
Pointers and
Memory

By Nick Parlante Copyright ©1998-2000, Nick Parlante

Abstract
This document explains how pointers and memory work and how to use them—from the
basic concepts through all the major programming techniques. For each topic there is a
combination of discussion, sample C code, and drawings.

Audience
This document can be used as an introduction to pointers for someone with basic
programming experience. Alternately, it can be used to review and to fill in gaps for
someone with a partial understanding of pointers and memory. Many advanced
programming and debugging problems only make sense with a complete understanding
of pointers and memory — this document tries to provide that understanding. This
document concentrates on explaining how pointers work. For more advanced pointer
applications and practice problems, see the other resources below.

Pace
Like most CS Education Library documents, the coverage here tries to be complete but
fast. The document starts with the basics and advances through all the major topics. The
pace is fairly quick — each basic concept is covered once and usually there is some
example code and a memory drawing. Then the text moves on to the next topic. For more
practice, you can take the time to work through the examples and sample problems. Also,
see the references below for more practice problems.

Topics
Topics include: pointers, local memory, allocation, deallocation, dereference operations,
pointer assignment, deep vs. shallow copies, the ampersand operator (&), bad pointers,
the NULL pointer, value parameters, reference parameters, heap allocation and
deallocation, memory ownership models, and memory leaks. The text focuses on pointers
and memory in compiled languages like C and C++. At the end of each section, there is
some related but optional material, and in particular there are occasional notes on other
languages, such as Java.

Pointers and Memory – document #102 in the Stanford CS Education Library. This and
other free educational materials are available at http://cslibrary.stanford.edu/102/. This
document is free to be used, reproduced, sold, or retransmitted so long as this notice is
clearly reproduced at its beginning.

Other CS Education Library Documents
• Point Fun With Binky Video (http://cslibrary.stanford.edu/104/)

A silly video about pointer basics.

• Linked list Basics (http://cslibrary.stanford.edu/103/)
Introduces the basic techniques for building linked lists in C.

2

• Linked List Problems (http://cslibrary.stanford.edu/105/)
18 classic linked list problems with solutions — a great way to practice
with realistic, pointer intensive C code, and there's just no substitute for
practice!

• Essential C (http://cslibrary.stanford.edu/101/)
Complete coverage of the C language, including all of the syntax used in
this document.

Table of Contents
Section 1 Basic Pointers.. pg. 3

The basic rules and drawings for pointers: pointers, pointees, pointer
assignment (=), pointer comparison (==), the ampersand operator (&), the
NULL pointer, bad pointers, and bad dereferences.

Section 2 Local Memory ... pg. 11
How local variables and parameters work: local storage, allocation,
deallocation, the ampersand bug. Understanding the separation of local
memory between separate functions.

Section 3 Reference Parameters.. pg. 17
Combines the previous two sections to show how a function can use
"reference parameters" to communicate back to its caller.

Section 4 Heap Memory .. pg. 24
Builds on all the previous sections to explain dynamic heap memory: heap
allocation, heap deallocation, array allocation, memory ownership models,
and memory leaks.

Edition
The first edition of this document was on Jan 19, 1999. This Feb 21, 2000 edition
represents only very minor changes. The author may be reached at
nick.parlante@cs.stanford.edu. The CS Education Library may be reached at
cslibrary@cs.stanford.edu.

Dedication
This document is distributed for the benefit and education of all. That someone seeking
education should have the opportunity to find it. May you learn from it in the spirit in
which it is given — to make efficiency and beauty in your designs, peace and fairness in
your actions.

Preface To The First Edition
This article has appeared to hover at around 80% done for 6 months! Every time I add
one section, I think of two more which also need to be written. I was motivated to keep
working on it since there are so many other articles which use memory, &, ... in passing
where I wanted something to refer to. I hope you find it valuable in its current form. I'm
going to ship it quickly before I accidentally start adding another section!

3

Section 1 —
Basic Pointers
Pointers — Before and After
There's a lot of nice, tidy code you can write without knowing about pointers. But once
you learn to use the power of pointers, you can never go back. There are too many things
that can only be done with pointers. But with increased power comes increased
responsibility. Pointers allow new and more ugly types of bugs, and pointer bugs can
crash in random ways which makes them more difficult to debug. Nonetheless, even with
their problems, pointers are an irresistibly powerful programming construct. (The
following explanation uses the C language syntax where a syntax is required; there is a
discussion of Java at the section.)

Why Have Pointers?
Pointers solve two common software problems. First, pointers allow different sections of
code to share information easily. You can get the same effect by copying information
back and forth, but pointers solve the problem better. Second, pointers enable complex
"linked" data structures like linked lists and binary trees.

What Is A Pointer?
Simple int and float variables operate pretty intuitively. An int variable is like a
box which can store a single int value such as 42. In a drawing, a simple variable is a
box with its current value drawn inside.

num 42

A pointer works a little differently— it does not store a simple value directly. Instead, a
pointer stores a reference to another value. The variable the pointer refers to is
sometimes known as its "pointee". In a drawing, a pointer is a box which contains the
beginning of an arrow which leads to its pointee. (There is no single, official, word for
the concept of a pointee — pointee is just the word used in these explanations.)

The following drawing shows two variables: num and numPtr. The simple variable num
contains the value 42 in the usual way. The variable numPtr is a pointer which contains
a reference to the variable num. The numPtr variable is the pointer and num is its
pointee. What is stored inside of numPtr? Its value is not an int. Its value is a
reference to an int.

num 42

A pointer variable. The current
value is a reference to the
pointee num above.

A simple int variable. The current
value is the integer 42. This variable
also plays the role of pointee for the
pointer below.

numPtr

4

Pointer Dereference
The "dereference" operation follows a pointer's reference to get the value of its pointee.
The value of the dereference of numPtr above is 42. When the dereference operation is
used correctly, it's simple. It just accesses the value of the pointee. The only restriction is
that the pointer must have a pointee for the dereference to access. Almost all bugs in
pointer code involve violating that one restriction. A pointer must be assigned a pointee
before dereference operations will work.

The NULL Pointer
The constant NULL is a special pointer value which encodes the idea of "points to
nothing." It turns out to be convenient to have a well defined pointer value which
represents the idea that a pointer does not have a pointee. It is a runtime error to
dereference a NULL pointer. In drawings, the value NULL is usually drawn as a diagonal
line between the corners of the pointer variable's box...

numPtr

The C language uses the symbol NULL for this purpose. NULL is equal to the integer
constant 0, so NULL can play the role of a boolean false. Official C++ no longer uses the
NULL symbolic constant — use the integer constant 0 directly. Java uses the symbol
null.

Pointer Assignment
The assignment operation (=) between two pointers makes them point to the same
pointee. It's a simple rule for a potentially complex situation, so it is worth repeating:
assigning one pointer to another makes them point to the same thing. The example below
adds a second pointer, second, assigned with the statement second = numPtr;.
The result is that second points to the same pointee as numPtr. In the drawing, this
means that the second and numPtr boxes both contain arrows pointing to num.
Assignment between pointers does not change or even touch the pointees. It just changes
which pointee a pointer refers to.

num 42

numPtr

second

A second pointer ptr initialized
with the assignment
second = numPtr;. This causes
second to refer to the same
pointeee as numPtr.

After assignment, the == test comparing the two pointers will return true. For example
(second==numPtr) above is true. The assignment operation also works with the
NULL value. An assignment operation with a NULL pointer copies the NULL value
from one pointer to another.

Make A Drawing
Memory drawings are the key to thinking about pointer code. When you are looking at
code, thinking about how it will use memory at run time....make a quick drawing to work
out your ideas. This article certainly uses drawings to show how pointers work. That's the
way to do it.

5

Sharing
Two pointers which both refer to a single pointee are said to be "sharing". That two or
more entities can cooperatively share a single memory structure is a key advantage of
pointers in all computer languages. Pointer manipulation is just technique — sharing is
often the real goal. In Section 3 we will see how sharing can be used to provide efficient
communication between parts of a program.

Shallow and Deep Copying
In particular, sharing can enable communication between two functions. One function
passes a pointer to the value of interest to another function. Both functions can access the
value of interest, but the value of interest itself is not copied. This communication is
called "shallow" since instead of making and sending a (large) copy of the value of
interest, a (small) pointer is sent and the value of interest is shared. The recipient needs to
understand that they have a shallow copy, so they know not to change or delete it since it
is shared. The alternative where a complete copy is made and sent is known as a "deep"
copy. Deep copies are simpler in a way, since each function can change their copy
without interfering with the other copy, but deep copies run slower because of all the
copying.

The drawing below shows shallow and deep copying between two functions, A() and B().
In the shallow case, the smiley face is shared by passing a pointer between the two. In the
deep case, the smiley face is copied, and each function gets their own...

A()

B()

Shallow / Sharing Deep / Copying

A()

B()

Section 2 will explain the above sharing technique in detail.

Bad Pointers
When a pointer is first allocated, it does not have a pointee. The pointer is "uninitialized"
or simply "bad". A dereference operation on a bad pointer is a serious runtime error. If
you are lucky, the dereference operation will crash or halt immediately (Java behaves this
way). If you are unlucky, the bad pointer dereference will corrupt a random area of
memory, slightly altering the operation of the program so that it goes wrong some
indefinite time later. Each pointer must be assigned a pointee before it can support
dereference operations. Before that, the pointer is bad and must not be used. In our
memory drawings, the bad pointer value is shown with an XXX value...

numPtr

Bad pointers are very common. In fact, every pointer starts out with a bad value.
Correct code overwrites the bad value with a correct reference to a pointee, and thereafter
the pointer works fine. There is nothing automatic that gives a pointer a valid pointee.

6

Quite the opposite — most languages make it easy to omit this important step. You just
have to program carefully. If your code is crashing, a bad pointer should be your first
suspicion.

Pointers in dynamic languages such as Perl, LISP, and Java work a little differently. The
run-time system sets each pointer to NULL when it is allocated and checks it each time it
is dereferenced. So code can still exhibit pointer bugs, but they will halt politely on the
offending line instead of crashing haphazardly like C. As a result, it is much easier to
locate and fix pointer bugs in dynamic languages. The run-time checks are also a reason
why such languages always run at least a little slower than a compiled language like C or
C++.

Two Levels
One way to think about pointer code is that operates at two levels — pointer level and
pointee level. The trick is that both levels need to be initialized and connected for things
to work. (1) the pointer must be allocated, (1) the pointee must be allocated, and (3) the
pointer must be assigned to point to the pointee. It's rare to forget step (1). But forget (2)
or (3), and the whole thing will blow up at the first dereference. Remember to account for
both levels — make a memory drawing during your design to make sure it's right.

Syntax
The above basic features of pointers, pointees, dereferencing, and assigning are the only
concepts you need to build pointer code. However, in order to talk about pointer code, we
need to use a known syntax which is about as interesting as....a syntax. We will use the C
language syntax which has the advantage that it has influenced the syntaxes of several
languages.

Pointer Type Syntax
A pointer type in C is just the pointee type followed by a asterisk (*)...

int* type: pointer to int

float* type: pointer to float

struct fraction* type: pointer to struct fraction

struct fraction** type: pointer to struct fraction*

Pointer Variables
Pointer variables are declared just like any other variable. The declaration gives the type
and name of the new variable and reserves memory to hold its value. The declaration
does not assign a pointee for the pointer — the pointer starts out with a bad value.

int* numPtr; // Declare the int* (pointer to int) variable "numPtr".
// This allocates space for the pointer, but not the pointee.
// The pointer starts out "bad".

7

The & Operator — Reference To
There are several ways to compute a reference to a pointee suitable for storing in a
pointer. The simplest way is the & operator. The & operator can go to the left of any
variable, and it computes a reference to that variable. The code below uses a pointer and
an & to produce the earlier num/numPtr example.

num 42

numPtr

void NumPtrExample() {
int num;
int* numPtr;

num = 42;
numPtr = # // Compute a reference to "num", and store it in numPtr
// At this point, memory looks like drawing above

}

It is possible to use & in a way which compiles fine but which creates problems at run
time — the full discussion of how to correctly use & is in Section 2. For now we will just
use & in a simple way.

The * Operator — Dereference
The star operator (*) dereferences a pointer. The * is a unary operator which goes to the
left of the pointer it dereferences. The pointer must have a pointee, or it's a runtime error.

Example Pointer Code
With the syntax defined, we can now write some pointer code that demonstrates all the
pointer rules...

void PointerTest() {
// allocate three integers and two pointers
int a = 1;
int b = 2;
int c = 3;
int* p;
int* q;

// Here is the state of memory at this point.
// T1 -- Notice that the pointers start out bad...

a 1

b 2

c 3

p

q

p = &a; // set p to refer to a

8

q = &b; // set q to refer to b
// T2 -- The pointers now have pointees

a 1

b 2

c 3

p

q

// Now we mix things up a bit...
c = *p; // retrieve p's pointee value (1) and put it in c
p = q; // change p to share with q (p's pointee is now b)
*p = 13; // dereference p to set its pointee (b) to 13 (*q is now 13)
// T3 -- Dereferences and assignments mix things up

a 1

b 13

c 1

p

q

}

Bad Pointer Example
Code with the most common sort of pointer bug will look like the above correct code, but
without the middle step where the pointers are assigned pointees. The bad code will
compile fine, but at run-time, each dereference with a bad pointer will corrupt memory in
some way. The program will crash sooner or later. It is up to the programmer to ensure
that each pointer is assigned a pointee before it is used. The following example shows a
simple example of the bad code and a drawing of how memory is likely to react...

void BadPointer() {
int* p; // allocate the pointer, but not the pointee

*p = 42; // this dereference is a serious runtime error
}
// What happens at runtime when the bad pointer is dereferenced...

p

Pow!

9

Pointer Rules Summary
No matter how complex a pointer structure gets, the list of rules remains short.

• A pointer stores a reference to its pointee. The pointee, in turn, stores
something useful.

• The dereference operation on a pointer accesses its pointee. A pointer may
only be dereferenced after it has been assigned to refer to a pointee. Most
pointer bugs involve violating this one rule.

• Allocating a pointer does not automatically assign it to refer to a pointee.
Assigning the pointer to refer to a specific pointee is a separate operation
which is easy to forget.

• Assignment between two pointers makes them refer to the same pointee
which introduces sharing.

Section 1 — Extra Optional Material
Extra: How Do Pointers Work In Java
Java has pointers, but they are not manipulated with explicit operators such as * and &. In
Java, simple data types such as int and char operate just as in C. More complex types
such as arrays and objects are automatically implemented using pointers. The language
automatically uses pointers behind the scenes for such complex types, and no pointer
specific syntax is required. The programmer just needs to realize that operations like
a=b; will automatically be implemented with pointers if a and b are arrays or objects. Or
put another way, the programmer needs to remember that assignments and parameters
with arrays and objects are intrinsically shallow or shared— see the Deep vs. Shallow
material above. The following code shows some Java object references. Notice that there
are no *'s or &'s in the code to create pointers. The code intrinsically uses pointers. Also,
the garbage collector (Section 4), takes care of the deallocation automatically at the end
of the function.

public void JavaShallow() {
Foo a = new Foo(); // Create a Foo object (no * in the declaration)
Foo b = new Foo(); // Create another Foo object

b=a; // This is automatically a shallow assignment --
// a and b now refer to the same object.

a.Bar(); // This could just as well be written b.Bar();

// There is no memory leak here -- the garbage collector
// will automatically recycle the memory for the two objects.

}

The Java approach has two main features...

• Fewer bugs. Because the language implements the pointer manipulation
accurately and automatically, the most common pointer bug are no longer
possible, Yay! Also, the Java runtime system checks each pointer value
every time it is used, so NULL pointer dereferences are caught
immediately on the line where they occur. This can make a programmer
much more productive.

10

• Slower. Because the language takes responsibility for implementing so
much pointer machinery at runtime, Java code runs slower than the
equivalent C code. (There are other reasons for Java to run slowly as well.
There is active research in making Java faser in interesting ways — the
Sun "Hot Spot" project.) In any case, the appeal of increased programmer
efficiency and fewer bugs makes the slowness worthwhile for some
applications.

Extra: How Are Pointers Implemented In The Machine?
How are pointers implemented? The short explanation is that every area of memory in the
machine has a numeric address like 1000 or 20452. A pointer to an area of memory is
really just an integer which is storing the address of that area of memory. The dereference
operation looks at the address, and goes to that area of memory to retrieve the pointee
stored there. Pointer assignment just copies the numeric address from one pointer to
another. The NULL value is generally just the numeric address 0 — the computer just
never allocates a pointee at 0 so that address can be used to represent NULL. A bad
pointer is really just a pointer which contains a random address — just like an
uninitialized int variable which starts out with a random int value. The pointer has not
yet been assigned the specific address of a valid pointee. This is why dereference
operations with bad pointers are so unpredictable. They operate on whatever random area
of memory they happen to have the address of.

Extra: The Term "Reference"
The word "reference" means almost the same thing as the word "pointer". The difference
is that "reference" tends to be used in a discussion of pointer issues which is not specific
to any particular language or implementation. The word "pointer" connotes the common
C/C++ implementation of pointers as addresses. The word "reference" is also used in the
phrase "reference parameter" which is a technique which uses pointer parameters for two-
way communication between functions — this technique is the subject of Section 3.

Extra: Why Are Bad Pointer Bugs So Common?
Why is it so often the case that programmers will allocate a pointer, but forget to set it to
refer to a pointee? The rules for pointers don't seem that complex, yet every programmer
makes this error repeatedly. Why? The problem is that we are trained by the tools we use.
Simple variables don't require any extra setup. You can allocate a simple variable, such as
int, and use it immediately. All that int, char, struct fraction code you have
written has trained you, quite reasonably, that a variable may be used once it is declared.
Unfortunately, pointers look like simple variables but they require the extra initialization
before use. It's unfortunate, in a way, that pointers happen look like other variables, since
it makes it easy to forget that the rules for their use are very different. Oh well. Try to
remember to assign your pointers to refer to pointees. Don't be surprised when you forget.

11

Section 2 —
Local Memory
Thanks For The Memory
Local variables are the programming structure everyone uses but no one thinks about.
You think about them a little when first mastering the syntax. But after a few weeks, the
variables are so automatic that you soon forget to think about how they work. This
situation is a credit to modern programming languages— most of the time variables
appear automatically when you need them, and they disappear automatically when you
are finished. For basic programming, this is a fine situation. However, for advanced
programming, it's going to be useful to have an idea of how variables work...

Allocation And Deallocation
Variables represent storage space in the computer's memory. Each variable presents a
convenient names like length or sum in the source code. Behind the scenes at runtime,
each variable uses an area of the computer's memory to store its value. It is not the case
that every variable in a program has a permanently assigned area of memory. Instead,
modern languages are smart about giving memory to a variable only when necessary. The
terminology is that a variable is allocated when it is given an area of memory to store its
value. While the variable is allocated, it can operate as a variable in the usual way to hold
a value. A variable is deallocated when the system reclaims the memory from the
variable, so it no longer has an area to store its value. For a variable, the period of time
from its allocation until its deallocation is called its lifetime.

The most common memory related error is using a deallocated variable. For local
variables, modern languages automatically protect against this error. With pointers, as we
will see however, the programmer must make sure that allocation is handled correctly..

Local Memory
The most common variables you use are "local" variables within functions such as the
variables num and result in the following function. All of the local variables and
parameters taken together are called its "local storage" or just its "locals", such as num
and result in the following code...

// Local storage example
int Square(int num) {

int result;

result = num * num;

return result;
}

The variables are called "local" to capture the idea that their lifetime is tied to the
function where they are declared. Whenever the function runs, its local variables are
allocated. When the function exits, its locals are deallocated. For the above example, that
means that when the Square() function is called, local storage is allocated for num and
result. Statements like result = num * num; in the function use the local
storage. When the function finally exits, its local storage is deallocated.

12

Here is a more detailed version of the rules of local storage...

1. When a function is called, memory is allocated for all of its locals. In other
words, when the flow of control hits the starting '{' for the function, all of
its locals are allocated memory. Parameters such as num and local
variables such as result in the above example both count as locals. The
only difference between parameters and local variables is that parameters
start out with a value copied from the caller while local variables start with
random initial values. This article mostly uses simple int variables for its
examples, however local allocation works for any type: structs, arrays...
these can all be allocated locally.

2. The memory for the locals continues to be allocated so long as the thread
of control is within the owning function. Locals continue to exist even if
the function temporarily passes off the thread of control by calling another
function. The locals exist undisturbed through all of this.

3. Finally, when the function finishes and exits, its locals are deallocated.
This makes sense in a way — suppose the locals were somehow to
continue to exist — how could the code even refer to them? The names
like num and result only make sense within the body of Square()
anyway. Once the flow of control leaves that body, there is no way to refer
to the locals even if they were allocated. That locals are available
("scoped") only within their owning function is known as "lexical
scoping" and pretty much all languages do it that way now.

Small Locals Example
Here is a simple example of the lifetime of local storage...

void Foo(int a) { // (1) Locals (a, b, i, scores) allocated when Foo runs
int i;
float scores[100]; // This array of 100 floats is allocated locally.

a = a + 1; // (2) Local storage is used by the computation
for (i=0; i<a; i++) {

Bar(i + a); // (3) Locals continue to exist undisturbed,
} // even during calls to other functions.

} // (4) The locals are all deallocated when the function exits.

Large Locals Example
Here is a larger example which shows how the simple rule "the locals are allocated when
their function begins running and are deallocated when it exits" can build more complex
behavior. You will need a firm grasp of how local allocation works to understand the
material in sections 3 and 4 later.

The drawing shows the sequence of allocations and deallocations which result when the
function X() calls the function Y() twice. The points in time T1, T2, etc. are marked in
the code and the state of memory at that time is shown in the drawing.

13

void X() {
int a = 1;
int b = 2;
// T1

Y(a);
// T3
Y(b);

// T5

}

void Y(int p) {
int q;
q = p + 2;
// T2 (first time through), T4 (second time through)

}

T1 - X()'s locals
have been
allocated and
given values..

T2 - Y() is
called with p=1,
and its locals
are allocated.
X()'s locals
continue to be
allocated.

T3 - Y() exits
and its locals
are deallocated.
We are left only
with X()'s
locals.

T4 - Y() is
called again
with p=2, and
its locals are
allocated a
second time.

T5 - Y() exits
and its locals
are deallocated.
X()'s locals will
be deallocated
when it exits.

1

3

p

q
Y()

2

4

p

q
Y()

1

2

a

b
X()

1

2

a

b
X()

1

2

a

b
X()

1

2

a

b
X()

1

2

a

b
X()

(optional extra...) The drawing shows the sequence of the locals being allocated and
deallocated — in effect the drawing shows the operation over time of the "stack" which is
the data structure which the system uses to implement local storage.

Observations About Local Parameters
Local variables are tightly associated with their function — they are used there and
nowhere else. Only the X() code can refer to its a and b. Only the Y() code can refer to
its p and q. This independence of local storage is the root cause of both its advantages
and disadvantages.

Advantages Of Locals
Locals are great for 90% of a program's memory needs....

Convenient. Locals satisfy a convenient need — functions often need
some temporary memory which exists only during the function's
computation. Local variables conveniently provide this sort of temporary,
independent memory.

Efficient. Relative to other memory use techniques, locals are very
efficient. Allocating and deallocating them is time efficient (fast) and they
are space efficient in the way they use and recycle memory.

14

Local Copies. Local parameters are basically local copies of the
information from the caller. This is also known as "pass by value."
Parameters are local variables which are initialized with an assignment (=)
operation from the caller. The caller is not "sharing" the parameter value
with the callee in the pointer sense— the callee is getting its own copy.
This has the advantage that the callee can change its local copy without
affecting the caller. (Such as with the "p" parameter in the above
example.) This independence is good since it keeps the operation of the
caller and callee functions separate which follows the rules of good
software engineering — keep separate components as independent as
possible.

Disadvantages Of Locals
There are two disadvantages of Locals

Short Lifetime. Their allocation and deallocation schedule (their
"lifetime") is very strict. Sometimes a program needs memory which
continues to be allocated even after the function which originally allocated
it has exited. Local variables will not work since they are deallocated
automatically when their owning function exits. This problem will be
solved later in Section 4 with "heap" memory.

Restricted Communication. Since locals are copies of the caller
parameters, they do not provide a means of communication from the callee
back to the caller. This is the downside of the "independence" advantage.
Also, sometimes making copies of a value is undesirable for other reasons.
We will see the solution to this problem below in Section 3 "Reference
Parameters".

Synonyms For "Local"
Local variables are also known as "automatic" variables since their allocation and
deallocation is done automatically as part of the function call mechanism. Local variables
are also sometimes known as "stack" variables because, at a low level, languages almost
always implement local variables using a stack structure in memory.

The Ampersand (&) Bug — TAB
Now that you understand the allocation schedule of locals, you can appreciate one of the
more ugly bugs possible in C and C++. What is wrong with the following code where the
function Victim() calls the function TAB()? To see the problem, it may be useful to make
a drawing to trace the local storage of the two functions...

// TAB -- The Ampersand Bug function
// Returns a pointer to an int
int* TAB() {

int temp;
return(&temp); // return a pointer to the local int

}

void Victim() {
int* ptr;
ptr = TAB();
*ptr = 42; // Runtime error! The pointee was local to TAB

}

15

TAB() is actually fine while it is running. The problem happens to its caller after TAB()
exits. TAB() returns a pointer to an int, but where is that int allocated? The problem is
that the local int, temp, is allocated only while TAB() is running. When TAB() exits,
all of its locals are deallocated. So the caller is left with a pointer to a deallocated
variable. TAB()'s locals are deallocated when it exits, just as happened to the locals for
Y() in the previous example.

It is incorrect (and useless) for TAB() to return a pointer to memory which is about to be
deallocated. We are essentially running into the "lifetime" constraint of local variables.
We want the int to exist, but it gets deallocated automatically. Not all uses of & between
functions are incorrect — only when used to pass a pointer back to the caller. The correct
uses of & are discussed in section 3, and the way to pass a pointer back to the caller is
shown in section 4.

Local Memory Summary
Locals are very convenient for what they do — providing convenient and efficient
memory for a function which exists only so long as the function is executing. Locals have
two deficiencies which we will address in the following sections — how a function can
communicate back to its caller (Section 3), and how a function can allocate separate
memory with a less constrained lifetime (section 4).

Section 2 — Extra Optional Material
Extra: How Does The Function Call Stack Work?
You do not need to know how local variables are implemented during a function call, but
here is a rough outline of the steps if you are curious. The exact details of the
implementation are language and compiler specific. However, the basic structure below is
approximates the method used by many different systems and languages...

To call a function such as foo(6, x+1)...

1. Evaluate the actual parameter expressions, such as the x+1, in the caller's
context.

2. Allocate memory for foo()'s locals by pushing a suitable "local block" of
memory onto a runtime "call stack" dedicated to this purpose. For
parameters but not local variables, store the values from step (1) into the
appropriate slot in foo()'s local block.

3. Store the caller's current address of execution (its "return address") and
switch execution to foo().

4. foo() executes with its local block conveniently available at the end of the
call stack.

5. When foo() is finished, it exits by popping its locals off the stack and
"returns" to the caller using the previously stored return address. Now the
caller's locals are on the end of the stack and it can resume executing.

16

For the extremely curious, here are other miscellaneous notes on the function call
process...

• This is why infinite recursion results in a "Stack Overflow Error" — the
code keeps calling and calling resulting in steps (1) (2) (3), (1) (2) (3), but
never a step (4)....eventually the call stack runs out of memory.

• This is why local variables have random initial values — step (2) just
pushes the whole local block in one operation. Each local gets its own area
of memory, but the memory will contain whatever the most recent tenant
left there. To clear all of the local block for each function call would be
too time expensive.

• The "local block" is also known as the function's "activation record" or
"stack frame". The entire block can be pushed onto the stack (step 2), in a
single CPU operation — it is a very fast operation.

• For a multithreaded environment, each thread gets its own call stack
instead of just having single, global call stack.

• For performance reasons, some languages pass some parameters through
registers and others through the stack, so the overall process is complex.
However, the apparent the lifetime of the variables will always follow the
"stack" model presented here.

17

Section 3 —
Reference Parameters
In the simplest "pass by value" or "value parameter" scheme, each function has separate,
local memory and parameters are copied from the caller to the callee at the moment of the
function call. But what about the other direction? How can the callee communicate back
to its caller? Using a "return" at the end of the callee to copy a result back to the caller
works for simple cases, but does not work well for all situations. Also, sometimes
copying values back and forth is undesirable. "Pass by reference" parameters solve all of
these problems.

For the following discussion, the term "value of interest" will be a value that the caller
and callee wish to communicate between each other. A reference parameter passes a
pointer to the value of interest instead of a copy of the value of interest. This technique
uses the sharing property of pointers so that the caller and callee can share the value of
interest.

Bill Gates Example
Suppose functions A() and B() both do computations involving Bill Gates' net worth
measured in billions of dollars — the value of interest for this problem. A() is the main
function and its stores the initial value (about 55 as of 1998). A() calls B() which tries to
add 1 to the value of interest.

Bill Gates By Value
Here is the code and memory drawing for a simple, but incorrect implementation where
A() and B() use pass by value. Three points in time, T1, T2, and T3 are marked in the
code and the state of memory is shown for each state...

void B(int worth) {
worth = worth + 1;
// T2

}
void A() {

int netWorth;
netWorth = 55; // T1

B(netWorth);
// T3 -- B() did not change netWorth

}

T1 -- The value of interest
netWorth is local to A().

T2 -- netWorth is copied
to B()'s local worth. B()
changes its local worth
from 55 to 56.

T3 -- B() exits and its local
worth is deallocated. The
value of interest has not
been changed.

A() 55netWorth A() 55netWorth

B() 55 56worth

A() 55netWorth

18

B() adds 1 to its local worth copy, but when B() exits, worth is deallocated, so
changing it was useless. The value of interest, netWorth, rests unchanged the whole
time in A()'s local storage. A function can change its local copy of the value of interest,
but that change is not reflected back in the original value. This is really just the old
"independence" property of local storage, but in this case it is not what is wanted.

By Reference
The reference solution to the Bill Gates problem is to use a single netWorth variable
for the value of interest and never copy it. Instead, each function can receives a pointer to
netWorth. Each function can see the current value of netWorth by dereferencing its
pointer. More importantly, each function can change the net worth — just dereference
the pointer to the centralized netWorth and change it directly. Everyone agrees what
the current value of netWorth because it exists in only one place — everyone has a
pointer to the one master copy. The following memory drawing shows A() and B()
functions changed to use "reference" parameters. As before, T1, T2, and T3 correspond to
points in the code (below), but you can study the memory structure without looking at the
code yet.

T1 -- The value of interest,
netWorth, is local to A()
as before.

T2 -- Instead of a copy, B()
receives a pointer to
netWorth. B()
dereferences its pointer to
access and change the real
netWorth.

T3 -- B() exits, and
netWorth has been
changed.

A() 55netWorth A() 55 56netWorth

B() worth

A() 56netWorth

The reference parameter strategy: B() receives a pointer to the value of interest instead of
a copy.

Passing By Reference
Here are the steps to use in the code to use the pass-by-reference strategy...

• Have a single copy of the value of interest. The single "master" copy.

• Pass pointers to that value to any function which wants to see or change
the value.

• Functions can dereference their pointer to see or change the value of
interest.

• Functions must remember that they do not have their own local copies. If
they dereference their pointer and change the value, they really are
changing the master value. If a function wants a local copy to change
safely, the function must explicitly allocate and initialize such a local
copy.

19

Syntax
The syntax for by reference parameters in the C language just uses pointer operations on
the parameters...

1. Suppose a function wants to communicate about some value of interest —
int or float or struct fraction.

2. The function takes as its parameter a pointer to the value of interest — an
int* or float* or struct fraction*. Some programmers will
add the word "ref" to the name of a reference parameter as a reminder that
it is a reference to the value of interest instead of a copy.

3. At the time of the call, the caller computes a pointer to the value of interest
and passes that pointer. The type of the pointer (pointer to the value of
interest) will agree with the type in (2) above. If the value of interest is
local to the caller, then this will often involve a use of the & operator
(Section 1).

4. When the callee is running, if it wishes to access the value of interest, it
must dereference its pointer to access the actual value of interest.
Typically, this equates to use of the dereference operator (*) in the
function to see the value of interest.

Bill Gates By Reference
Here is the Bill Gates example written to use reference parameters. This code now
matches the by-reference memory drawing above.

// B() now uses a reference parameter -- a pointer to
// the value of interest. B() uses a dereference (*) on the
// reference parameter to get at the value of interest.
void B(int* worthRef) { // reference parameter

*worthRef = *worthRef + 1; // use * to get at value of interest
// T2

}

void A() {
int netWorth;
netWorth = 55; // T1 -- the value of interest is local to A()

B(&netWorth); // Pass a pointer to the value of interest.
// In this case using &.

// T3 -- B() has used its pointer to change the value of interest
}

Don't Make Copies
Reference parameters enable communication between the callee and its caller. Another
reason to use reference parameters is to avoid making copies. For efficiency, making
copies may be undesirable if the value of interest is large, such as an array. Making the
copy requires extra space for the copy itself and extra time to do the copying. From a
design point of view, making copies may be undesirable because as soon as there are two
copies, it is unclear which one is the "correct" one if either is changed. Proverb: "A
person with one watch always knows what time it is. A person with two watches is never
sure." Avoid making copies.

20

Simple Reference Parameter Example — Swap()
The standard example of reference parameters is a Swap() function which exchanges the
values of two ints. It's a simple function, but it does need to change the caller's memory
which is the key feature of pass by reference.

Swap() Function
The values of interest for Swap() are two ints. Therefore, Swap() does not take ints
as its parameters. It takes a pointers to int — (int*)'s. In the body of Swap() the
parameters, a and b, are dereferenced with * to get at the actual (int) values of interest.

void Swap(int* a, int* b) {
int temp;

temp = *a;
*a = *b;
*b = temp;

}

Swap() Caller
To call Swap(), the caller must pass pointers to the values of interest...

void SwapCaller() {
int x = 1;
int y = 2;

Swap(&x, &y); // Use & to pass pointers to the int values of interest
// (x and y).

}

ba temp 1

SwapCaller()

Swap()

2 1y1 2x

The parameters to Swap() are pointers to values of interest which are back in the caller's
locals. The Swap() code can dereference the pointers to get back to the caller's memory to
exchange the values. In this case, Swap() follows the pointers to exchange the values in
the variables x and y back in SwapCaller(). Swap() will exchange any two ints given
pointers to those two ints.

Swap() With Arrays
Just to demonstrate that the value of interest does not need to be a simple variable, here's
a call to Swap() to exchange the first and last ints in an array. Swap() takes int*'s, but
the ints can be anywhere. An int inside an array is still an int.

void SwapCaller2() {
int scores[10];
scores[0] = 1;
scores[9[= 2;
Swap(&(scores[0]), &(scores[9]));// the ints of interest do not need to be

// simple variables -- they can be any int. The caller is responsible
// for computing a pointer to the int.

21

The above call to Swap() can be written equivalently as Swap(scores, scores+9)
due to the array syntax in C. You can ignore this case if it is not familiar to you — it's
not an important area of the language and both forms compile to the exact same thing
anyway.

Is The & Always Necessary?
When passing by reference, the caller does not always need to use & to compute a new
pointer to the value of interest. Sometimes the caller already has a pointer to the value of
interest, and so no new pointer computation is required. The pointer to the value of
interest can be passed through unchanged.

For example, suppose B() is changed so it calls a C() function which adds 2 to the value
of interest...

// Takes the value of interest by reference and adds 2.
void C(int* worthRef) {

*worthRef = *worthRef + 2;
}

// Adds 1 to the value of interest, and calls C().
void B(int* worthRef) {

*worthRef = *worthRef + 1; // add 1 to value of interest as before

C(worthRef); // NOTE no & required. We already have
// a pointer to the value of interest, so
// it can be passed through directly.

}

What About The & Bug TAB?
All this use of & might make you nervous — are we committing the & bug from Section
2? No, it turns out the above uses of & are fine. The & bug happens when an & passes a
pointer to local storage from the callee back to its caller. When the callee exits, its local
memory is deallocated and so the pointer no longer has a pointee. In the above, correct
cases, we use & to pass a pointer from the caller to the callee. The pointer remains valid
for the callee to use because the caller locals continue to exist while the callee is running.
The pointees will remain valid due to the simple constraint that the caller can only exit
sometime after its callee exits. Using & to pass a pointer to local storage from the caller
to the callee is fine. The reverse case, from the callee to the caller, is the & bug.

The ** Case
What if the value of interest to be shared and changed between the caller and callee is
already a pointer, such as an int* or a struct fraction*? Does that change the
rules for setting up reference parameters? No. In that case, there is no change in the rules.
They operate just as before. The reference parameter is still a pointer to the value of
interest, even if the value of interest is itself a pointer. Suppose the value of interest is
int*. This means there is an int* value which the caller and callee want to share and
change. Then the reference parameter should be an int**. For a struct
fraction* value of interest, the reference parameter is struct fraction**. A
single dereference (*) operation on the reference parameter yields the value of interest as
it did in the simple cases. Double pointer (**) parameters are common in linked list or
other pointer manipulating code were the value of interest to share and change is itself a
pointer, such as a linked list head pointer.

22

Reference Parameter Summary
Passing by value (copying) does not allow the callee to communicate back to its caller
and has also has the usual disadvantages of making copies. Pass by reference uses
pointers to avoid copying the value of interest, and allow the callee to communicate back
to the caller.

For pass by reference, there is only one copy of the value of interest, and pointers to that
one copy are passed. So if the value of interest is an int, its reference parameter is an int*.
If the value of interest is a struct fraction*, its reference parameters is a struct fraction**.
Functions use the dereference operator (*) on the reference parameter to see or change the
value of interest.

Section 3 — Extra Optional Material
Extra: Reference Parameters in Java
Because Java has no */& operators, it is not possible to implement reference parameters
in Java directly. Maybe this is ok — in the OOP paradigm, you should change objects by
sending them messages which makes the reference parameter concept unnecessary. The
caller passes the callee a (shallow) reference to the value of interest (object of interest?),
and the callee can send it a message to change it. Since all objects are intrinsically
shallow, any change is communicated back to the caller automatically since the object of
interest was never copied.

Extra: Reference Parameters in C++
Reference parameters are such a common programming task that they have been added as
an official feature to the C++ language. So programming reference parameters in C++ is
simpler than in C. All the programmer needs to do is syntactically indicate that they wish
for a particular parameter to be passed by reference, and the compiler takes care of it. The
syntax is to append a single '&' to right hand side of the parameter type. So an int
parameter passes an integer by value, but an int& parameter passes an integer value by
reference. The key is that the compiler takes care of it. In the source code, there's no
additional fiddling around with &'s or *'s. So Swap() and SwapCaller() written with C++
look simpler than in C, even though they accomplish the same thing...

23

void Swap(int& a, int& b) { // The & declares pass by reference
int temp;

temp = a; // No *'s required -- the compiler takes care of it
a = b;
b = temp;

}

void SwapCaller() {
int x = 1;
int y = 2;

Swap(x, y); // No &'s required -- the compiler takes care of it
}

The types of the various variables and parameters operate simply as they are declared
(int in this case). The complicating layer of pointers required to implement the
reference parameters is hidden. The compiler takes care of it without allowing the
complication to disturb the types in the source code.

24

Section 4 —
Heap Memory
"Heap" memory, also known as "dynamic" memory, is an alternative to local stack
memory. Local memory (Section 2) is quite automatic — it is allocated automatically on
function call and it is deallocated automatically when a function exits. Heap memory is
different in every way. The programmer explicitly requests the allocation of a memory
"block" of a particular size, and the block continues to be allocated until the programmer
explicitly requests that it be deallocated. Nothing happens automatically. So the
programmer has much greater control of memory, but with greater responsibility since
the memory must now be actively managed. The advantages of heap memory are...

Lifetime. Because the programmer now controls exactly when memory is
allocated and deallocated, it is possible to build a data structure in
memory, and return that data structure to the caller. This was never
possible with local memory which was automatically deallocated when the
function exited.

Size. The size of allocated memory can be controlled with more detail.
For example, a string buffer can be allocated at run-time which is exactly
the right size to hold a particular string. With local memory, the code is
more likely to declare a buffer size 1000 and hope for the best. (See the
StringCopy() example below.)

The disadvantages of heap memory are...

More Work. Heap allocation needs to arranged explicitly in the code
which is just more work.

More Bugs. Because it's now done explicitly in the code, realistically on
occasion the allocation will be done incorrectly leading to memory bugs.
Local memory is constrained, but at least it's never wrong.

Nonetheless, there are many problems that can only be solved with heap memory, so
that's that way it has to be. In languages with garbage collectors such as Perl, LISP, or
Java, the above disadvantages are mostly eliminated. The garbage collector takes over
most of the responsibility for heap management at the cost of a little extra time taken at
run-time.

What Does The Heap Look Like?
Before seeing the exact details, let's look at a rough example of allocation and
deallocation in the heap...

Allocation
The heap is a large area of memory available for use by the program. The program can
request areas, or "blocks", of memory for its use within the heap. In order to allocate a
block of some size, the program makes an explicit request by calling the heap allocation
function. The allocation function reserves a block of memory of the requested size in the
heap and returns a pointer to it. Suppose a program makes three allocation requests to

25

allocate memory to hold three separate GIF images in the heap each of which takes 1024
bytes of memory. After the three allocation requests, memory might look like...

Local Heap

(Free)

(Gif1)

(Gif2)

(Gif3)
3 separate
heap
blocks —
each 1024
bytes in
size.

Each allocation request reserves a contiguous area of the requested size in the heap and
returns a pointer to that new block to the program. Since each block is always referred to
by a pointer, the block always plays the role of a "pointee" (Section 1) and the program
always manipulates its heap blocks through pointers. The heap block pointers are
sometimes known as "base address" pointers since by convention they point to the base
(lowest address byte) of the block.

In this example, the three blocks have been allocated contiguously starting at the bottom
of the heap, and each block is 1024 bytes in size as requested. In reality, the heap
manager can allocate the blocks wherever it wants in the heap so long as the blocks do
not overlap and they are at least the requested size. At any particular moment, some areas
in the heap have been allocated to the program, and so are "in use". Other areas have yet
to be committed and so are "free" and are available to satisfy allocation requests. The
heap manager has its own, private data structures to record what areas of the heap are
committed to what purpose at any moment The heap manager satisfies each allocation
request from the pool of free memory and updates its private data structures to record
which areas of the heap are in use.

Deallocation
When the program is finished using a block of memory, it makes an explicit deallocation
request to indicate to the heap manager that the program is now finished with that block.
The heap manager updates its private data structures to show that the area of memory
occupied by the block is free again and so may be re-used to satisfy future allocation
requests. Here's what the heap would look like if the program deallocates the second of
the three blocks...

26

Local Heap

(Free)

(Gif1)

(Gif3)

(Free)

After the deallocation, the pointer continues to point to the now deallocated block. The
program must not access the deallocated pointee. This is why the pointer is drawn in gray
— the pointer is there, but it must not be used. Sometimes the code will set the pointer to
NULL immediately after the deallocation to make explicit the fact that it is no longer
valid.

Programming The Heap
Programming the heap looks pretty much the same in most languages. The basic features
are....

• The heap is an area of memory available to allocate areas ("blocks") of
memory for the program.

• There is some "heap manager" library code which manages the heap for
the program. The programmer makes requests to the heap manager, which
in turn manages the internals of the heap. In C, the heap is managed by the
ANSI library functions malloc(), free(), and realloc().

• The heap manager uses its own private data structures to keep track of
which blocks in the heap are "free" (available for use) and which blocks
are currently in use by the program and how large those blocks are.
Initially, all of the heap is free.

• The heap may be of a fixed size (the usual conceptualization), or it may
appear to be of a fixed but extremely large size backed by virtual memory.
In either case, it is possible for the heap to get "full" if all of its memory
has been allocated and so it cannot satisfy an allocation request. The
allocation function will communicate this run-time condition in some way
to the program — usually by returning a NULL pointer or raising a
language specific run-time exception.

• The allocation function requests a block in the heap of a particular size.
The heap manager selects an area of memory to use to satisfy the request,
marks that area as "in use" in its private data structures, and returns a
pointer to the heap block. The caller is now free to use that memory by
dereferencing the pointer. The block is guaranteed to be reserved for the
sole use of the caller — the heap will not hand out that same area of
memory to some other caller. The block does not move around inside the

27

heap — its location and size are fixed once it is allocated. Generally, when
a block is allocated, its contents are random. The new owner is responsible
for setting the memory to something meaningful. Sometimes there is
variation on the memory allocation function which sets the block to all
zeros (calloc() in C).

• The deallocation function is the opposite of the allocation function. The
program makes a single deallocation call to return a block of memory to
the heap free area for later re-use. Each block should only be deallocated
once. The deallocation function takes as its argument a pointer to a heap
block previously furnished by the allocation function. The pointer must be
exactly the same pointer returned earlier by the allocation function, not
just any pointer into the block. After the deallocation, the program must
treat the pointer as bad and not access the deallocated pointee.

C Specifics
In the C language, the library functions which make heap requests are malloc() ("memory
allocate") and free(). The prototypes for these functions are in the header file <stdlib.h>.
Although the syntax varies between languages, the roles of malloc() and free() are nearly
identical in all languages...

void* malloc(unsigned long size); The malloc() function
takes an unsigned integer which is the requested size of the block
measured in bytes. Malloc() returns a pointer to a new heap block if the
allocation is successful, and NULL if the request cannot be satisfied
because the heap is full. The C operator sizeof() is a convenient way to
compute the size in bytes of a type —sizeof(int) for an int pointee,
sizeof(struct fraction) for a struct fraction pointee.

void free(void* heapBlockPointer); The free() function
takes a pointer to a heap block and returns it to the free pool for later re-
use. The pointer passed to free() must be exactly the pointer returned
earlier by malloc(), not just a pointer to somewhere in the block. Calling
free() with the wrong sort of pointer is famous for the particularly ugly
sort of crashing which it causes. The call to free() does not need to give
the size of the heap block — the heap manager will have noted the size in
its private data structures. The call to free() just needs to identify which
block to deallocate by its pointer. If a program correctly deallocates all of
the memory it allocates, then every call to malloc() will later be matched
by exactly one call to free() As a practical matter however, it is not always
necessary for a program to deallocate every block it allocates — see
"Memory Leaks" below.

Simple Heap Example
Here is a simple example which allocates an int block in the heap, stores the number 42
in the block, and then deallocates it. This is the simplest possible example of heap block
allocation, use, and deallocation. The example shows the state of memory at three
different times during the execution of the above code. The stack and heap are shown
separately in the drawing — a drawing for code which uses stack and heap memory needs
to distinguish between the two areas to be accurate since the rules which govern the two
areas are so different. In this case, the lifetime of the local variable intPtr is totally
separate from the lifetime of the heap block, and the drawing needs to reflect that
difference.

28

void Heap1() {
int* intPtr;
// Allocates local pointer local variable (but not its pointee)
// T1

Local Heap

intPtr

// Allocates heap block and stores its pointer in local variable.
// Dereferences the pointer to set the pointee to 42.
intPtr = malloc(sizeof(int));
*intPtr = 42;
// T2

Local Heap

intPtr 42

// Deallocates heap block making the pointer bad.
// The programmer must remember not to use the pointer
// after the pointee has been deallocated (this is
// why the pointer is shown in gray).
free(intPtr);
// T3

Local Heap

intPtr

}

Simple Heap Observations
• After the allocation call allocates the block in the heap. The program

stores the pointer to the block in the local variable intPtr. The block is the
"pointee" and intPtr is its pointer as shown at T2. In this state, the pointer
may be dereferenced safely to manipulate the pointee. The pointer/pointee
rules from Section 1 still apply, the only difference is how the pointee is
initially allocated.

29

• At T1 before the call to malloc(), intPtr is uninitialized does not have a
pointee — at this point intPtr "bad" in the same sense as discussed in
Section 1. As before, dereferencing such an uninitialized pointer is a
common, but catastrophic error. Sometimes this error will crash
immediately (lucky). Other times it will just slightly corrupt a random data
structure (unlucky).

• The call to free() deallocates the pointee as shown at T3. Dereferencing
the pointer after the pointee has been deallocated is an error.
Unfortunately, this error will almost never be flagged as an immediate
run-time error. 99% of the time the dereference will produce reasonable
results 1% of the time the dereference will produce slightly wrong results.
Ironically, such a rarely appearing bug is the most difficult type to track
down.

• When the function exits, its local variable intPtr will be automatically
deallocated following the usual rules for local variables (Section 2). So
this function has tidy memory behavior — all of the memory it allocates
while running (its local variable, its one heap block) is deallocated by the
time it exits.

Heap Array
In the C language, it's convenient to allocate an array in the heap, since C can treat any
pointer as an array. The size of the array memory block is the size of each element (as
computed by the sizeof() operator) multiplied by the number of elements (See CS
Education Library/101 The C Language, for a complete discussion of C, and arrays and
pointers in particular). So the following code heap allocates an array of 100 struct
fraction's in the heap, sets them all to 22/7, and deallocates the heap array...

void HeapArray() {
struct fraction* fracts;
int i;

// allocate the array
fracts = malloc(sizeof(struct fraction) * 100);

// use it like an array -- in this case set them all to 22/7
for (i=0; i<99; i++) {

fracts[i].numerator = 22;
fracts[i].denominator = 7;

}

// Deallocate the whole array
free(fracts);

}

30

Heap String Example
Here is a more useful heap array example. The StringCopy() function takes a C string,
makes a copy of that string in the heap, and returns a pointer to the new string. The caller
takes over ownership of the new string and is responsible for freeing it.

/*
 Given a C string, return a heap allocated copy of the string.
 Allocate a block in the heap of the appropriate size,
 copies the string into the block, and returns a pointer to the block.
 The caller takes over ownership of the block and is responsible
 for freeing it.
*/
char* StringCopy(const char* string) {

char* newString;
int len;

len = strlen(string) + 1; // +1 to account for the '\0'
newString = malloc(sizeof(char)*len); // elem-size * number-of-elements
assert(newString != NULL); // simplistic error check (a good habit)
strcpy(newString, string); // copy the passed in string to the block

return(newString); // return a ptr to the block
}

Heap String Observations
StringCopy() takes advantage of both of the key features of heap memory...

Size. StringCopy() specifies, at run-time, the exact size of the block
needed to store the string in its call to malloc(). Local memory cannot do
that since its size is specified at compile-time. The call to
sizeof(char) is not really necessary, since the size of char is 1 by
definition. In any case, the example demonstrates the correct formula for
the size of an array block which is element-size * number-of-elements.

Lifetime. StringCopy() allocates the block, but then passes ownership of it
to the caller. There is no call to free(), so the block continues to exist even
after the function exits. Local memory cannot do that. The caller will need
to take care of the deallocation when it is finished with the string.

Memory Leaks
What happens if some memory is heap allocated, but never deallocated? A program
which forgets to deallocate a block is said to have a "memory leak" which may or may
not be a serious problem. The result will be that the heap gradually fill up as there
continue to be allocation requests, but no deallocation requests to return blocks for re-use.
For a program which runs, computes something, and exits immediately, memory leaks
are not usually a concern. Such a "one shot" program could omit all of its deallocation
requests and still mostly work. Memory leaks are more of a problem for a program which
runs for an indeterminate amount of time. In that case, the memory leaks can gradually
fill the heap until allocation requests cannot be satisfied, and the program stops working
or crashes. Many commercial programs have memory leaks, so that when run for long
enough, or with large data-sets, they fill their heaps and crash. Often the error detection
and avoidance code for the heap-full error condition is not well tested, precisely because
the case is rarely encountered with short runs of the program — that's why filling the
heap often results in a real crash instead of a polite error message. Most compilers have a

31

"heap debugging" utility which adds debugging code to a program to track every
allocation and deallocation. When an allocation has no matching deallocation, that's a
leak, and the heap debugger can help you find them.

Ownership
StringCopy() allocates the heap block, but it does not deallocate it. This is so the caller
can use the new string. However, this introduces the problem that somebody does need to
remember to deallocate the block, and it is not going to be StringCopy(). That is why the
comment for StringCopy() mentions specifically that the caller is taking on ownership of
the block. Every block of memory has exactly one "owner" who takes responsibility for
deallocating it. Other entities can have pointers, but they are just sharing. There's only
one owner, and the comment for StringCopy() makes it clear that ownership is being
passed from StringCopy() to the caller. Good documentation always remembers to
discuss the ownership rules which a function expects to apply to its parameters or return
value. Or put the other way, a frequent error in documentation is that it forgets to
mention, one way or the other, what the ownership rules are for a parameter or return
value. That's one way that memory errors and leaks are created.

Ownership Models
The two common patterns for ownership are...

Caller ownership. The caller owns its own memory. It may pass a pointer
to the callee for sharing purposes, but the caller retains ownership. The
callee can access things while it runs, and allocate and deallocate its own
memory, but it should not disrupt the caller's memory.

Callee allocated and returned. The callee allocates some memory and
returns it to the caller. This happens because the result of the callee
computation needs new memory to be stored or represented. The new
memory is passed to the caller so they can see the result, and the caller
must take over ownership of the memory. This is the pattern demonstrated
in StringCopy().

Heap Memory Summary
Heap memory provides greater control for the programmer — the blocks of memory can
be requested in any size, and they remain allocated until they are deallocated explicitly.
Heap memory can be passed back to the caller since it is not deallocated on exit, and it
can be used to build linked structures such as linked lists and binary trees. The
disadvantage of heap memory is that the program must make explicit allocation and
deallocate calls to manage the heap memory. The heap memory does not operate
automatically and conveniently the way local memory does.

