
 

 

 

Abstract 
 

In this paper, we present a novel approach for human 

action recognition with histograms of 3D joint locations 

(HOJ3D) as a compact representation of postures. We 

extract the 3D skeletal joint locations from Kinect depth 

maps using Shotton et al.’s method [6]. The HOJ3D 

computed from the action depth sequences are reprojected 

using LDA and then clustered into k posture visual words, 

which represent the prototypical poses of actions. The 

temporal evolutions of those visual words are modeled by 

discrete hidden Markov models (HMMs). In addition, due 

to the design of our spherical coordinate system and the 

robust 3D skeleton estimation from Kinect, our method 

demonstrates significant view invariance on our 3D action 

dataset. Our dataset is composed of 200 3D sequences of 10 

indoor activities performed by 10 individuals in varied 

views. Our method is real-time and achieves superior 

results on the challenging 3D action dataset. We also tested 

our algorithm on the MSR Action3D dataset and our 

algorithm outperforms Li et al. [25] on most of the cases. 

1. Introduction 

Human action recognition is a widely studied area in 

computer vision. Its applications include surveillance 

systems, video analysis, robotics and a variety of systems 

that involve interactions between persons and electronic 

devices such as human-computer interfaces. Its 

development began in the early 1980s. To date, research has 

mainly focused on learning and recognizing actions from 

video sequences taken by a single visible light camera. 

There is extensive literature in action recognition in a 

number of fields, including computer vision, machine 

learning, pattern recognition, signal processing, etc. [1, 2]. 

Among the different types of features for representation, 

silhouettes and spatio-temporal interest points are most 

commonly used [3]. The methods proposed in the past for 

silhouette based action recognition can be divided into two 

major categories. One is to extract action descriptors from 

the sequences of silhouettes. Conventional classifiers are 

frequently used for recognition [13, 14, 15, 16]. The other 

one is to extract features from each silhouette and model the 

dynamics of the action explicitly [15, 17, 18, 19, 20].  

Here we enumerate three major challenges to vision 

based human action recognition. First is intra-class 

variability and inter-class similarity of actions. Individuals 

can perform an action in different directions with different 

characteristics of body part movements, and two actions 

may be only distinguished by very subtle spatio-temporal 

details. Second, the number of describable action categories 

is huge; the same action may have different interpretations 

under different object and scene contexts. Third, 

occlusions, cluttered background, cast shadows, varying 

illumination conditions and viewpoint changes can all alter 

the way actions are perceived.  

Particularly, the use of range cameras significantly 

alleviates the challenges presented in the third category, 

which are the common low-level difficulties that reduce the 

recognition performance from 2D imagery. Furthermore, a 

range camera provides the discerning information of actions 

with depth changes in certain viewpoints. For example, in a 

frontal view, it would be much more accurate to distinguish 

the person pointing from reaching from depth map 

sequences than in RGB footage. However, earlier range 

sensors were either too expensive, provided poor 

estimations, or were difficult to use on human subjects. For 

example, sonar sensors have a poor angular resolution and 

are susceptible to false echoes and reflections. Infrared and 

laser range finders can only provide measurements from one 

point in the scene. LIDAR and radar systems are 

considerably more expensive and typically have higher 

power consumption requirements. For the use of low-cost 

digital cameras, the distance has to be inferred either from 

stereoscopic cameras, or from the motion of objects within 

the image, e.g. optical flow. 

The recent release of the Microsoft Kinect addresses 

these issues by providing both an RGB image and depth 

image streams [4]. Although targeted primarily for the 

entertainment market, the Kinect has excited considerable 

interest within the vision and robotics community for its 

broad applications [5]. Shotton et al. [6] proposed a method 

to quickly and accurately estimate 3D positions of skeletal 
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joints from a single depth image from Kinect.  They provide 

accurate estimates of 3D skeletal joint locations at 200 

frames per second on the Xbox 360 GPU. This skeletal joint 

information brings benefits to human centric computer 

vision tasks. With this information, we can address the 

problem of human action recognition in a simpler way 

compare to the use of RGB imagery. Most importantly, it 

achieves better view invariance and relatively faster speed. 

In this paper, we employ a histogram based 

representation of 3D human posture named HOJ3D. In this 

representation, the 3D space is partitioned into n bins using 

a modified spherical coordinate system. We manually select 

12 informative joints to build a compact representation of 

human posture. To make our representation robust against 

minor posture variation, votes of 3D skeletal joints are cast 

into neighboring bins using a Gaussian weight function. The 

collection of HOJ3D vectors from training sequences are 

first reprojected using LDA and then clustered into k 

posture words. By encoding sequences of depth maps into 

sequential words, we recognize actions using HMM 

classifiers [11]. Our algorithm utilizes depth information 

only. Experiments show that this algorithm achieves 

superior results on our challenging dataset and also 

outperforms the algorithm of Li et al. [25] on most of the 

cases.  

Our main contribution consists of three parts. First, we 

present a new algorithm on human action recognition from 

depth imagery. Second, we propose a view-invariant 

representation of human poses and prove it is effective at 

action recognition, and the whole system runs at real-time. 

Moreover, we collected a large 3D dataset of persons 

performing different kinds of indoor activities with a variety 

of viewpoints.  

The paper is organized as follows. Section 2 presents the 

related work. Section 3 describes human part inference and 

joint position estimation from depth images. Section 4 

describes our HOJ3D as human pose representation. 

Section 5 describes feature extraction from the HOJ3D. 

Section 6 addresses action recognition technique using 

discrete HMM. Section 7 introduces our dataset and 

discusses the experimental results. Section 8 concludes the 

paper. 

2. Related Work 

Researchers have explored different compact 

representations of human actions in the past few decades. In 

1975, Johansson’s experiment shows that humans can 

recognize activity with extremely compact observers [8]. 

Johansson demonstrated his statement using a movie of a 

person walking in a dark room with lights attached to the 

person’s major joints. Even though only light spots could be 

observed, there was a strong identification of the 3D motion 

in these movies. In recent studies, Fuijiyoshi and Lipton [9] 

proposed to use “star” skeleton extracted from silhouettes 

for motion analysis. Yu and Aggarwal [10] use extremities 

as semantic posture representation in their application for 

the detection of fence climbing. Zia et al. [12] present an 

action recognition algorithm using body joint-angle features 

extracted from the RGB images from stereo cameras. Their 

dataset contains 8 simple actions (e.g., left hand up), and 

they were all taken from frontal views.  

Inspired by natural language processing and information 

retrieval, bag-of-words approaches are also applied to 

recognize actions as a form of descriptive action unites. In 

these approaches, actions are represented as a collection of 

visual words, which is the codebook of spatio-temporal 

features. Schuldt et al. [21] integrate space-time interest 

point’s representation with SVM classification scheme. 

Dollar et al. [22] employ histogram of video cuboids for 

action representation. Wang et al. [23] represent the frames 

using the motion descriptor computed from optical flow 

vectors and represent actions as a bag of coded frames. 

However, all these features are computed from RGB images 

and are view dependent. Researchers also explored free 

viewpoint action recognition algorithms from RGB images. 

Due to the large variations in motion induced by camera 

perspective, it is extremely challenging to generalize them 

to other views even for very simple actions. One way to 

address the problem is to store templates from several 

canonical views and interpolate across the stored views [29, 

30]. Scalability is a hard problem for this approach. Another 

way is to map an example from an arbitrary view to a stored 

model by applying homography. The model is usually 

captured using multiple cameras [31]. Weinland et al. [32] 

model action as a sequence of exemplars which are 

Figure 1: Overview of the method. 
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represented in 3D as visual hulls that have been computed 

using a system of 5 calibrated cameras. Parameswaran et al. 

[33] define a view-invariant representation of actions based 

on the theory of 2D and 3D invariants. They assume that 

there exists at least one key pose in the sequence in which 5 

points are aligned on a plane in the 3D world coordinates. 

Weinland et al. [34] extend the notion of motion-history 

[35, 29] to 3D. They combine views from multiple cameras 

to build a 3D binary occupancy volume. Motion history is 

computed over these 3D volumes and view-invariant 

features are extracted by computing the circular FFT of the 

volume.  

The release of the low-cost RGBD sensor Kinect has 

brought excitement to the research in computer vision, 

gaming, gesture-based control, and virtual reality. Shotton 

et al. [6] proposed a method to predict 3D positions of body 

joints from a single depth image from Kinect. Xia et al. [24] 

proposed a model based algorithm to detect humans using 

depth maps generated by Kinect. There are a few works on 

the recognition of human actions from depth data in the past 

two years. Li et al. [25] employ an action graph to model the 

dynamics of the actions and sample a bag of 3D points from 

the depth map to characterize a set of salient postures that 

correspond to the nodes in the action graph. However, the 

sampling scheme is view dependent. Lalal et al. [27] utilize 

the Radon transformation on depth silhouettes to recognize 

human home activities. The depth images were captured by 

a ZCAM [28]. This method is also view dependent. Sung et 

al. [26] extract features from the skeleton data provided by 

Prime Sense from RGBD data from Kinect and use a 

supervised learning approach to infer activities from RGB 

and depth images from Kinect. Considering they extract 

features from both types of imageries, the result is 

interesting but at the same time not as good as one would 

expect. 

In this work, we present an action recognition algorithm 

using a HOJ3D representation of postures constructed from 

the skeletal joints’ locations extracted from depth images. 

Taking advantage of the Kinect devise and J. Shotton et al.’s 

algorithm [6], this method improves on the previous ones in 

that it achieves excellent recognition rates and is also view 

invariant and real time.  

3. Body Part Inference and Joint Position 

Estimation 

The human body is an articulated system of rigid 

segments connected by joints and human action is 

considered as a continuous evolution of the spatial 

configuration of these segments (i.e. body postures) [7]. 

Here, we use joint locations to build a compact 

representation of postures. The launch of Kinect offers a 

low-cost and real-time solution for the estimation of the 3D 

locations of objects or persons in the scene. Shotton et al. 

[6] propose to extract 3D body joint locations from a depth 

image using an object recognition scheme. The human body 

is labeled as body parts based on the per-pixel classification 

results. The parts include LU/ RU/ LW/ RW head, neck, 

L/R shoulder, LU/ RU/ LW/ RW arm, L/ R elbow, L/ R 

wrist, L/ R hand, LU/ RU/ LW/ RW torso, LU/ RU/ LW/ 

RW leg, L/ R knee, L/ R ankle and L/ R foot (Left, Right, 

Upper, Lower). They compute the confidence-scored 3D 

position estimation of body joints by employing a local 

mode-finding approach based on the mean shift with a 

weighted Gaussian kernel. Their gigantic and diverse 

training set allows the classifier to estimate body parts 

invariant of pose, body shape, clothing, and so on. Using 

their algorithm, we acquire the 3D locations of 20 skeletal 

joints which comprise hip center, spine, shoulder center, 

head, L/ R shoulder, L/ R elbow, L/ R wrist, L/ R hand, L/ R 

hip, L/ R knee, L/ R angle and L/ R foot. Note that body part 

segmentation results are not directly available.  Fig. 2 shows 

an example result of 3D skeletal joints and the 

corresponding depth map.  

We use these skeletal joint locations to form our 

representation of postures. Among these joints, hand and 

wrist and foot and ankle are very close to each other and 

thus redundant for the description of the body part 

configuration. In addition, spine, neck, and shoulder do not 

contribute discerning motion while a person is performing 

indoor activities. Therefore, we compute our histogram 

based representation of postures from 12 of the 20 joints, 

including head, L/ R elbow, L/ R hands, L/ R knee, L/ R feet, 

hip center and L/ R hip. We take the hip center as the center 

of the reference coordinate system, and define the 

x-direction according to L/ R hip. The rest 9 joints are used 

(b) 

Figure 3: (a) Reference coordinates of HOJ3D. (b) Modified 

spherical coordinate system for joint location binning. 

(a) 

Figure 2: (a) Depth image. (b). Skeletal joint locations by 

Shotton et al.’s method 

(a) (b) 
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to compute the 3D spatial histogram. 

Note that the estimated joint locations from Kinect 

provide information regarding the direction the person is 

facing, i.e., we are able to tell the left limb joints from those 

of the right limbs. This enables us to compute the reference 

direction of a person independent of the viewpoints. More 

specifically, our representation achieves view invariance by 

aligning the modified spherical coordinates with the 

person’s specific reference direction, as detailed in the next 

section.  

4.  HOJ3D as Posture Representation 

The estimation of the 3D skeleton from RGB imagery is 

subject to error and significant computational cost. With the 

use of Kinect, we can acquire the 3D locations of the body 

parts in real-time with better accuracy. We propose a 

compact and viewpoint invariant representation of postures 

based on 3D skeletal joint locations. And we employ a 

vocabulary of postures to describe the prototypical poses of 

actions.  

4.1. Spherical Coordinates of Histogram 

Our methodology is designed to be view invariant, i.e., 

descriptors of the same type of pose are similar despite 

being captured from different viewpoints. We achieve this 

by aligning our spherical coordinates with the person’s 

specific direction, as shown in Fig. 3(a).  We define the 

center of the spherical coordinates as the hip center joint. 

Define the horizontal reference vector α to be the vector 

from the left hip center to the right hip center projected on 

the horizontal plane (parallel to the ground), and the zenith 

reference vector θ as the vector that is perpendicular to the 

ground plane and passes through the coordinate center. 

We partition the 3D space into n bins as shown in Fig. 

3(b) (in our experiment, we take n=84).  The inclination 

angle is divided into 7 bins from the zenith vector θ: [0, 15], 

[15, 45], [45, 75], [105, 135], [165, 180]. Similarly, from 

the reference vector α, the azimuth angle is divided into 12 

equal bins with 30 degree resolution. The radial distance is 

not used in this representation to make the method 

scale-invariant. With our spherical coordinate, any 3D joint 

can be localized at a unique bin. 

4.2. Probabilistic Voting 

Our HOJ3D descriptor is computed by casting the rest 9 

joints into the corresponding spatial histogram bins. For 

each joint location, weighted votes are contributed to the 

geometrically surrounding 3D bins. To make the 

representation robust against minor errors of joint locations, 

we vote the 3D bins using a Gaussian weight function: 
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, where ( , , )p X   is the Gaussian probability density 

function with mean vector   and covariance matrix 

 (For simplicity, we use an identity matrix here).   For 

each joint, we only vote over the bin it is in and the 8 

neighboring bins. We calculate the probabilistic voting on θ 

and α separately since they are independent (see Fig. 4). The 

probabilistic voting for each of the 9 bins is the product of 

the probability on α direction and θ direction. Let the joint 

location be ( , )   . The vote of a joint location to bin 

1 2[ , ]  is 

 

 1 2 2 1( ; , ) ( ; , ) ( ; , )p                     (4.2) 

 

, where Φ is the CDF of Gaussian distribution. Similarly, the 

vote of a joint location ( , )    to the bin 1 2[ , ]  is 

 

1 2 2 1( ; , ) ( ; , ) ( ; , )p                 . 

(4.3) 

Then, the probability voting to bin 1 2    , 1 2     

is: 
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The votes are accumulated over the 9 joints. As a result, a 

posture is represented by an n-bin histogram. Fig. 5 shows 

Figure 4: Voting using a Gaussian weight function. 

Figure 5: Example of the HOJ3D of a posture. 



 

 

an instance of the computed histogram. 

4.3. Feature Extraction 

Linear discriminant analysis (LDA) is performed to 

extract the dominant features. LDA is based on the class 

specific information which maximizes the ratio of the 

between - class scatter and the within-class scatter matrix. 

The LDA algorithm looks for the vectors in the underlying 

space to create the best discrimination between different 

classes. In this way, a more robust feature space can be 

obtained that separates the feature vectors of each class. In 

our experiment, we reduce the dimension of the HOJ3D 

feature from n dimensions to nClass-1 dimensions. 

5. Vector Quantization 

As each action is represented by an image sequence or 

video, the key procedure is to convert each frame into an 

observation symbol so that each action may be represented 

by an observation sequence. Note that the vector 

representation of postures is in a continuous space. In order 

to reduce the number of observation symbols, we perform 

vector quantization by clustering the feature vectors. We 

collect a large collection of indoor postures and calculate 

their HOJ3D vectors. We cluster the vectors into K clusters 

(a K-word vocabulary) using K-means. Then each posture is 

represented as a single number of a visual word. In this way, 

each action is a time series of the visual words. 

6. Action Recognition Using Discrete HMM 

We recognize a variety of human actions by the discrete 

HMM technique similar to what Rabiner did in speech 

recognition [11]. In discrete HMM, discrete time sequences 

are treated as the output of a Markov process whose states 

cannot be directly observed.   In Section 5, we have encoded 

each action sequence as a vector of the posture words, and 

we input this vector to learn the HMM model and use this 

model to predict for the unknown sequences.  

A HMM that has N states S={s1,s2,…,sN} and M output 

symbols Y={y1, y2, …, yM} is fully specified by the triplet λ 

= {A, B, π}. Let the state at time step t be St.  The N×N state 

transition matrix A is, 

 

1{ | ( | )}ji ij t j t iA a a P s q s q   
         (6.1) 

 

The N×M output probability matrix B is, 

 

 
{ ( ) | ( ) ( | )}i i k t iB b k b k P v s q  

          (6.2) 

 

And the initial state distribution vector π is 

Figure 6:  Sample images from videos of the 10 activities in our database. We show RGB image frames as well as the corresponding 

depth maps. Note only depth images are used in the algorithm. Action type from left to right, top to bottom: walk, stand up, sit down, 

pick up, carry, throw, push, pull, wave hands, clap hands. 



 

 

 

{ | ( )}i i i iP s q                        (6.3) 

 

We use a HMM to construct a model for each of the 

actions we want to recognize: the HMM gives a state based 

representation for each action. After forming the models for 

each activity, we take an action sequence V={v1, v2, … vT} 

and calculate its probability of a model λi for the 

observation sequence, P(V|λi) for every model, which can 

be solved using the forward algorithm. Then we classify the 

action as the one which has the largest posterior probability.  
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Where iL  indicates the likelihood of test sequence for the 

i-th HMM, and M is the number of activities. This model 

can compensate for the temporal variation of the actions 

caused by differences in the duration of performing the 

actions. 

7. Experiments 

We tested our algorithm on a challenging dataset we 

collected ourselves. In addition, we evaluated it on the 

public MSRAction3D dataset and compared our results 

with [25]. 

7.1. Data 

 To test the robustness of the algorithm, we collected a 

dataset containing 10 types of human actions in indoor 

settings. We take the sequence using a single stationary 

Kinect. Kinect hardware has a practical range of about 4 to 

11 feet. The RGB images and depth maps were captured at 

30 frames per second (FPS). The resolution of the depth 

map is 320×240 and resolution of the RGB image is 

640×480.  The 10 actions include: walk, sit down, stand up, 

pick up, carry, throw, push, pull, wave and clap hands. 

Each action was collected from 10 different persons for 2 

times: 9 males and 1 female. One of the persons is 

left-handed. Altogether, the dataset contains 6220 frames of 

200 action samples. The length of sample actions ranges 

from 5 to 120 frames. Sample RGB images from the dataset 

are shown in Fig. 6. Note that we only use the information 

from the depth image for action recognition in our algorithm; 

the RGB sequences are just for illustration. 

As shown in Fig. 7, we took action sequences from 

different views to highlight the advantages of our 

representation. In addition to the varied views, our dataset 

Table 1: The mean and standard deviation of the sequence 

lengths measured by number of frames at 30 fps. 

 

Figure 7.  Different views of the actions. 

Figure 8:  The variations of subjects performing the same 

action. 

Table 2:  Recognition rate of each action type 

Table 3: The three subsets of actions used for the MSR 

Action3D dataset. 

 



 

 

features 3 other challenges which are summarized as 

follows. First, there is significant variation among different 

realizations of the same action. For example, in our dataset, 

some actors pick up objects with one hand while others 

prefer to pick up the objects with both hands. Fig. 8 is 

another example, individuals can toss an object with either 

their right or left arm and producing different trajectories. 

Second, the durations of the action clips vary dramatically. 

Table 1 shows the mean and standard deviation of 

individual action length. In this table, the standard deviation 

of the carry sequence lengths is 27 frames, while the mean 

duration of carry is 48 frames longer than that of push. 

Third, object-person occlusions and body part out of the 

field of view (FOV) also add to the difficulty of this dataset. 

7.2. Experimental Results 

We evaluate our algorithm on our 200 sequences dataset 

using leave one sequence out cross validation (LOOCV). As 

there is randomness in the initialization of the cluster 

centroids and the HMM algorithm, we run the experiment 

20 times and report the mean performance, as shown in 

Table 2. We take the set of clusters to be K=125, and 

number of states N=6. By experiments, the overall mean 

accuracy is 90.92%, the best accuracy is 95.0% and the 

standard deviation is 1.74%.  On a 2.93GHz Intel Core i7 

CPU machine, the estimation of 3D skeletal joints and the 

calculation of HOJ3D is real-time using C implementation. 

The average testing time of one sequence is 12.5ms using 

Matlab. 

 We also test our algorithm on the public MSR Action3D 

database that contains 20 actions: high arm wave, 

horizontal arm wave, hammer, hand catch, forward punch, 

high throw, draw x, draw tick, draw circle, hand clap, two 

hand wave, side-boxing, bend, forward kick, side kick, 

jogging, tennis swing, tennis serve, golf swing and pickup & 

throw. We divide the actions into 3 subsets the same as in 

[25], each comprising 8 actions (see table 3). We use the 

same parameter settings as previously. Each test is repeated 

20 times, and the average performance is shown in Table 4. 

We compare our performance with Li et al. [25]. We can see 

that our algorithm achieves considerably higher recognition 

rates than Li et al. [25] in all the testing setups on AS1 and 

AS2. On AS3, our recognition rate is slightly lower. As we 

have noticed in [25] that the goal of AS3 was intended to 

group complex actions together. However, Li et al.’s 

algorithm actually achieves much higher recognition 

accuracy of this complex dataset while ours has higher 

accuracy on the other two datasets. We conjecture the 

reason to be that the complex actions affects adversely the 

HMM classification when the number of training samples is 

small. Note that our algorithm performs better on MSR 

Action3D dataset than on our own dataset, partially because 

of the following reasons: 1) the subjects were facing the 

camera; 2) the whole body is in view all the times; 3) if the 

action is performed by a single arm or leg, the subjects were 

advised to use their right arm or leg.  

8. Conclusions 

This paper presents a methodology to recognize human 

action as time series of representative 3D poses. We take as 

input the 3D skeletal joint locations inferred from depth 

maps. We propose a compact representation of postures 

named HOJ3D that characterizes human postures as 

histograms of 3D joint locations within a modified spherical 

coordinate system. We build posture words by clustering 

the HOJ3D vectors calculated from a large collection of 

postures. We train discrete HMMs to classify sequential 

postures into action types. The major components of our 

algorithm are real-time, which include the extraction of 3D 

skeletal joint locations, computation of HOJ3D, and 

classification. Experimental results show the salient 

advantage of our view invariant representation.   

This work also suggests the advantage of using 3D data to 

recognize human actions and points out a promising 

direction of performing recognition tasks using depth 

information. Traditional RGB information can also be 

combined with the depth data to provide more data and 

produce algorithms with better recognition rates and 

robustness. 
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