberle & N. Cellinese. 2016. A global perspective on Campanulaceae: biogeographic, genomic, and floral evolution. American Journal of Botany 103 (2): 233–245.

Givnish, T. J., K. C. Millam, A. R. Mast, T. B. Paterson, T. J. Theim, A. L. Hipp, J. M. Henss, J. F. Smith, K. R. Wood & K. J. Sytsma. 2009. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proceedings of the Royal Society of London Series B—Biological Sciences 276: 407–416.

Knox, E. B. 2014. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proceedings of the National Academy of Sciences of the USA 111 (30): 11097–11102.