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Abstract

What makes an image appear realistic? In this work, we

are looking at this question from a data-driven perspective,

by learning the perception of visual realism directly from

large amounts of unlabeled data. In particular, we train

a Convolutional Neural Network (CNN) model that distin-

guishes natural photographs from automatically generated

composite images. The model learns to predict visual real-

ism of a scene in terms of color, lighting and texture compat-

ibility, without any human annotations pertaining to it. Our

model outperforms previous works that rely on hand-crafted

heuristics for the task of classifying realistic vs. unrealistic

photos. Furthermore, we apply our learned model to com-

pute optimal parameters of a compositing method, to maxi-

mize the visual realism score predicted by our CNN model.

We demonstrate its advantage against existing methods via

a human perception study.

1. Introduction

The human ability to very quickly decide whether a

given image is “realistic”, i.e. a likely sample from our vi-

sual world, is very impressive. Indeed, this is what makes

good computer graphics and photographic editing so diffi-

cult. So many things must be “just right” for a human to

perceive an image as realistic, while a single thing going

wrong will likely hurtle the image down into the Uncanny

Valley [18].

Computers, on the other hand, find distinguishing be-

tween “realistic” and “artificial” images incredibly hard.

Much heated online discussion was generated by recent re-

sults suggesting that image classifiers based on Convolu-

tional Neural Network (CNN) are easily fooled by random

noise images [19,29]. But in truth, no existing method (deep

or not) has been shown to reliably tell whether a given im-

age resides on the manifold of natural images. This is be-

cause the spectrum of unrealistic images is much larger than

the spectrum of natural ones. Indeed, if this was not the

case, photo-realistic computer graphics would have been

solved long ago.

Natural Images

Composite Images

Figure 1: We train a discriminative model to distinguish

natural images (top left) and automatically generated im-

age composites (bottom right). The red boundary illustrates

the decision boundary between two. Our model is able to

predict the degree of perceived visual realism of a photo,

whether it’s an actual natural photo, or a synthesized com-

posite. For example, the composites close to the boundary

appear more realistic.

In this paper, we are taking a small step in the direction

of characterizing the space of natural images. We restrict

the problem setting by choosing to ignore the issues of im-

age layout, scene geometry, and semantics and focus purely

on appearance. For this, we use a large dataset of auto-

matically generated image composites, which are created

by swapping similarly-shaped object segments of the same

object category between two natural images [15]. This way,

the semantics and scene layout of the resulting composites

are kept constant, only the object appearance changes. Our

goal is to predict whether a given image composite will be

perceived as realistic by a human observer. While this is

admittedly a limited domain, we believe the problem still

reveals the complexity and richness of our vast visual space,

and therefore can give us insights about the structure of the
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manifold of natural images.

Our insight is to train a high-capacity discriminative

model (a Convolutional Neural Network) to distinguish nat-

ural images (assumed to be realistic) from automatically-

generated image composites (assumed to be unrealistic).

Clearly, the latter assumption is not quite valid, as a small

number of “lucky” composites will, in fact, appear as real-

istic as natural images. But this setup allows us to train on a

very large visual dataset without the need of costly human

labels. One would reasonably worry that a classifier trained

in this fashion might simply learn to distinguish natural im-

ages from composites, regardless of their perceived realism.

But, interestingly, we have found that our model appears to

be picking up on cues about visual realism, as demonstrated

by its ability to rank image composites by their perceived

realism, as measured by human subjects. For example, Fig-

ure 1 shows two composites which our model placed close

to the decision boundary – these turn out to be composites

which most of our human subjects thought were natural im-

ages. On the other hand, the composite far from the bound-

ary is clearly seen by most as unrealistic. Given a large

corpus of natural and composite training images, we show

that our trained model is able to predict the degree of re-

alism of a new image. We observe that our model mainly

characterizes the visual realism in terms of color, lighting

and texture compatibility.

We also demonstrate that our learned model can be used

as a tool for creating better image composites automati-

cally via simple color adjustment. Given a low-dimensional

color mapping function, we directly optimize the visual re-

alism score predicted by our CNN model. We show that this

outperforms previous color adjustment methods on a large-

scale human subjects study. We also demonstrate how our

model can be used to choose an object from a category that

best fits a given background at a specific location.

2. Related Work

Our work attempts to characterize properties of images

that look realistic. This is closely related to the extensive

literature on natural image statistics. Much of that work

is based on generative models [6, 22, 35]. Learning a gen-

erative model for full images is challenging due to their

high dimensionality, so these works focus on modeling local

properties via filter responses and small patch-based repre-

sentations. These models work well for low-level imaging

tasks such as denoising and deblurring, but they are inade-

quate for capturing higher level visual information required

for assessing photo realism.

Other methods take a discriminative approach [9, 17, 25,

27, 33]. These methods can generally attain better results

than generative ones by carefully simulating examples la-

beled with the parameters of the data generation process

(e.g. joint velocity, blur kernel, noise level, color trans-

formation). Our approach is also discriminative, however,

we generate the negative examples in a non-task-specific

way and without recording the parameters of the process.

Our intuition is that using large amounts of data leads to

an emergent ability of the method to evaluate photo realism

from the data itself.

In this work we demonstrate our method on the task of

assessing realism of image composites. Traditional image

compositing methods try to improve realism by suppress-

ing artifacts that are specific to the compositing process.

These include transition of colors from the foreground to

the background [1,20], color inconsistencies [15,23,24,33],

texture inconsistencies [4, 11], and suppressing “bleed-

ing” artifacts [31]. Some work best when the foreground

mask aligns tightly with the contours of the foreground ob-

ject [15, 23, 24, 33], while others need the foreground mask

to be rather loose and the two backgrounds not too cluttered

or too dissimilar [4, 8, 16, 20, 31]. These methods show im-

pressive visual results and some are used in popular image

editing software like Adobe Photoshop, however they are

based on hand-crafted heuristics and, more importantly, do

not directly try to improve (or measure) the realism of their

results. A recent work [30] explored the perceptual realism

of outdoor composites but focused only on lighting direc-

tion inconsistencies.

The work most related to ours, and a departure point for

our approach, is Lalonde and Efros [15] who study color

compatibility in image composites. They too generate a

dataset of image composites and attempt to rank them on

the basis of visual realism. However, they use simple, hand-

crafted color-histogram based features and do not do any

learning.

Our method is also superficially related to work on dig-

ital image forensics [12, 21] that try to detect digital image

manipulation operations such as image warping, cloning,

and compositing, which are not perceptible to the human

observer. But, in fact, the goals of our work are entirely dif-

ferent: rather than detecting which of the realistic-looking

images are fake, we want to predict which of the fake im-

ages will look realistic.

3. Learning the Perception of Realism

Our goal is developing a model that could predict

whether or not a given image will be judged to be realistic

by a human observer. However, training such a model di-

rectly would require a prohibitive amount of human-labeled

data, since the negative (unrealistic) class is so vast. In-

stead, our idea is to train a model for a different “pretext”

task, which is: 1) similar to the original task, but 2) can

be trained with large amounts of unsupervised (free) data.

The “pretext” task we propose is to discriminate between

natural images and computer-generated image composites.

A high-capacity convolutional neural network (CNN) clas-



(a) Fully Supervised (b) Partially Supervised (c) Unsupervised

Figure 2: Example composite images for CNN training: (a)

image composites generated by fully supervised foreground

and background masks, (b) image composites generated by

a hybrid ground truth mask and object proposal, (c) image

composites generated by a fully unsupervised proposal sys-

tem. See text for details. Best viewed in color.

sifier is trained using only automatically-generated “free”

labels (i.e. natural vs. generated). While this “pretext” task

is different from the original task we wanted to solve (re-

alistic vs. unrealistic), our experiments demonstrate that it

performs surprisingly well on our manually-annotated test

set (c.f. Section 6).

We use the network architecture of the recent VGG

model [28], a 16-layer model with small 3× 3 convolution

filters. We initialize the weights on the ImageNet classifica-

tion challenge [5] and then fine-tune on our binary classifi-

cation task. We optimize the model using back-propagation

with Stochastic Gradient Descent (SGD) using Caffe [10].

3.1. Automatically Generating Composites

To generate training data for the CNN model, we use the

LabelMe image dataset [26] because it contains many cat-

egories along with detailed annotation for object segmen-

tation. For each natural image in the LabelMe dataset, we

generate a few composite images as follows.

Generate a Single Composite Figure 3 illustrates the

process of generating a single composite image, which fol-

lows [15]. Starting with a background image B (Figure 3c)

that contains an object of interest (target object), we locate a

source object F (Figure 3a) with a similar shape elsewhere

in the dataset, and then rescale and translate the source ob-

ject F so that the source object matches the target location.

(Figure 3b). We assume the object is well segmented and

the alpha map α of the source object is known (Figure 3d).

We apply a simple feathering based on a distance transform

map to the object mask α of the source object. We gener-

ate the final composite by combining the source object and

background I = α · F + (1− α) ·B.

Generate Composite Dataset For each target object in

each image, we search for source objects with similar

shapes by computing the SSD of blurred and subsampled

Feathering

Scale

Translate

Masking

Masking

(a) Source Object F

(c) Target Object (d) Background � ⋅ ሺ1 − �ሻ
(e) Image Composite �

(b) Segmented Object � ⋅ �

Figure 3: We generate a composite image by replacing the

target object (c) by the source object F (a). We rescale and

translate the source object to match the location and scale

of the target object (c). We generate the final composite

(e) by combining the segmented object (b) and the masked

background (d).

(a) Target Object

(c) Object Mask

(b) Composite Images

(d) Object Masks with Similar Shapes

Figure 4: Given an original photo with target object (a)

and its object mask (c), we search for source objects whose

object mask matches well the shape of target object, and

replace the target object with them. We show the nearest

neighbor object masks in (d) and their corresponding gen-

erated composites (b).

(64× 64) object masks. Take Figure 4, for example. We re-

place the original building with other buildings with similar

outlines. The purpose of the rough matching of object shape

is to make sure that the generated composites are already

close to the manifold of natural images. However, this pro-

cedure requires detailed segmentation annotations for both

source and target objects. We call this procedure FullySu-

pervised as it requires full annotation of object masks.

An alternative way is to use automatic image segmenta-

tion produced by an “object proposal” method (in our im-

plementation we used Geodesic Object Proposals [13]). In

this case, training images are still generated using human

labeled segmentation for the target objects, but source ob-

jects are obtained by searching for object proposal segments

with similar shapes to the target objects in all images. This

requires much fewer segmented training images. We name

this procedure PartiallySupervised. The third way is fully

automatic: we use object proposals for both source and tar-

get objects. In particular, we randomly sample an object

proposal for a given image, and replace it by other object



(a) Most realistic composites ranked by our model

(b) Least realistic composites ranked by our model

Figure 5: Ranking of generated composites in terms of re-

alism scores. Best viewed in color.

proposals with the most similar shapes from the dataset.

This procedure is fully unsupervised and we call it Un-

supervised. Later, we show that this fully automatic pro-

cedure only performs slightly worse than FullySupervised

w.r.t human annotations, in terms of predicting visual real-

ism (Section 6). We also experimented with randomly cut-

ting and pasting objects from one image to the other with-

out matching object masks. In this case, the CNN model

we trained mainly picked up artifacts of high-frequency

edges that appear in image composites and performed sig-

nificantly worse. In our experiments, we used ∼ 11, 000
natural images containing ∼ 25, 000 object instances from

the largest 15 categories of objects in the LabelMe dataset.

For FullySupervised and PartiallySupervised, we generated

a composite image for each annotated object in the image.

For Unsupervised, we randomly sample a few object pro-

posals as target objects, and generate a composite image for

each of them.

Figure 2 shows some examples of image composites

generated by all three methods. Notice that some compos-

ite images are artifact-free and appear quite realistic, which

forces the CNN model to pick up not only the artifacts of the

segmentation and blending algorithms, but also the compat-

ibility between the visual content of the inserted object and

its surrounding scene. Different from previous work [15],

we do not manually remove any structurally inconsistent

images. We find that composites generated by FullySuper-

vised are usually correct with regards to semantics and ge-

ometry, but sometimes suffer from inconsistent lighting and

color. PartiallySupervised also often generates meaningful

scenes, but sometimes tends to paste an object into parts

of another object. While Unsupervised tends to generate

scenes with incorrect semantics, the number of scenes that

can be generated is not restricted by the limited amount of

human annotation.

Ranking of Training Images Interestingly, our trained

CNN model is able to rank visually appealing image com-

posites higher than unrealistic photos with visual artifacts.

In Figure 5, we use our model to rank the training compos-

ites by their realism score prediction. The top row shows

high-quality composites that are difficult for humans to spot

while the bottom row shows poor composites due to incor-

rect segmentation and color inconsistency. We demonstrate

that our model matches to human perception with quantita-

tive experiments in Section 6.

4. Improving Image Composites

Let f(I; θ) be our trained CNN classifier model predict-

ing the visual realism of an image I . We can use this classi-

fier to guide an image compositing method to produce more

realistic outputs. This optimization not only improves ob-

ject composition, but also reveals many of the properties of

our learned realism model.

We formulate the object composition process as Ig =
α ·g(F )+(1−α) ·B where F is the source object, B is the

background scene, and α ∈ [0, 1] is the alpha mask for the

foreground object. For this task, we assume that the fore-

ground object is well segmented and placed at a reasonable

location. The color adjustment model g(·) adjusts the vi-

sual properties of the foreground to be compatible with the

background image. Color plays an important role in the ob-

ject composition process [15]. Even if an object fits well to

the scene, the inconsistent lighting will destroy the illusion

of realism.

The goal of a color adjustment is to optimize the adjust-

ment model g(·), such that the resulting composite appears

realistic. We express this in the following objective func-

tion:

E(g, F ) = −f(Ig; θ) + w · Ereg(g), (1)

where f measures the visual realism of the composite and

Ereg imposes a regularizer on the space of possible ad-

justments. A desired image composite should be realistic

while staying true to identity of the original object (e.g. do

not turn a white horse to be yellow). The weight w con-

trols the relative importance between the two terms (we

set it to w = 50 in all our experiments). We apply a

very simple brightness and contrast model to the source

object F for each channel independently. For each pixel

we map the foreground color values F p = (cp1, c
p
2, c

p
3) to

g(F p) = (λ1c
p
1+β1, λ2c

p
2+β2, λ3c

p
3+β3). The regulariza-

tion term for this model can be formulated as:

Ereg(g) =
1

N

∑

p

(

‖Ipg − I
p
0‖2+

∑

i,j

‖(λi−1)·cpi +βi − (λj−1)·cpj−βj‖2

)
(2)

where N is the number of foreground pixels in the im-

age, and I0 = α · F + (1 − α) · B is the composite im-

age without recoloring, Ipg and I
p
0 denotes the color values

for pixel p in the composite image. The first term penal-

izes large change between the original object and recolored



object, and the second term discourages independent color

channel variations (roughly hue change).

Note that the discriminative model θ has been trained and

fixed during this optimization.

Optimizing Color Compatibility We would like to op-

timize color adjustment function g∗ = argming E(g, F ).
Our objective (Equation 1) is differentiable, if the color ad-

justment function g is also differentiable. This allows us to

optimize for color adjustment using gradient-descent.

To optimize the function, we decompose the gradient

into ∂E
∂g

= −
∂f(Ig,θ)

∂Ig
·
∂Ig
∂g

+
∂Ereg

∂g
. Notice that −

∂f(Ig,θ)
∂Ig

can be computed through backpropagation of CNN model

from the loss layer to the image layer while the other parts

have a simple close form of gradient. See supplemental

material for the gradient derivation. We optimize the cost

function using L-BFGS-B [2]. Since the objective is non-

convex, we start from multiple random initializations and

output the solution with the minimal cost.

In Section 6.1, we compare our model to existing meth-

ods, and show that our method generates perceptually better

composites. Although our color adjustment model is rela-

tively simple, our learned CNN model provides guidance

towards better color compatible composite.

Selecting Best-fitting Objects Imagine that a user would

like to place a car on a street scene (e.g. as in [16]).

Which car should she choose? We could choose an object

F ∗ = argminF E(g, F ). For this, we essentially generate

a composite image for each candidate car instance and se-

lect the object with minimum cost function (Equation 1).

We show our model can select more suitable objects for

composition task in Section 6.2.

5. Implementation

CNN Training We used the VGG model [28] from the au-

thors’ website, which is trained on ImageNet [5]. We then

fine-tune the VGG Net on our binary classification task (nat-

ural photos vs. composites). We optimize the CNN model

using SGD. The learning rate α is initialized to 0.0001 and

reduced by factor 0.1 after 10, 000 iterations. We set the

learning rate for fc8 layer to be 10 times higher than the

lower layers. The momentum is 0.9, the batch size 50, and

the maximum number of iterations 25, 000.

Dataset Generation For annotated objects and object

proposals in the LabelMe dataset [26], we only consider

objects whose pixels occupy between 5% ∼ 50% of im-

age pixels. For human annotation, we exclude occluded ob-

jects whose object label strings contain the words “part”,

“occlude”, “regions” and “crop”.

6. Experiments

We first evaluate our trained CNN model in terms of clas-

sifying realistic photos vs. unrealistic ones.

Methods without object mask

Color Palette [15] (no mask) 0.61

VGG Net [28] + SVM 0.76

PlaceCNN [34] + SVM 0.75

AlexNet [14] + SVM 0.73

RealismCNN 0.84

RealismCNN + SVM 0.88

Human 0.91

Methods using object mask

Reinhard et al. [23] 0.66

Lalonde and Efros [15] (with mask) 0.81

Table 1: Area under ROC curve comparing our method

against previous methods [15, 23]. Note that several meth-

ods take advantage of human annotation (object mask) as

additional input while our method assumes no knowledge

of the object mask.

Evaluation Dataset We use a public dataset of 719 im-

ages introduced by Lalonde and Efros [15], which com-

prises of 180 natural photographs, 359 unrealistic compos-

ites, and 180 realistic composites. The images were man-

ually labeled by three human observers with normal color

vision. All methods are evaluated on a binary realistic

vs. unrealistic classification task with 359 unrealistic pho-

tos versus 360 realistic photos (which include natural im-

ages plus realistic composites). Our method assigns a vi-

sual realism score to each photo. Area under ROC curve is

used to evaluate the classification performance. We call our

method RealismCNN. Although trained on a different loss

function (i.e. classifying natural photos vs. automatically

generated image composites), with no human annotations

for visual realism, our model outperforms previous meth-

ods that build on matching low-level visual statistics includ-

ing color std/mean [23], color palette, texture and color his-

togram [15]. Notice that Lalonde and Efros [15] also re-

quires a mask for the inserted object, making the task much

easier, but less useful.

Supervised Training Without any human annotation for

visual realism, our model already outperforms previous

methods. But it would be more interesting to see how

our RealismCNN model improves with a small additional

amount of human realism labeling. For this, we use the hu-

man annotation (realistic photos vs. unrealistic photos) pro-

vided by [15], and train a linear SVM classifier [3] on top

of the fc7 layer’s 4096 dimensional features extracted by

our RealismCNN model, which is a common way to adapt a

pre-trained deep model to a relatively small dataset. We call

this RealismCNN + SVM. Figure 6 shows a few compos-

ites ranked with this model. In practice, fc6 and fc7 lay-

ers give similar performance, and higher compared to lower

layers. We evaluate our SVM model using 10-fold cross-
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Figure 6: Ranking of photos according to our model’s visual realism prediction. The color of image border encodes the

human annotation: green: realistic composites; red: unrealistic composites; blue: natural photos. The different rows contain

composites corresponding to different rank percentiles of scores predicted with RealismCNN + SVM.

validation. This adaptation further improves the accuracy

of visual realism prediction. As shown in Table 1, Real-

ismCNN + SVM (0.88) outperforms existing methods by a

large margin. We also compare our SVM model with other

SVM models trained on convolutional activation features

(fc7 layer) extracted from different CNN models includ-

ing AlexNet [14] (0.75), PlaceCNN [34] (0.73) and original

VGG Net [28] (0.76). As shown in Table 1, our Realism +

SVM model reports much better results, which suggests that

training a discriminative model using natural photos, and

automatically generated image composites can help learn

better feature representation for predicting visual realism.

Human Performance Judging an image as photo-

realistic or not can be ambiguous even for humans. To mea-

sure the human performance on this task, we collected addi-

tional annotations for the 719 images in [15] using Amazon

Mechanical Turk. We collected on average 13 annotations

for each image by asking a simple question ”Does this im-

age look realistic?” and allowing the worker to choose one

of four options: 1 (definitely unrealistic), 2 (probably unre-

alistic), 3 (probably realistic) and 4 (definitely realistic). We

then average the scores of human response and compare the

MT workers’ ratings to the “ground truth” labels provided

RealismCNN RealismCNN + SVM

FullySupervised 0.84 0.88

PartiallySupervised 0.79 0.84

Unsupervised 0.78 0.84

Table 2: Area under ROC curve comparing different dataset

generation procedures. FullySupervised uses annotated ob-

jects for both source object and target object. PartiallySu-

pervised uses annotated objects only for target object, but

using object proposals for source object. Unsupervised uses

object proposals for both cases.

in the original dataset [15]. Humans achieve a score of 0.91
in terms of area under ROC curve, suggesting our model

achieves performance that is close to level of human agree-

ment on this dataset.

Dataset Generation Procedure The CNN we reported

so far was trained on the image composites generated by

the FullySupervised procedure. In Table 2, we further com-

pare the realism prediction performance when training with

other procedures described in Section 3.1. We find that

FullySupervised RealismCNN gives better results when no

human realism labeling is available. With SVM supervised

training (using human annotations), the margin between dif-



Object mask Cut-n-paste [15] [33] Ours

R
ea

listic
U

n
rea

listic
N

a
tu

ra
l (rea

l)

Figure 7: Example composite results: from left to right:

objects mask, cut-and-paste, Lalonde and Efros [15], Xue

et al. [33] and our method.

ferent dataset generation methods becomes smaller. This

suggests that we can learn the feature representation using

fully unsupervised data (without any masks), and improve

it using small amounts of human rating annotations.

Indoor Scenes The Lalonde and Efros dataset [15] con-

tains mainly photographs of natural outdoor environments.

To complement this dataset, we construct a new dataset that

contains 720 indoor photos with man-made objects from the

LabelMe dataset. Similar to [15], our new dataset contains

180 natural photos, 180 realistic composites, and 360 unre-

alistic composites. To better model indoor scenes, we train

our CNN model on ∼21, 000 natural images (both indoor

and outdoor) that contain ∼42, 000 object instances from

more than 200 categories of objects in the LabelMe dataset.

We use MTurk to collect human labels for realistic and un-

realistic composites (13 annotations per image). Without

SVM training, our RealismCNN alone achieves 0.83 on

the indoor dataset, which is consistent with our results on

the Lalonde and Efros dataset.

6.1. Optimizing Color Compatibility

Generating a realistic composite is a challenging prob-

lem. Here we show how our model can recolor the object

so that it better fits the background.

Dataset, Baselines and Evaluation We use the dataset

from [15] that provides a foreground object, its mask, and

Cut-n-paste Iteration 1 Iteration 2Object mask

Figure 8: From left to right: object mask, cut-and-paste,

results generated by CNNIter1 and CNNIter2 without

the regularization term Ereg .

a background image for each photo. Given an input, we

recolor the foreground object using four methods: simple

cut-and-paste, Lalonde and Efros [15], Xue et al. [33] and

our color adjustment model described in Section 4. We use

the FullySupervised version of RealismCNN model without

SVM training. We follow the same evaluation setting as in

[33] and use Amazon Mechanical Turk to collect pairwise

comparisons between pairs of results (the question we ask

is “Given two photos generated by two different methods,

which photo looks more realistic?”). We collected in total

43140 pairwise annotations (10 annotations for each pair of

methods for all 719 images). We use the Thurstone’s Case

V Model [32] to obtain a realism score for each method

per image from the pairwise annotations, and normalize the

scores so that their standard deviation for each image is 1.

Finally, we compute the average scores over all the pho-

tos. We report these average human rating scores for three

categories of images: unrealistic composites, realistic com-

posites and natural photos. We use natural photos for sanity

check since an ideal color adjustment algorithm should not

modify the color distribution of an object in a natural photo.

For natural photos, if no color adjustment is applied, the

“cut-and-paste” result does not alter the original photo.

Results Table 3 compares different methods in terms of

average human ratings. On average, our method outper-

forms other existing color adjustment methods. Our method

significantly improves the visual realism of unrealistic pho-

tos. Interestingly, none of the methods can notably improve

realistic composites although our model still performs best

among the three color adjustment methods. Having a sense

of visual realism informs our color adjustment model as

to when, and how much, it should recolor the object. For

both realistic composites and natural photos, our method

typically does not change much the color distribution since

these images are correctly predicted as already being quite

realistic. On the other hand, the other two methods try to al-

ways match the low-level statistics between the foreground

object and background, regardless of how realistic the photo

is before recoloring. Figure 7 shows some example results.



Hard Negative Mining We observe that our color opti-

mization method performs poorly for some images once we

turn off the regularization term Ereg . (See Figure 8 for ex-

amples). We think this is because some of the resulting col-

ors (without Ereg) never appear in any training data (posi-

tive or negative). To avoid this unsatisfactory property, we

add newly generated color adjustment results as the negative

data, and retrain the CNN with newly added data, similar to

hard negative mining in object detection literature [7]. Then

we use this new CNN model to recolor the object again. We

repeat this process three times, and obtain three CNN mod-

els named as CNNIter1, CNNIter2 and CNNIter3.

We compare these three models (with Ereg added back) us-

ing the same MTurk experiment setup, and obtain the fol-

lowing results: CNNIter1: −0.162, CNNIter2: 0.045,

and CNNIter3: 0.117. As shown in Figure 8, the hard

negative mining avoids extreme coloring, and produces bet-

ter results in general. We use CNNIter3 with Ereg to pro-

duce the final results in Table 3 and Figure 7.

6.2. Selecting Suitable Object

We can also use our RealismCNN model to select the

best-fitting object from a database given a location and a

background image. In particular, we generate multiple pos-

sible candidate composites for one category (e.g. a car) and

use our model to select the most realistic one among them.

We randomly select 50 images from each of the 15
largest object categories in the LabelMe dataset and build

a dataset of 750 background images. For each background

photo, we generate 25 candidate composite images by find-

ing 25 source objects (from all other objects in the same cat-

egory) with the most similar shapes to the target object, as

described in Section 3.1. Then the task is to pick the object

that fits the background best. We select the foreground ob-

ject using three methods: using RealismCNN, as described

in Section 4; select the object with the most similar shape

(denoted Shape); and randomly select the object from 25
candidates (denoted Random).

We follow the same evaluation setting described in Sec-

tion 6.1. We collect 22500 human annotations, and ob-

tain the following average Human ratings: RealismCNN:

0.285, Shape: −0.033, and Random: −0.252. Figure 9

shows some example results for the different methods. Our

method can suggest more suitable objects for the composi-

tion task.

7. Conclusion

In this paper, we present a learning approach for charac-

terizing the space of natural images, using a large dataset of

automatically created image composites. We show that our

learned model can predict whether a given image compos-

ite will be perceived as realistic or not by a human observer.

(a) Best-fitting object selected by RealismCNN

(b) Object with most similar shape

(c) Random selected objects

Figure 9: For the same photo and the same location, we

produce different composites using objects selected by three

methods: (a) RealismCNN, (b) the object with the most sim-

ilar shape, and (c) a randomly selected object.

Unrealistic

Composites

Realistic

Composites

Natural

Photos

cut-and-paste -0.024 0.263 0.287

[15] 0.123 -0.299 -0.247

[33] -0.410 -0.242 -0.237

ours 0.311 0.279 0.196

Table 3: Comparison of methods for improving compos-

ites by average human ratings. We use the authors’ code

to produce results for Lalonde and Efros [15] and Xue et

al [33]. We follow the same evaluation setting as in [33]

and obtain human ratings from pairwise comparisons using

Thurstone’s Case V Model [32].

Our model can also guide automatic color adjustment and

object selection for image compositing.

Many factors play a role in the perception of realism.

While our learned model mainly picks up on purely vi-

sual cues such as color compatibility, lighting consistency,

and segment compatibility, high-level scene cues (seman-

tics, scene layout, perspective) are also important factors.

Our current model is not capable of capturing these cues as

we generate composites by replacing the object with an ob-

ject from the same category and with a similar shape. Fur-

ther investigation in these high-level cues will be required.
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