import pandas as pd
pd.__version__
'0.12.0-1000-gea97682'
sheet_names = [u'Bandpasses',
u'T to Normalized Radiance',
u'Normalized to Absolute Radiance']
sheet = pd.ExcelFile('./Diviner_R_to_T_8-4-2009.xls').sheet_names[1]
df = pd.read_excel('./Diviner_R_to_T_8-4-2009.xls', sheet, skiprows=4)
df
<class 'pandas.core.frame.DataFrame'> Int64Index: 882 entries, 0 to 881 Data columns (total 8 columns): Temperature 882 non-null values Channel 3 (A3) 881 non-null values Channel 4 (A4) 881 non-null values Channel 5 (A5) 881 non-null values Channel 6 (A6) 881 non-null values Channel 7 (B1) 881 non-null values Channel 8 (B2) 881 non-null values Channel 9 (B3) 881 non-null values dtypes: object(8)
df.index = df.Temperature
df.drop('Temperature',axis=1, inplace=True)
df = df.drop(440)
df.head()
Channel 3 (A3) | Channel 4 (A4) | Channel 5 (A5) | Channel 6 (A6) | Channel 7 (B1) | Channel 8 (B2) | Channel 9 (B3) | |
---|---|---|---|---|---|---|---|
Temperature | |||||||
(K) | Normalized Radiance | Normalized Radiance | Normalized Radiance | Normalized Radiance | Normalized Radiance | Normalized Radiance | Normalized Radiance |
-440.0 | -7.213917 | -6.466524 | -6.103586 | -2.831999 | -2.002254 | -1.689956 | -1.578207 |
-439.0 | -7.144059 | -6.407254 | -6.049301 | -2.816766 | -1.994755 | -1.684962 | -1.574049 |
-438.0 | -7.074573 | -6.348271 | -5.995264 | -2.801558 | -1.98726 | -1.679968 | -1.569891 |
-437.0 | -7.00546 | -6.289574 | -5.941476 | -2.786375 | -1.979769 | -1.674976 | -1.565734 |
df.info()
<class 'pandas.core.frame.DataFrame'> Index: 881 entries, (K) to 439.0 Data columns (total 7 columns): Channel 3 (A3) 881 non-null values Channel 4 (A4) 881 non-null values Channel 5 (A5) 881 non-null values Channel 6 (A6) 881 non-null values Channel 7 (B1) 881 non-null values Channel 8 (B2) 881 non-null values Channel 9 (B3) 881 non-null values dtypes: object(7)
df.index[:10]
Index([u'(K)', -440.0, -439.0, -438.0, -437.0, -436.0, -435.0, -434.0, -433.0, -432.0], dtype='object')
df = df.drop('(K)')
df.head()
<class 'pandas.core.frame.DataFrame'> Float64Index: 446 entries, -440.0 to 5.0 Data columns (total 7 columns): Channel 3 (A3) 446 non-null values Channel 4 (A4) 446 non-null values Channel 5 (A5) 446 non-null values Channel 6 (A6) 446 non-null values Channel 7 (B1) 446 non-null values Channel 8 (B2) 446 non-null values Channel 9 (B3) 446 non-null values dtypes: object(7)
df = df.convert_objects()
df.head()
<class 'pandas.core.frame.DataFrame'> Float64Index: 446 entries, -440.0 to 5.0 Data columns (total 7 columns): Channel 3 (A3) 446 non-null values Channel 4 (A4) 446 non-null values Channel 5 (A5) 446 non-null values Channel 6 (A6) 446 non-null values Channel 7 (B1) 446 non-null values Channel 8 (B2) 446 non-null values Channel 9 (B3) 446 non-null values dtypes: float64(7)
df.head(3)
<class 'pandas.core.frame.DataFrame'> Float64Index: 444 entries, -440.0 to 3.0 Data columns (total 7 columns): Channel 3 (A3) 444 non-null values Channel 4 (A4) 444 non-null values Channel 5 (A5) 444 non-null values Channel 6 (A6) 444 non-null values Channel 7 (B1) 444 non-null values Channel 8 (B2) 444 non-null values Channel 9 (B3) 444 non-null values dtypes: float64(7)