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1 FAQ

Q: What's in this Document?

A: We review the literature on semi-supervised learning, which is an area in ma-
chine learning and more generally, artificial intelligence. There has bedrok
spectrum of interesting ideas on how to learn from both labeled and unthbele
data, i.e. semi-supervised learning. This document originates as a chmafter



author’s doctoral thesis (Zhu, 2005). However the author will upda&etitine ver-
sion regularly to incorporate the latest development in the field. Please dhé¢ain
latest version altit t p: / / pages. cs. wi sc. edu/ ~j erryzhu/ r esear ch/

ssl /sem revi ew. ht m . The date below the title indicates its version. Older

versions of the survey can be found at the same URL.
| recommend citation using the following bibtex entry:

@ echreport{zhuO5survey,

aut hor = "Xi aojin zZhu",

title = "Sem - Supervi sed Learning Literature Survey",

institution = "Conputer Sciences, University of W sconsin-Madi son",
nunber = "1530",

year = 2005

The review is by no means comprehensive as the field of semi-supenésed le
ing is evolving rapidly. It is difficult for one person to summarize the fieldeTh
author apologizes in advance for any missed papers and inaccuraciesdrip-
tions. Corrections and comments are highly welcome. Please send them to jer-
ryzhu@cs.wisc.edu.

Q: What is semi-supervised learning?
A: In this survey we focus on semi-supervised classification. It is a sgeamlof
classification. Traditional classifiers use only labeled data (featurel/pabe) to
train. Labeled instances however are often difficult, expensive, or tanswmning
to obtain, as they require the efforts of experienced human annotateemiile
unlabeled data may be relatively easy to collect, but there has been fenavase
them. Semi-supervised learning addresses this problem by using largatanfiou
unlabeled data, together with the labeled data, to build better classifiersudgeca
semi-supervised learning requires less human effort and gives hagharacy, it
is of great interest both in theory and in practice.

Semi-supervised classification’s cousins, semi-supervised clusterthgean
gression, are briefly discussed in section 11.3 and 11.4.

Q: Can we really learn anything from unlabeled data? It sounds like magic
A: Yes we can — under certain assumptions. It's not magic, but good matching o
problem structure with model assumption.

Many semi-supervised learning papers, including this one, start with an intr
duction like: “labels are hard to obtain while unlabeled data are abundargfdhe
semi-supervised learning is a good idea to reduce human labor and impmyve a
racy”. Do not take it for granted. Even though you (or your domaineeipdo
not spend as much time in labeling the training data, you need to spend relgsona

4



amount of effort to design good models / features / kernels / similaritytiome
for semi-supervised learning. In my opinion such effort is more criticath thoat
supervised learning to make up for the lack of labeled training data.

Q: Does unlabeled data always help?

A: No, there’s no free lunch. Bad matching of problem structure with model as
sumption can lead to degradation in classifier performance. For examjiieaqu
few semi-supervised learning methods assume that the decision bouhdatg s
avoid regions with highy(z). These methods include transductive support vector
machines (TSVMSs), information regularization, Gaussian processes wittate-
gory noise model, graph-based methods if the graph weights is determimpadrby
wise distance. Nonetheless if the data is generated from two heavily gviexdap
Gaussian, the decision boundary would go right through the denggshyreind
these methods would perform badly. On the other hand EM with generative mix
ture models, another semi-supervised learning method, would have edgéy so
the problem. Detecting bad match in advance however is hard and remaipsran o
question.

Anecdotally, the fact that unlabeled data do not always help semi-dapérv
learning has been observed by multiple researchers. For example pagpliong
realized that training Hidden Markov Model with unlabeled data (the Baurisiwe
algorithm, which by the way qualifies as semi-supervised learning on seggien
can reduce accuracy under certain initial conditions (Elworthy, 1994e (Coz-
man et al., 2003) for a more recent argument. Not much is in the literaturetihoug
presumably because of the publication bias.

Q: How many semi-supervised learning methods are there?

A: Many. Some often-used methods include: EM with generative mixture models,
self-training, co-training, transductive support vector machines,gaagh-based
methods. See the following sections for more methods.

Q: Which method should | use / is the best?

A: There is no direct answer to this question. Because labeled data is, szrse
supervised learning methods make strong model assumptions. ldeallyaurid sh
use a method whose assumptions fit the problem structure. This may beltdifficu
in reality. Nonetheless we can try the following checklist: Do the classesipeod
well clustered data? If yes, EM with generative mixture models may be a good
choice; Do the features naturally split into two sets? If yes, co-training neay b
appropriate; Is it true that two points with similar features tend to be in the same
class? If yes, graph-based methods can be used; Already using Ediktluctive
SVM is a natural extension; Is the existing supervised classifier complicated
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hard to modify? Self-training is a practical wrapper method.

Q: How do semi-supervised learning methods use unlabeled data?

A: Semi-supervised learning methods use unlabeled data to either modify or re-
prioritize hypotheses obtained from labeled data alone. Although not allogieth
are probabilistic, it is easier to look at methods that represent hypotheség|x),

and unlabeled data lpy(x). Generative models have common parameters for the
joint distributionp(x, y). It is easy to see that(z) influencesp(y|x). Mixture
models with EM is in this category, and to some extent self-training. Many other
methods are discriminative, including transductive SVM, Gaussian [sesgs-
formation regularization, and graph-based methods. Original discrim@natin-

ing cannot be used for semi-supervised learning, giigger) is estimated ignoring
p(zx). To solve the probleny(z) dependent terms are often brought into the ob-
jective function, which amounts to assumip@|z) andp(x) share parameters.

Q: What s the difference between ‘transductive learning’ and ‘seni-supervised
learning’?

A: Different authors use slightly different names. In this survey we will tinge
following convention:

e ‘Semi-supervised learning’ refers to the use of both labeled and unthbele
data for training. It contrasts supervised learning (data all labeledhsui-u
pervised learning (data all unlabeled). Other names are ‘learning from la
beled and unlabeled data’ or ‘learning from partially labeled/classified.data
Notice semi-supervised learning can be either transductive or inductive.

¢ ‘Transductive learning’ will be used to contrast inductive learning. #er
is transductive if it only works on the labeled and unlabeled training data,
and cannot handle unseen data. The early graph-based method&eare o
transductive. Inductive learners can naturally handle unseen daitceN
under this conventiotransductive support vector machin€ESVMs) are
in fact inductive learners, because the resulting classifiers are dedirez
the whole space. The name TSVM originates from the intention to work
only on the observed data (though people use them for induction anyway)
which according to (Vapnik, 1998) is solving a simpler problem. People
sometimes use the analogy that transductive learning is take-home exam,
while inductive learning is in-class exam.

e In this survey semi-supervised learning refers to ‘semi-supervisesifitas
tion’, where one has additional unlabeled data and the goal is classification
Its cousin ‘semi-supervised clustering’, where one has unlabeled dtita w
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some pairwise constraints and the goal is clustering, is only briefly disgusse
later in the survey.

We will follow the above convention in the survey.

Q: Where can | learn more?

A: Abook on semi-supervised learning is (Chapelle et al., 2006c). An ololees

can be found in (Seeger, 2001). | gave a tutorial at ICML 2007, theslkan be
foundathtt p: / / pages. cs. wi sc. edu/ ~jerryzhu/icm O7tutori al .

htm .

2 Generative Models

Generative models are perhaps the oldest semi-supervised learningdmithe-
sumes a model(x,y) = p(y)p(z|y) wherep(x|y) is an identifiable mixture dis-
tribution, for example Gaussian mixture models. With large amount of unlabeled
data, the mixture components can be identified; then ideally we only need one
labeled example per component to fully determine the mixture distribution, see
Figure 1. One can think of the mixture components as ‘soft clusters’.

Nigam et al. (2000) apply the EM algorithm on mixture of multinomial for
the task of text classification. They showed the resulting classifiersrpelfetter
than those trained only from. Baluja (1998) uses the same algorithm on a face
orientation discrimination task. Fujino et al. (2005) extend generative mixture
models by including a ‘bias correction’ term and discriminative training usieg th
maximum entropy principle.

One has to pay attention to a few things:

2.1 Identifiability

The mixture model ideally should be identifiable. In genera{}gt be a family of

distributions indexed by a parameter vediod is identifiable ifd; # 02 = py, #

Do, UP to @ permutation of mixture components. If the model family is identifiable,

in theory with infiniteU one can leard up to a permutation of component indices.
Here is an example showing the problem with unidentifiable models. The

modelp(z|y) is uniform fory € {+1,—1}. Assuming with large amount of un-

labeled data/ we know p(z) is uniform in [0,1]. We also have 2 labeled data

points(0.1,+1), (0.9,—1). Can we determine the label far= 0.5? No. With

our assumptions we cannot distinguish the following two models:

p(y=1) =0.2, p(z|y = 1) = unif(0,0.2), p(zly = —1) = unif(0.2,1) (1)
p(y =1) =0.6, p(zly =1) = unif(0,0.6), p(x|ly = —1) = unif(0.6,1) (2)
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Figure 1: In a binary classification problem, if we assume each class hasssian
distribution, then we can use unlabeled data to help parameter estimation.



which give opposite labels at = 0.5, see Figure 2. It is known that a mixture of

p(x)=1

p(xly=1)=5

Figure 2: An example of unidentifiable models. Even if we kngwm) (top)

is a mixture of two uniform distributions, we cannot uniquely identify the two
components. For instance, the mixtures on the second and third line givantiee s
p(z), but they classifyr = 0.5 differently.

Gaussian is identifiable. Mixture of multivariate Bernoulli (McCallum & Nigam,
1998a) is not identifiable. More discussions on identifiability and semi-sigeet
learning can be found in e.g. (Ratsaby & Venkatesh, 1995) and (Geethu &
Jaakkola, 2001).

2.2 Model Correctness

If the mixture model assumption is correct, unlabeled data is guaranteed tosenpro
accuracy (Castelli & Cover, 1995) (Castelli & Cover, 1996) (Ratsabgnkatesh,
1995). However if the model is wrong, unlabeled data may actually hudracg.
Figure 3 shows an example. This has been observed by multiple ressarcbe-
man et al. (2003) give a formal derivation on how this might happen.

It is thus important to carefully construct the mixture model to reflect reality.
For example in text categorization a topic may contain several sub-topatsyin
be better modeled by multiple multinomial instead of a single one (Nigam et al.,
2000). Some other examples are (Shahshahani & Landgrebe, 199&r &
Uyar, 1997). Another solution is to down-weighing unlabeled data (Gwdou &
Jaakkola, 2001), which is also used by Nigam et al. (2000), and by @alBsirch
et al. (2004) who estimate word alignment for machine translation.



(a) Horizontal class separation (b) High probability  (c) Low probability

Figure 3: If the model is wrong, higher likelihood may lead to lower classificatio
accuracy. For exampléa) is clearly not generated from two Gaussian. If we insist
that each class is a single Gaussi@),will have higher probability thaitfc). But

(b) has around 50% accuracy, whil&'s is much better.

2.3 EM Local Maxima

Even if the mixture model assumption is correct, in practice mixture components
are identified by the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). EM is prone to local maxima. If a local maximum is far from the global
maximum, unlabeled data may again hurt learning. Remedies include smart choice
of starting point by active learning (Nigam, 2001).

2.4 Cluster-and-Label

We shall also mention that instead of using an probabilistic generative mixture
model, some approaches employ various clustering algorithms to cluster the who
dataset, then label each cluster with labeled data, e.g. (Demiriz et al., T9899) (
etal., 2002). Although they can perform well if the particular clusteringaigms
match the true data distribution, these approaches are hard to analyzetdei to
algorithmic nature.

2.5 Fisher kernel for discriminative learning

Another approach for semi-supervised learning with generative mod&scisn-
vert data into a feature representation determined by the generative nibdelew
feature representation is then fed into a standard discriminative classiidub
et al. (2005) used this approach for image categorization. First a ajamemix-
ture model is trained, one component per class. At this stage the unlalagdecho
be incorporated via EM, which is the same as in previous subsections. vidowe
instead of directly using the generative model for classification, eaclelhles-
ample is converted into a fixed-length Fisher score vector, i.e. the deasatf log
likelihood w.r.t. model parameters, for all component models (Jaakkola &Hau
sler, 1998). These Fisher score vectors are then used in a discrimioksasifier
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like an SVM, which empirically has high accuracy.

3 Self-Training

Self-training is a commonly used technique for semi-supervised learnirgglfin
training a classifier is first trained with the small amount of labeled data. The
classifier is then used to classify the unlabeled data. Typically the most ennhfid
unlabeled points, together with their predicted labels, are added to the training
set. The classifier is re-trained and the procedure repeated. Note #sifieta
uses its own predictions to teach itself. The procedure is also called selfiiga

or bootstrapping (not to be confused with the statistical procedure withatine s
name). The generative model and EM approach of section 2 can bedvasve
special case of ‘soft’ self-training. One can imagine that a classificatiotakeis
can reinforce itself. Some algorithms try to avoid this by ‘unlearn’ unlabeteckg

if the prediction confidence drops below a threshold.

Self-training has been applied to several natural language procetssiksg)
Yarowsky (1995) uses self-training for word sense disambiguation,degiding
whether the word ‘plant’ means a living organism or a factory in a giveedn
Riloff et al. (2003) uses it to identify subjective nouns. Maeireizo et 2004)
classify dialogues as ‘emotional’ or ‘non-emotional’ with a procedure inwngiv
two classifiers.Self-training has also been applied to parsing and machistatra
tion. Rosenberg et al. (2005) apply self-training to object detectionmmgstiem
images, and show the semi-supervised technique compares favorablysiatie-a
of-the-art detector.

Self-training is a wrapper algorithm, and is hard to analyze in general. How-
ever, for specific base learners, there has been some analyzar@neargence.
See e.g. (Haffari & Sarkar, 2007; Culp & Michalilidis, 2007).

4 Co-Training and Multiview Learning

4.1 Co-Training

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that (i) feasure
can be split into two sets; (ii) each sub-feature set is sufficient to trainod go
classifier; (iii) the two sets are conditionally independent given the clagsally
two separate classifiers are trained with the labeled data, on the two gutefea
sets respectively. Each classifier then classifies the unlabeled datizanies’ the
other classifier with the few unlabeled examples (and the predicted labeidgtie
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(@) z! view (b) 2 view

Figure 4: Co-Training: Conditional independent assumption on feaplite &/ith
this assumption the high confident data points:irview, represented by circled
labels, will be randomly scattered irf view. This is advantageous if they are to
be used to teach the classifierif view.

most confident. Each classifier is retrained with the additional training example
given by the other classifier, and the process repeats.

In co-training, unlabeled data helps by reducing the version spacdrsiather
words, the two classifiers (or hypotheses) must agree on the much usnigbeled
data as well as the labeled data.

We need the assumption that sub-features are sufficiently good, sodluairw
trust the labels by each learner &n We need the sub-features to be conditionally
independent so that one classifier’s high confident data poinfgdasamples for
the other classifier. Figure 4 visualizes the assumption.

Nigam and Ghani (2000) perform extensive empirical experiments to ammp
co-training with generative mixture models and EM. Their result showsaioitiy
performs well if the conditional independence assumption indeed holdsddir
tion, it is better to probabilistically label the entitg, instead of a few most con-
fident data points. They name this paradigm co-EM. Finally, if there is naalatu
feature split, the authors create artificial split by randomly break the feattrinto
two subsets. They show co-training with artificial feature split still helpsiigino
not as much as before. Collins and Singer (1999); Jones (2005)osedining,
co-EM and other related methods for information extraction from text. Badoah
Blum (2006) show that co-training can be quite effective, that in the exdrease
only one labeled point is needed to learn the classifier. Zhou et al. (20853
co-training algorithm using Canonical Correlation Analysis which also roedyl
one labeled point. Dasgupta et al. (Dasgupta et al., 2001) provide asBhC-
theoretical analysis.

Co-training makes strong assumptions on the splitting of features. One might
wonder if these conditions can be relaxed. Goldman and Zhou (2000mase
learners of different type but both takes the whole feature set, amttésly use
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one learner’s high confidence data points, identified with a set of statitital

in U to teach the other learning and vice versa. Chawla and Karakoulas)(2005
perform empirical studies on this version of co-training and comparedaihay
several other methods, in particular for the case where labeled anceiledatata

do not follow the same distribution. Later Zhou and Goldman (2004) propose
single-view multiple-learner Democratic Co-learning algorithm. An ensemble of
learners with different inductive bias are trained separately on the ctenige-

ture of the labeled data. They then make predictions on the unlabeled data. If
majority of learners confidently agree on the class of an unlabeled pgjrihat
classification is used as the labelxof. x, and its label is added to the training
data. All learners are retrained on the updated training set. The firdiction is
made with a variant of a weighted majority vote among all the learners. Similarly
Zhou and Li (2005b) propose ‘tri-training’ which uses three learndfdwo of
them agree on the classification of an unlabeled point, the classificationdigaise
teach the third classifier. This approach thus avoids the need of explicitifurea
ing label confidence of any learner. It can be applied to datasets witdiféerent
views, or different types of classifiers. Balcan et al. (2005b) relaxctimditional
independence assumption with a much weaker expansion condition, ang justif
the iterative co-training procedure. Johnson and Zhang (2007 ppeog two-view
model that relaxes the conditional independence assumption.

4.2 Multiview Learning

More generally, we can define learning paradigms that utilize the agreamemiy
different learners. The particular assumptions of Co-Training arerieige not re-
quired by multiview learning models. Instead, multiple hypotheses (with differe
inductive biases, e.g., decision trees, SVMs, etc.) are trained fromrnielabeled
data set, and are required to make similar predictions on any given unlabeled
stance. Multiview learning has a long history (de Sa, 1993). It has éeglied to
semi-supervised regression (Sindhwani et al., 2005b; Brefeld e086)2and the
more challenging structured output spaces (Brefeld et al., 2005; IBi&f8chef-

fer, 2006). Some theoretical analysis on the value of agreement amonglenultip
learners can be found in (Leskes, 2005; Farquhar et al., 2006).

5 Avoiding Changes in Dense Regions

5.1 Transductive SVMs (S3VMs)

Discriminative methods work op(y|z) directly. This brings up the danger of
leavingp(x) outside of the parameter estimation loopp(f:) andp(y|x) do not
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share parameters. Notigéz) is usually all we can get from unlabeled data. It is
believed that ifp(z) andp(y|z) do not share parameters, semi-supervised learning
cannot help. This point is emphasized in (Seeger, 2001).

Transductive support vector machines (TSVMb)ilds the connection be-
tweenp(z) and the discriminative decision boundary by not putting the boundary
in high density regions. TSVM is an extension of standard support vewiohines
with unlabeled data. In a standard SVM only the labeled data is used, andahe g
is to find a maximum margin linear boundary in the Reproducing Kernel Hilbert
Space. In a TSVM the unlabeled data is also used. The goal is to find a tabglin
the unlabeled data, so that a linear boundary has the maximum margin on both the
original labeled data and the (now labeled) unlabeled data. The decisimu-bo
ary has the smallest generalization error bound on unlabeled data (YAPSi&).
Intuitively, unlabeled data guides the linear boundary away from desggens.

Figure 5: In TSVM,U helps to put the decision boundary in sparse regions. With
labeled data only, the maximum margin boundary is plotted with dotted lines. With
unlabeled data (black dots), the maximum margin boundary would be the one with
solid lines.

However finding the exact transductive SVM solution is NP-hard. Mdforte
has focused on efficient approximation algorithms. Early algorithms (Beg&ne
Demiriz, 1999) (Demirez & Bennett, 2000) (Fung & Mangasarian, 19%9ge
cannot handle more than a few hundred unlabeled examples, or did rsot ido
experiments. The SVM-light TSVM implementation (Joachims, 1999) is the first
widely used software.

De Bie and Cristianini (De Bie & Cristianini, 2004; De Bie & Cristianini,
2006Db) relax the TSVM training problem, and transductive learning pnoblie
general to semi-definite programming (SDP). The basic idea is to work with the
binary label matrix of rank 1, and relax it by a positive semi-definite matrix witho
the rank constraint. The paper also includes a speech up trick to solvermszial

In recent papers, TSVMs are also call®dmi-Supervised Support Vector Machit@sv/M),
because the learned classifiers can in fact be used inductively totwadioseen data.
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problems with around 1000 unlabeled points. Xu and Schuurmans (2688 a
similar multi-class version of SDP formulation, which results in multi-class SVM
for semi-supervised learning. The computational cost of SDP is still eskyeen
though.

TSVM can be viewed as SVM with an additional regularization term on un-
labeled data. Lef(x) = h(x) + b whereh € Hg. The optimization problem
is

l n
m}nZ(l —yif @)+ + AillhlF + A2 Y (1= [f(@i)])+ ©)
=1 i=l+1
where(z)+ = max(z,0). The last term arises from assigning label sifjix)) to
unlabeled point. The margin on unlabeled pointis thus sigtx)) f(x) = | f(z)|.
The loss functior{l — | f(z;)|)+ has a non-convex hat shape as shown in Figure 6,
which is the root of the optimization difficulty.

25

05

=2 -15 -1 -05 0 05 1 15 2

Figure 6: The TSVM loss functiofl — |f(x;)|)+

Chapelle and Zien (2005) propo8&SVM, which approximates the hat loss
(1 —|f(x;)|)+ with a Gaussian function, and perform gradient search in the primal
space. Sindhwani et al. (2006) use a deterministic annealing appnaah
starts from an ‘easy’ problem, and gradually deforms it to the TSVM ohjectn
a similar spirit, Chapelle et al. (2006a) use a continuation approach, wtich a
starts by minimizing an easy convex objective function, and gradually mhsfdr
to the TSVM objective (with Gaussian instead of hat loss), using the solution o
previous iterations to initialize the next ones. Collobert et al. (2006) optimize
the hard TSVM directly, using an approximate optimization procedure kn@®vn a
concave-convex procedure (CCCP). The key is to notice that thedsasla sum of
a convex function and a concave function. By replacing the concangifun with
a linear upper bound, one can perform convex minimization to produc@per u
bound of the loss function. This is repeated until a local minimum is reachea. T
authors report significant speed up of TSVM training with CCCP. Sindinaad
Keerthi (2006) proposed a fast algorithm fimear S3VMs, suitable for large scale
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text applications. Their implementation can be fountitat p: / / peopl e. cs.
uchi cago. edu/ ~vi kass/ svm in. htm .

With all the approximation solutions to TSVMs, it is interesting to understand
just how good a global optimum TSVM can be. With the Branch and Bourrdlsea
technique, Chapelle et al. (2006b) finds the global optimal solution for small
datasets. The results indicate excellent accuracy. Although BrancB@umud
will probably never be useful for large datasets, the results provideegground
truth, and points to the potentials of TSVMs with better approximation methods.

Weston et al. (2006) learn with a ‘universum’, which is a set of unlabeétd
that is known to come fromeitherof the two classes. The decision boundary is
encouraged to pass through the universum. One interpretation is similam@ie
imum entropy principle: the classifier should be confident on labeled exanyae
maximally ignorant on unrelated examples.

Zhang and Oles (2000) point out that TSVMs may not behave well .saiee
circumstances.

The maximum entropy discrimination approach (Jaakkola et al., 1999) also
maximizes the margin, and is able to take into account unlabeled data, with SVM
as a special case.

5.2 Gaussian Processes

Lawrence and Jordan (2005) proposed a Gaussian processappndich can be
viewed as the Gaussian process parallel of TSVM. The key differerestandard
Gaussian process is in the noise model. A ‘null category noise model’ maps the
hidden continuous variablgto three instead of two labels, specifically to the never
used label ‘0’ whery is around zero. On top of that, it is restricted that unlabeled
data points cannot take the label 0. This pushes the posterjoaafy from zero

for the unlabeled points. It achieves the similar effect of TSVM where thgima
avoids dense unlabeled data region. However nothing special is dd¢ine process
model. Therefore all the benefit of unlabeled data comes from the noiselnfod
very similar noise model is proposed in (Chu & Ghahramani, 2004) for atdin
regression.

Chu et al. (2006) develop Gaussian process models that incorporatéspa
label relations (e.g. two points tends to have similar or different labels). Note
such similar-label information is equivalent to those used in graph-ba=sad s
supervised learning. Such models, using only similarity information, are applie
to semi-supervised learning successfully. However dissimilarity is only et
cussed, with many questions remain open.

There is a finite form of a Gaussian process in (Zhu et al., 2003c), tnafac
joint Gaussian distribution on the labeled and unlabeled points with the covarian
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matrix derived from the graph Laplacian. Semi-supervised learningeregpip the
process model, not the noise model.

5.3 Information Regularization

Szummer and Jaakkola (2002) propose the information regularization\iramae
to control the label conditionajg y|z) by p(z), wherep(z) may be estimated from
unlabeled data. The idea is that labels shouldn’t change too much in regiens
p(zx) is high. The authors use the mutual informatitn; y) betweenr andy as

a measure of label complexity(z; y) is small when the labels are homogeneous,
and large when labels vary. This motives the minimization of the produgetof
mass in a region witl (z; y) (normalized by a variance term). The minimization
is carried out on multiple overlapping regions covering the data space.

The theory is developed further in (Corduneanu & Jaakkola, 2003)r- C
duneanu and Jaakkola (2005) extend the work by formulating semizgsg@er
learning as a communication problem. Regularization is expressed as thé rate o
information, which again discourages complex conditiopélgz) in regions with
high p(z). The problem becomes finding the unigu(@|z) that minimizes a regu-
larized loss on labeled data. The authors give a local propagation algorith

5.4 Entropy Minimization

The hyperparameter learning method in section 7.2 of (Zhu, 2005) usepen
minimization. Grandvalet and Bengio (2005) used the label entropy onelethb
data as a regularizer. By minimizing the entropy, the method assumes a pritr whic
prefers minimal class overlap.

Lee etal. (2006) apply the principle of entropy minimization for semi-supedvis
learning on 2-D conditional random fields for image pixel classificatiomalriic-
ular, the training objective is to maximize the standard conditional log likelihood,
and at the same time minimize the conditional entropy of label predictions on un-
labeled image pixels.

5.5 A Connection to Graph-based Methods?

Let p(z) be a probability distribution from which labeled and unlabeled data are
drawn. Narayanan et al. (2006) prove that the ‘weighted bounddumes, i.e.

the surface integrafsp(s)ds along a decision boundary, is approximated by
NL%fTLf when the number of iid data poinfg tends to infinity. Herel is the
normalized graph Laplacian ardis an indicator function of the cut, ands the
bandwidth of the edge weight Gaussian function, which must tend to zeao at
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certain rate. This result suggests that S3VMs and related methods whicl see
decision boundary that passes through low density regions, and-gesgldl semi-
supervised learning methods which approximately compute the graph cut, might
be more strongly connected that previously thought.

6 Graph-Based Methods

Graph-based semi-supervised methods define a graph where theanedsseled

and unlabeled examples in the dataset, and edges (may be weighted)theflect
similarity of examples. These methods usually assume label smoothness over the
graph. Graph methods are nonparametric, discriminative, and transslicta-

ture.

6.1 Regularization by Graph

Many graph-based methods can be viewed as estimating a furfatiothe graph.
One wantsf to satisfy two things at the same time: 1) it should be close to the
given labelsy; on the labeled nodes, and 2) it should be smooth on the whole
graph. This can be expressed in a regularization framework wherasheefim is
a loss function, and the second term is a regularizer.

Several graph-based methods listed here are similar to each other. ithey d
fer in the particular choice of the loss function and the regularizer. Weueeiie
is more important to construct a good graph than to choose among the methods.
However graph construction, as we will see later, is not a well studied are

6.1.1 Mincut

Blum and Chawla (2001) pose semi-supervised learning as a graph riéfeot
known asst-cut) problem. In the binary case, positive labels act as sources and
negative labels act as sinks. The objective is to find a minimum set of edysew
removal blocks all flow from the sources to the sinks. The nodes ctingeo the
sources are then labeled positive, and those to the sinks are label&dendgquiv-
alently mincut is thenodeof a Markov random field with binary labels (Boltzmann
machine). The loss function can be viewed as a quadratic loss with infinityhtveig

00 icr(yi — yz-‘L)Q, so that the values on labeled data are in fact fixed at their
given labels. The regularizer is

1 1
§Zwij|yi_yj| = §Zwij(yi —y;)° 4
imj 7‘7-7
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The equality holds because this take binary (0 and 1) labels. Putting the two
together, mincut can be viewed to minimize the function

OOZ(% _yi|L)2+%Zwij(yi —y;)? %)
,J

1€L

subject to the constraint € {0,1}, Vi.

One problem with mincut is that it only gives hard classification without con-
fidence (i.e. it computes the mode, not the marginal probabilities). Blum et al.
(2004) perturb the graph by adding random noise to the edge weighteuM
applied to multiple perturbed graphs, and the labels are determined by a majority
vote. The procedure is similar to bagging, and creates a ‘soft’ mincut.

Pang and Lee (2004) use mincut to improve the classification of a sentémce in
either ‘objective’ or ‘subjective’, with the assumption that sentencesdiogach
other tend to have the same class.

6.1.2 Discrete Markov Random Fields: Boltzmann Machines

The proper but hard way is to compute the marginal probabilities of the tiscre
Markov random fields. This is inherently a difficult inference problemu 2imd
Ghahramani (2002) attempted exactly this, but were limited by the MCMC sam-
pling techniques (they used global Metropolis and Swendsen-Wang sahplin
Getz et al. (2005) computes the marginal probabilities of the discrete Markov
random field at any temperature with the Multi-canonical Monte-Carlo method,
which seems to be able to overcome the energy trap faced by the standesgddde
lis or Swendsen-Wang method. The authors discuss the relationship betnee
peratures and phases in such systems. They also propose a heunstidyse to
identify possible new classes.

6.1.3 Gaussian Random Fields and Harmonic Functions

The Gaussian random fields and harmonic function methods in (Zhu et@Bap0
is a continuous relaxation to the difficulty discrete Markov random field8 (iiiz-
mann machines). It can be viewed as having a quadratic loss function withyinfi
weight, so that the labeled data are clamped (fixed at given label vaaresi
regularizer based on the graph combinatorial Lapladian

Z yz + 1/22wz] )2 (6)
4,J

€L

— oY (fi—y) +TAS ()

€L
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Notice f; € R, which is the key relaxation to Mincut. This allows for a simple
closed-form solution for the node marginal probabilities. The mean is krasam
harmonic function, which has many interesting properties (Zhu, 2005).

Recently Grady and Funka-Lea (2004) applied the harmonic function whetho
to medical image segmentation tasks, where a user labels classes (e.gndiffer
organs) with a few strokes. Levin et al. (2004) use the equivalenfaohbnic
functions for colorization of gray-scale images. Again the user specifeesle-
sired color with only a few strokes on the image. The rest of the image is ssed a
unlabeled data, and the labels propagation through the image. Niu et &) g0
plied the label propagation algorithm (which is equivalent to harmonic funs}io
to word sense disambiguation. Goldberg and Zhu (2006) applied the algdudth
sentiment analysis for movie rating prediction.

6.1.4 Local and Global Consistency

The local and global consistency method (Zhou et al., 2004a) uses gfeihasion
S (fi—vi)?, and thenormalized LaplacialD~'/2AD~Y/2 = [-D~1/2W D~1/2
in the regularizer,

1/2) wi(fi/N/Dii = fi//Dyj)* = fTDVPADTVf (8)
i

6.1.5 Tikhonov Regularization

The Tikhonov regularization algorithm in (Belkin et al., 2004a) uses theflogs
tion and regularizer:

1/k Z(fi — )2+ fTSS (9)

whereS = A or AP for some integep.

6.1.6 Manifold Regularization

The manifold regularization framework (Belkin et al., 2004b) (Belkin et &I0%)
employs two regularization terms:

l
1
72 V(@i £) +allflfic + 2l (10)
i=1

whereV is an arbitrary loss functionk’ is a ‘base kernel’, e.g. a linear or RBF
kernel. I is a regularization term induced by the labeled and unlabeled data. For
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example, one can use .
2 T £
1F = G787 (11)
wheref is the vector off evaluations orl, U U.

Sindhwani et al. (2005a) give a semi-supervised kernel that is not lirtoted
the unlabeled points, but defined over all input space. The kernelstipzorts
induction. Essentially the kernel is a new interpretation of the manifold ragalar
tion framework above. Starting from a base kerRetlefined over the whole input
space (e.g. linear kernels, RBF kernels), the authors modify the RKH8dping
the same function space but changing the norm. Specifically a ‘point-claouml n
defined byL U U is added to the original norm. The point-cloud norm corresponds
to ||f|/2. Importantly this results in a new RKHS space, with a corresponding
new kernel that deforms the original one along a finite-dimensional sgkggiven
by the data. The new kernel is defined over the whole space, yet itWeltbe
manifold’. Standard supervised kernel machines with the new kerneletrain
L only, are able to perform inductive semi-supervised learning. In fast Hre
equivalent to LapSVM and LapRLS (Belkin et al., 2005) with a certainpeatar.
Nonetheless finding the new kernel involves inverting a n matrix. Like many
other methods it can be costly. Also notice the new kernel depends ondbevet
L U U data, thus it is a random kernel.

6.1.7 Graph Kernels from the Spectrum of Laplacian

For kernel methods, the regularizer is a (typically monotonically increasimg)
tion of the RKHS norm|f||x = f7 K ! f with kernel K. Such kernels are derived
from the graph, e.g. the Laplacian.

Chapelle et al. (2002) and Smola and Kondor (2003) both show the apectr
transformation of a Laplacian results in kernels suitable for semi-supdrigaen-
ing. The diffusion kernel (Kondor & Lafferty, 2002) correspondsat@pectrum
transform of the Laplacian with

o2
r(A) = exp(—?)\) (12)

The regularized Gaussian process keret 7/02 in (Zhu et al., 2003c) corre-

sponds to
1

D) + 0o
Similarly the order constrained graph kernels in (Zhu et al., 2005) are con

structed from the spectrum of the Laplacian, with non-parametric conpgéx o

mization. Learning the optimal eigenvalues for a graph kernel is in factyatova

r(A) (13)
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(at least partially) improve an imperfect graph. In this sense it is relatedajuhg
construction.

Kapoor et al. (2005) learn both the graph weight hyperparameter,yiber-h
parameter for Laplacian spectrum transformatign) = X\ + §, and the noise
model hyperparameter with evidence maximization. Expectation Propagain (E
is used for approximation. The authors also propose a way to classifenns
points. This spectrum transformation is relatively simple.

6.1.8 Spectral Graph Transducer

The spectral graph transducer (Joachims, 2003) can be viewed wih fultction
and regularizer

minc(f —v)'C(f —v) + f'Lf (14)
stf'1=0andf f=n (15)

where~; = /l_/l4 for positive labeled data;-+/l/l_ for negative data]_
being the number of negative data and so ércan be the combinatorial or nor-

malized graph Laplacian, with a transformed spectrais.a weighting factor, and
C is a diagonal matrix for misclassification costs.

Pham et al. (2005) perform empirical experiments on word sense disaaibig
tion, comparing variants of co-training and spectral graph transdutke au-
thors notice spectral graph transducer with carefully constructechgréd8GT-
Cotraining”) produces good results.

6.1.9 Local Learning Regularization

The solution of graph-based methods can often be viewed as locagager&or
example, the harmonic function solution if we use an unnormalized Lapladian sa
isfies the averaging property:

flar) = S0l 18) (16)
ij’ Wij

In other words, the solutioffi(x;) at an unlabeled point; is the weighted average
of its neighbors’ solutions. Note the neighbors are usually unlabeled ptoimts
so this is a self-consistent property. If we do not requife;) to equal the local
average, but regularizéso they are close, we are using a regularizer of the special
form fTAf, whereA is the unnormalized Laplacian.

A more general self-consistent property is obtained if one extends éveal
eraging to a local linear fit. That is, one can build a local linear model frgm
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neighbors, and predict the valuexgtusing this linear model. The solutigi{x;) is
regularized to be close to this predicted value. Note there will Qéferent linear
models, one for each;. Wu and Schlkopf (2007) showed that such local linear
model regularization can be written # Rf. The matrixR (which generalizes
the Laplacian) has a special form which can be computed fXoaione.

6.1.10 Tree-Based Bayes

Kemp et al. (2003) define a probabilistic distributi®Y |T") on discrete (e.g. 0

and 1) labellingsY” over an evolutionary tre@'. The treeT is constructed with

the labeled and unlabeled data being the leaf nodes. The labeled data isctlampe
The authors assume a mutation process, where a label at the root segpdgwn

to the leaves. The label mutates with a constant rate as it moves down along the
edges. As aresult the tr@é(its structure and edge lengths) uniquely defines the
label prior P(Y'|T"). Under the prior if two leaf nodes are closer in the tree, they
have a higher probability of sharing the same label. One can also integeatalbv

tree structures.

The tree-based Bayes approach can be viewed as an interesting wagrto in
porate structure of the domain. Notice the leaf nodes of the tree are thedanele
unlabeled data, while the internal nodes do not correspond to physitzal this is
in contrast with other graph-based methods where labeled and unlalztedrd
all the nodes.

6.1.11 Some Other Methods

Szummer and Jaakkola (2001) performstep Markov random walk on the graph.
The influence of one example to another example is proportional to howtleasy
random walk goes from one to the other. It has certain resemblance tiftissah
kernel. The parameteris important.

Chapelle and Zien (2005) use a density-sensitive connectivity distatwedén
nodesi, j (a given path betweef j consists of several segments, one of them
is the longest; now consider all paths betwégnand find the shortest ‘longest
segment’). Exponentiating the negative distance gives a graph kernel.

Bousquet et al. (2004) propose ‘measure-based regularizatientahtinu-
ous counterpart of graph-based regularization. The intuition is that tidgare
similar if they are connected by high density regions. They define regatamiz
based on a known densipfz) and provide interesting theoretical analysis. How-
ever it seems difficult in practice to apply the theoretical results to higher (2)
dimensional tasks.
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6.2 Graph Construction

Although the graph is at the heart of graph-based semi-superviseiinganeth-
ods, its construction has not been studied extensively. The issuedradibeussed
in (Zhu, 2005) Chapter 3 and Chapter 7. There are several distipobaghes:

1. Using domain knowledge. Balcan et al. (2005a) build graphs for video
surveillance using strong domain knowledge, where the graph of webcam
images consists of time edges, color edges and face edges. Such graphs
reflect a deep understanding of the problem structure and how urdabele
data is expected to help.

2. Neighbor graphs. A few “standard” graphs are: KNN graph wileach item
is connected to ité-nearest-neighbor under some distance measini;
where connection happens within the radiuthe edges can be weighted by
a Gaussian function (a.k.a. heat kernel, RBF kerng)) = exp(—||z; —
z;}2/0?), or unweighted (weight=1). Empirically, kNN weighted graph
with smallk tends to perform better.

There are several tricks one can apply to such graphs. CarreipinBe and
Zemel (2005) build robust graphs from multiple minimum spanning trees by
perturbation and edge removal. When using a Gaussian function as edge
weights, the bandwidth of the Gaussian needs to be carefully chosemg Zha
and Lee (2006) derive a cross validation approach to tune the bandaidth
each feature dimension, by minimizing the leave-one-out mean squared erro
of predictions and given labels on labeled points. By invoking the matrix
inversion lemma and careful pre-computation, the time complexity of LOO
tuning is moderately reduced (but still@(u?)).

3. Local fit. Wang and Zhang (2006) perform an operation very similéo-to
cally linear embedding (LLE) on the data points first, but constraining the
LLE weights to be non-negative. These weights are then used as graph
weights.

Hein and Maier (2006) propose an algorithm to de-noise points sampled
from a manifold. That is, data points are assumed to be noisy samples of
some unknown underlying manifold. They used the de noising algorithm as
a preprocessing step for graph-based semi-supervised learnitigatsime
graph can be constructed from better separated data points. Such-prepr
cessing results in better semi-supervised classification accuracy.

24



6.3 Fast Computation

Many semi-supervised learning methods scale as badlfa$) as they were orig-
inally proposed. Because semi-supervised learning is interesting wheizéhef
unlabeled data is large, this is clearly a problem. Many methods are alsoucansd
tive (section 6.4). In 2005 several papers start to address thesieims

Fast computation of the harmonic function with conjugate gradient methods
is discussed in (Argyriou, 2004). A comparison of three iterative methlzdiel
propagation, conjugate gradient and loopy belief propagation is gessan(Zhu,
2005) Appendix F. Recently numerical methods for fast N-body probleave
been applied talensegraphs in semi-supervised learning, reducing the computa-
tional cost fromO(n?) to O(n) (Mahdaviani et al., 2005). This is achieved with
Krylov subspace methods and the fast Gauss transform.

The harmonic mixture models (Zhu & Lafferty, 2005) convert the original
graph into a much smaller backbone graph, by using a mixture model to ‘carve
up’ the originalL U U dataset. Learning on the smaller graph is much faster. Sim-
ilar ideas have been used for e.g. dimensionality reduction (Teh & Rowgi®) 2
The heuristics in (Delalleau et al., 2005) similarly create a small graph with-a sub
set of the unlabeled data. They enables fast approximate computatiodunyng
the problem size.

Garcke and Griebel (2005) propose the use of sparse grids forsemaivised
learning. The main advantages &r¢n) computation complexity for sparse graphs,
and the ability of induction. The authors start from the same regularizatwimn pr
lem of (Belkin et al., 2005). The key idea is to approximate the function space
with a finite basis, with sparse grids. The minimizéem this finite dimensional
subspace can be efficiently computed. As the authors point out, this method is
different from the general kernel methods which rely on the reptes¢heorem
for finite representation. In practice the method is limited by data dimensionality
(around 20). A potential drawback is that the method employs a regularagriti
cannot ‘zoom in’ to small interesting data regions with higher resolution.

Yu et al. (2005) solve the large scale semi-supervised learning probjem b
using a bipartite graph. The labeled and unlabeled points form one side of th
bipartite split, while a much smaller number of ‘block-level’ nodes form the other
side. The authors show that the harmonic function can be computed using the
block-level nodes. The computation involves inverting a much smaller matrix on
block-level nodes. Itis thus cheaper and more scalable than workiecilgtion the
LUU matrix. The authors propose two methods to construct the bipartite graph, so
that it approximates the given weight matiiX on L U U. One uses Nonnegative
Matrix Factorization, the other uses mixture models. The latter method has the
additional benefit of induction, and is similar to the harmonic mixtures (Zhu &
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Lafferty, 2005). However in the latter method the mixture model is derivesgda
on the given weight matrikl’. But in harmonic mixtureg) and the mixture model
are independent, and the mixture model serves as a ‘second knowtadge’sn
addition tolv.

The original manifold regularization framework (Belkin et al., 2004b) rsged
invert a(l +u) x (I4+w) matrix, and is not scalable. To speed up things, Sindhwani
et al. (2005c) considdinear manifold regularization Effectively this is a special
case when the base kernel is taken to be the linear kernel. The autbordhstt
it is advantageous to work with the primal variables. The resulting optimization
problem can be much smaller if the data dimensionality is small, or sparse.

Tsang and Kwok (2006) scale manifold regularization up by adding ie-an
insensitive loss into the energy function, i.e. repladingu;; (f(z;) — f(z;))* by
S wi; (|f(x5) — f(z;)]c)?, where|z|c = max(]z| — ¢,0). The intuition is that
most pairwise differenceg(z;) — f(x;) are very small. By tolerating differences
smaller thare, the solution becomes sparse. They were able to handle one million
unlabeled points in manifold regularization with this method.

6.4 Induction

Most graph-based semi-supervised learning algorithms are transeiuativ they
cannot easily extend to new test points outsidd. af U. Recently induction has
received increasing attention. One common practice is to ‘freeze’ théngmap
L U U. New points do not (although they should) alter the graph structure. This
avoids expensive graph computation every time one encounters new. points

Zhu et al. (2003c) propose that new test point be classified by itsstasagigh-
borin LUU. Thisis sensible whe#i is sufficiently large. In (Chapelle et al., 2002)
the authors approximate a new point by a linear combination of labeled and unla
beled points. Similarly in (Delalleau et al., 2005) the authors proposes actiodu
scheme to classify a new pointby

ZieLuU Wg; f(;)
> icruu Wai

This can be viewed as an application of the Ngstmethod (Fowlkes et al., 2004).

Yu et al. (2004) report an early attempt on semi-supervised inductiom usin
RBF basis functions in a regularization framework. In (Belkin et al., 200diz
function f does not have to be restricted to the graph. The graph is merely used to
regularizef which can have a much larger support. It is necessarily a combination
of an inductive algorithm and graph regularization. The authors giveythph-
regularized version of least squares and SVM. (Note such an SVMésetit from
the graph kernels in standard SVM in (Zhu et al., 2005). The former iscingu

fz) =

(17)
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with both a graph regularizer and an inductive kernel. The latter is tratisdu
with only the graph regularizer.) Following the work, Krishnapuram et 2006)
use graph regularization on logistic regression. Sindhwani et al. @Q0f§i%e a
semi-supervised kernel that is defined over the whole space, nonjtist draining
data points. These methods create inductive learners that naturally Inemdtest
points.

The harmonic mixture model (Zhu & Lafferty, 2005) naturally handles new
points as well. The idea is to model the labeled and unlabeled data with a mixture
model, e.g. mixture of Gaussian. In standard mixture models, the class proba-
bility p(y|i) for each mixture componeritis optimized to maximize label like-
lihood. However in harmonic mixture models(y|i) is optimized differently to
minimize an underlying graph-based cost function. Under certain consljtte
harmonic mixture model converts the original graph on unlabeled data intxk-b
bone graph’, with the components being ‘super nodes’. Harmonic mixtudelso
naturally handle induction just like standard mixture models.

Several other inductive methods have been discussed in section 6.3etogeth
with fast computation.

6.5 Consistency

The consistency of graph-based semi-supervised learning algorithmsadpesn
research area. By consistency we mean whether classification ceaverghe
right solution as the number of labeled and unlabeled data grows to infinity. Re
cently von Luxburg et al. (2005) (von Luxburg et al., 2004) study theststency
of spectral clustering methodg§ he authors find that the normalized Laplacian is
better than the unnormalized Laplacian for spectral clustering. The mawvee of
the eigenvectors of the unnormalized Laplacian is not clear, while the noadaliz
Laplacian always converges under general conditions. Therexarepdes where
the top eigenvectors of the unnormalized Laplacian do not yield a sensilsle clu
tering. The corresponding problem in semi-supervised classificatiatsriagher
study. One reason is that in semi-supervised learning the whole Laplaman (
malized or not) is often used for regularization, not only the top eigenv&ctor
Zhang and Ando (2006) prove that semi-supervised learning basgdaph
kernels is well-behaved in that the solution converges as the size of ledatsa
approaches infinity. They also derived a generalization bound, whadsleo a
way to optimizing kernel eigen-transformations.
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6.6 Dissimilarity Edges, Directed Graphs, and Hypergraphs

So far a graph encodes label similarity. That is, two examples are codrtete
prefer them to have the same label. Furthermore, if the edges are weigldegker
weight means the two nodes are more likely to have the same label. The weights
are always non-negative. However, sometimes we might also diaganilarity
information that two nodes should have different labels. In the genasa, ®ne
can have both similarity and dissimilarity information on the same graph (e.g., “
andzx, should have the same label, while andzs should have different labels”).

It is easy to see that simply encoding dissimilarity with negative edge weight
is not appropriate: the energy function can become unbounded, antjdctive
becomes non-convex. Goldberg et al. (2007) defines a differaphggnergy func-
tion for dissimilarity edges. In particular, if; andx; are dissimilar, one minimizes
wij(f(z;) + f(x;))% Note the essential difference to similarity edges is the plus
sign instead of minus sign, and;; stays non-negative. This force/gz;) and
f(z;) to have different signs and similar absolute values so they cancel eash oth
out (the trivial solution of zeros is avoided by other similarity edges). Esealting
energy function is still convex and can be easily solved using linear agé&bng
and Jin (2007) adopt a different objective function as minimizing a ratiaghvis
solved by a semidefinite program.

Such similarity and dissimilarity edges are sometimes known as must-links
and cannot-links in the context of semi-supervised clustering (or camstralus-
tering), which is discussed in Section 11.3.

For semi-supervised learning on directed graphs, Zhou et al. (208k&)a
hub - authority approach and essentially convert a directed graph inbodarected
one. Two hub nodes are connected by an undirected edge with ajapeopeight
if they co-link to authority nodes, and vice versa. Semi-supervised legathen
proceeds on the undirected graph.

Zhou et al. (2005a) generalize the work further. The algorithm takesnaitr
tion matrix (with a unique stationary distribution) as input, and gives a cloged fo
solution on unlabeled data. The solution parallels and generalizes the n@&unaliz
Laplacian solution for undirected graphs (Zhou et al., 2004a). Theque work
(Zhou et al., 2005b) is a special case with the 2-step random walk transigitix.

In the absence of labels, the algorithm is the generalization of the normalized ¢
(Shi & Malik, 2000) on directed graphs.

Lu and Getoor (2003) convert the link structure in a directed graph into pe
node features, and combines them with per-node object features in logigtis-
sion. They also use an EM-like iterative algorithm.

Zhou et al. (2006a) propose to formulate relational objects using hsgyrg,
where an edge can connect more than two vertices, and extend spkctating,
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classification and embedding to such hypergraphs.

6.7 Connection to Standard Graphical Models

The Gaussian random field formulation (Zhu et al., 2003a) is a standalid un
rected graphical model, with continuous random variables. Given lalmeldds
(observed variables), the inference is used to obtain the mean (equiliyatee
mode)h; of the remaining variables, which is the harmonic function. However the
interpretation of the harmonic function as parameters for Bernoulli distribsitid
the nodes (i.e. each unlabeled node has label 1 with probahjlity otherwise) is
non-standard.

Burges and Platt (2005) proposdigectedgraphical model, called Conditional
Harmonic Mixing, that is somewhat between graph-based semi-supefleeed
ing and standard Bayes nets. In standard Bayes nets there is one caigitaba-
bility table on eacimode which looks at the values of all its parents and determines
the distribution of the node. However in Conditional Harmonic Mixing there & on
table on eacldirected edge On one hand it is simpler because each table deals
with only one parent node. On the other hand at the child node the estimated dis
tributions from the parents may not be consistent, and the child takes tregaver
distribution in KL divergence. Importantly the directed graph can contaipdpo
and there is always a unique global solution. It can be shown that theohar
function can be interpreted as a special case of Conditional Harmonic duixin

7 Using Class Proportion Knowledge

It has long been noticed that constraining the class proportions on lediadeta
can be important for semi-supervised learning. By class proportion feetcethe
proportion of instances classified into each class, e.g., 20% positivedéht&ga-
tive. Without any constrains on class proportion, various semi-su@ehésrning
algorithms tend to produce unbalanced output. In the extreme case, altledab
data might be classified into one of the classes, which is undesirable.

For this reason, various semi-supervised learning methods have bieen us
some form of class proportion constraints. The desired class propedrereither
obtained as an input, which reflects domain knowledge, or estimated (luefieg
or with smoothing) from the class proportions in the labeled dataset. For ésamp
Zhu et al. (2003a) use a heuristic “class mean normalization” proceduneve
towards the desired class proportions; S3VM methods explicitly fit the dkesire
class proportions. In Joachims (1999); Chapelle et al. (2006b), itasst@int on
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hard labels
I+u

1 1<
" Z Yi=q Zyz (18)
i=l+1 i=1

Note they’s on the left hand side are predicted labels, while on the right hand side
are given constants. In Chapelle and Zien (2005), it is a constrainbmimaous
function predictions:

1 I+u 1 l
=D @) =3 e (19)
i=l+1 i=1

However, in these methods the class proportion constraint is combined with
other model assumptions, e.g., label smoothness on a graph, or largatieepa
unlabeled data regions. Mann and McCallum (2007) show that classntimp
by itself can be a useful regularizer for semi-supervised learning. pLiet the
multinomial distribution of desired class proportion, gie the class proportion
produced by the current modeél Note the latter is computed on unlabeled data.
Mann and McCallum add the KL-divergen&eL(p||py) as a regularizer to logistic
regression,

!
min — Y 1og py(yilz:) + MK L(B| o). (20)
i=1
The objective is reported to be non-convex. A gradient method is useapto
mization. Results on several natural language processing tasks ateagmbone
advantage of this approach is its efficiency.

8 Learning Efficient Encoding of the Domain from Unla-
beled Data

One can use unlabeled data to learn an efficient feature encoding ofotblerp
domain. The labeled data is then represented using this new feature, asid cla
fication is done via standard supervised learning. The idea has been inmplicit
several works, e.g., kernel learning from graph Laplacian on latziddinlabeled
data (Zhu et al., 2005). One can also perform PCA on the unlabeledatataise
the resulting low dimensional representation

Ando and Zhang (2005); Johnson and Zhang (2007) build on a twofeia-
ture generation framework, where the input features form two substitafeature
splitz = (21, 22). Itis assumed that the two views are conditionally independent
given class labe}:

p(21, 22]y) = p(21]y)p(22(y). (21)
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Unlike co-training, the views are not assumed to be individually sufficentlifis-
sification. The novelty lies in the definition of a large numberakiliary prob-
lems These are artificial classification tasks, using one vigo predict some
function of the other view,,(z;), wherem indices different auxiliary problems.
Note the auxiliary problems can be defined and trained on unlabeled dggar-In
ticular, one can define a linear mode), " 2 to fit tm(z1), and learn the weight,,
using all unlabeled data. The weight vecigy, has the same dimensionas With
auxiliary functions that reflect typical classification goals in the problemaia,
one can imagine that some dimensions in the set of weights. . . , w,,, ...} are
more important, indicating the corresponding dimensionssiare more useful.
These dimensions (or a linear combination) can be compactly extracted by a Sin
gular Value Decomposition on the matrix constructed from the weights, arasact
a new and shorter representationzef Similarly, z; has a new representation by
exchanging the role of; andz,. Finally, the original representatidn,, z2) and
the new representations ef andz; are concatenated as the new representation
of the instancer. This new representation contains the information of unlabeled
data and auxiliary problems. One then perform standard supervisetngavith
labeled data using the new representation. The choice of auxiliary problenas
great importance to the success of semi-supervised learning in this setting.
Raina et al. (2007) consider the case when the unlabeledldatanot neces-
sarily come from the classes to be classifiedr example, in an image categoriza-
tion task the two classes can be elephants and rhinos, while the unlabeledmlata
be any natural scenes. The paper proposes a “self-taught I€aatgagithm, in
which the unlabeled data is used to learn a higher level representation tilvadis
for the problem domain. For example, if the images were originally repregente
by pixels, the higher level representation might be small patches thasporrd
to certain semantics (e.g., edges). In particular, the algorithm finds a sasisbp
and each instance is a sparse weighted combination of bases, with weiglhis
a, b are learned by the following optimization problem:

min S s = X aibi|® + B laij] (22)

s.t. HijQ S 1,Vj (23)

It is reported that the sparsity is important for self-taught learning. @Gmedases
are learned, the labeled instances are represented by their weightshasdse A
supervised algorithm is then applied to the labeled data in this new representatio
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9 Computational Learning Theory

In this survey we have primarily focused on various semi-superviseditenal-
gorithms. The theory of semi-supervised learning has been touchedoggan
sionally in the literature. However it was not until recently that the computdtiona
learning theory community began to pay more attention to this interesting problem.

Leskes (2005) presents a generalization error bound for semivsspatearn-
ing with multiple learners, an extension to co-training. The author shows that
if multiple learning algorithms are forced to produce similar hypotheses (i.e. to
agree) given the same training set, and such hypotheses still have lowgrain
ror, then the generalization error bound is tighter. The unlabeled datadstas
assess the agreement among hypotheses. The author proposes graemet-
Boost algorithm to implement the procedure.

Kaariainen (2005) presents another generalization error boundrarsupervised
learning. The idea is that the target function is in the version space. hathgsis
is in the version space (revealed by labeled data), and is close to all gthwthb-
ses in the version space (revealed by unlabeled data), then it has tosket@lo
the target function. Closeness is defined as classification agreemerdamiin
approximated using unlabeled data. This idea builds on metric-based mtzel se
tion (Section 11.9).

Balcan and Blum (2005) propose a PAC-style model for semi-superéaet
ing. This is the first PAC model that explains when unlabeled data might help
(notice the classic PAC model cannot incorporate unlabeled data at alfte Th
has been previougarticular analysis for explaining when unlabeled data helps,
but they were all based on specific settings and assumptions. In cahtsaBAC
model is a general, unifying model. The authors define an interesting quantity
the compatibility of a hypothesis w.r.t. the unlabeled data distribution. For exam-
ple in SVM a hyperplane that cuts through high density regions would have lo
compatibility, while one that goes along gaps would have high compatibility. We
note that the compatibility function can be defined much more generally. The in-
tuition of the results is the following. Assuming a-priori that the target function
has high compatibility with unlabeled data. Then if a hypothesis has zero training
error (standard PAC stylgnd high compatibility, the theory gives the number of
labeled and unlabeled data to guarantee the hypothesis is good. The rafmber
labeled data needed can be quite small.
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10 Semi-supervised Learning in Structured Output Spaces

In most of this paper we consider classification on individual instanceghis
section we discuss semi-supervised learning in structured output sgegegor
sequences and trees.

10.1 Generative Models

One example of generative models for semi-supervised sequence ¢eamire
Hidden Markov Model (HMM), in particular the Baum-Welsh HMM training al-
gorithm (Rabiner, 1989). Itis essentially the sequence version of thalgdfithm

on mixture models as mentioned in section 2. Baum-Welsh algorithm has a long
history, well before the recent emergence of interest on semi-supdrigarning.

It has been successfully applied to many areas including speech rmogit is
usually not presented as a semi-supervised learning algorithm, but tegaali-

fies as one. Some cautionary notes can be found in (Elworthy, 1994).

10.2 Graph-based Kernels

Many existing structured learning algorithms (e.g. conditional random fipldx-
imum margin Markov networks) can be endowed with a ‘semi-supervisadeke
Take the example of learning on sequences. One first creates a gmayeh én the
union of all elements in the sequences (i.e. ignoring the sequence struate
ing the elements of a sequence as if they were individual instances). rapb g
kernel can be constructed with any of the above methods. Next one atipdie
graph kernel to a standard structured learning kernel machine. Saroklkma-
chines include the kernelized conditional random fields (Lafferty et @042and
maximum margin Markov networks (Taskar et al., 2003), which differ prilpar
by the loss function they use.

With a graph kernel the kernel machine thus perform semi-supervised lea
ing on structured data. Lafferty et al. (2004) hinted this idea and testadat o
bioinformatics dataset. The graph kernel matrix they used is transductiva-in
ture, which is defined only on elements in the training data. Altun et al. (2005)
defines a graph kernel over the whole space by linearly combining the rafrms
a standard kernel and a graph regularization term, resulting in a nontmapin
kernel similar to Sindhwani et al. (2005a). They use the kernel with aimboss.
Brefeld and Scheffer (2006) extend structured SVM with a multi-view leiger,
which penalizes disagreements between classifications on unlabeled Hata, w
the classifiers operate on different feature subsets.
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11 Related Areas

The focus of the survey is on classification with semi-supervised methdase T
are some closely related areas with a rich literature.

11.1 Spectral Clustering

Spectral clustering is unsupervised. As such there is no labeled datid®tha
process. Instead the clustering depends solely on the graph wéighdn the
other hand semi-supervised learning for classification has to maintain acbalan
between how good the ‘clustering’ is, and how well the labeled data cax-be e
plained by it. Such balance is expressed explicitly in the regularization frankew

As we have seen in section 8.1 of (Zhu, 2005) and section 6.5 here, the top
eigenvectors of the graph Laplacian can unfold the data manifold to forrm-mea
ingful clusters. This is the intuition behind spectral clustering. There ereral
criteria on what constitutes a good clustering (Weiss, 1999).

The normalized cut (Shi & Malik, 2000) seeks to minimize

cut(A, B) cut(A, B)
assoc(A,V) = assoc(B,V)

The continuous relaxatiomf the cluster indicator vector can be derived from the
normalized Laplacian. In fact it is derived from the second smallest eggtor of

the normalized Laplacian. The continuous vector is then discretized to obgain th
clusters. De Bie and Cristianini (2006a) present an SDP relaxation oiotmeal-
ized graph cut problem, including a series of relaxations between shestrg
ations above, and SDP relaxation. The SDP formulation can easily inclutig pa
label or constraint information, and therefore applicable for transdeictassifica-
tion.

The data points are mapped into a new space spanned by the diggnvec-
tors of the normalized Laplacian in (Ng et al., 2001), with special normalization
Clustering is then performed with traditional methods (like k-means) in this new
space. This is very similar to kernel PCA.

Fowlkes et al. (2004) use the Ny&in method to reduce the computation cost
for large spectral clustering problems. This is related to the method in (ZI8%)20
Chapter 10.

Chung (1997) presents the mathematical details of spectral graph theory.

Ncut(A, B) =

(24)

11.2 Learning with Positive and Unlabeled Data

In many real world applications, labeled data may be available from only bne o
the two classes. Then there is the unlabeled data, known to contain botksclass
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There are two ways to formulate the problem: classification or ranking.

Classification Here one builds a classifier even though there is no negative
example. Itis important to note that with the positive training data one can estimate
the positive class conditional probabilityz|+), and with the unlabeled data one
can estimate(z). If the priorp(+) is known or estimated from other sources, one
can derive the negative class conditional as

p(z) — p(+H)p(x|+)
1 —p(+)

plz|-) = (25)
With p(z|—) one can then perform classification with Bayes rule. Denis et al.
(2002) use this fact for text classification with Naive Bayes models.

Another set of methods heuristically identify some ‘reliable’ negative exasnple
in the unlabeled set, and use EM on generative (Naive Bayes) modelst(hly
2002) or logistic regression (Lee & Liu, 2003).

Ranking Given a large collection of items, and a few ‘query’ items, ranking
orders the items according to their similarity to the queries. Information retrieval
is the standard technigue under this setting, and we will not attempt to include the
extensive literatures on this mature field. It is worth pointing out that gtesed
semi-supervised learning can be modified for such settings. Zhou etG04l§p
treat it as semi-supervised learning with positive data on a graph, whegrdph
induces a similarity measure, and the queries are positive examples. Datis poin
are ranked according to their graph similarity to the positive training set.

11.3 Semi-supervised Clustering

Also known as constrained clustering or clustering with side information, tthieis
cousin of semi-supervised classification. The goal is clustering but #rereome
‘labeled data’ in the form omust-links(two points must in the same cluster) and
cannot-links(two points cannot in the same cluster). There is a tension between
satisfying these constraints and optimizing the original clustering criterion (e.g
minimizing the sum of squared distances within clusters). Procedurally one ca
modify the distance metric to try to accommodate the constraints, or one can bias
the search. We refer readers to a recent short survey (Grira &x08l4) for the
literatures.

11.4 Semi-supervised Regression

In principle all graph-based semi-supervised classification methods in rséxtio
are indeed function estimators. That is, they estimate ‘soft labels’ befdkengha
a classification. The function tries to be close to the targdtsthe labeled set,
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and at the same time be smooth on the graph. Therefore these graptsbased
supervised methods can also naturally perform regression. Some of thedse
can be thought of as Gaussian processes with a special kernel tloaistsucted
from unlabeled data.

Zhou and Li (2005a) proposed using co-training for semi-superviegres-
sion. The paper used two KNN regressors, each with a differaotm as distance
measure. Like in co-training, each regressor makes prediction on ledbthata,
and the most confident predictions are used to train the other regr@$socon-
fidence of a prediction on unlabeled point is measured by the MSE on labeled
set before and after adding this prediction as training data to the cuegresr
sor. Similarly Sindhwani et al. (2005b); Brefeld et al. (2006) perfononti-view
regression, where a regularization term depends on the disagreemeng ae-
gressors on different views.

Cortes and Mohri (2006) propose a simple yet efficient transduaiyeession
model. On top of a standard ridge regression model, an addition term is afiplied
each unlabeled point,. This additional regularization term makes the prediction
f(z,) close to a heuristic predictiogj;, which is computed by a weighted average
of the labels of labeled points in a neighborhoodxgf A generalization error
bound is also given.

11.5 Active Learning and Semi-supervised Learning

Active learning and semi-supervised learning face the same issue, i.¢éalibkd
data is scarce and hard to obtain. It is quite natural to combine active lgaméh
semi-supervised learning to address this issue from both ends.

McCallum and Nigam (1998b) use EM with unlabeled data integrated into the
active learning algorithm. Muslea et al. (2002) propose CO-EMT whichizoes
multi-view (e.g. co-training) learning with active learning. Zhou et al. (2)04
Zhou et al. (2006b) apply semi-supervised learning together with activailey
to content-based image retrieval.

Many active learning algorithms naively select as query the point with max-
imum label ambiguity (entropy), or least confidence, or maximum disagredemen
between multiple learners. Zhu et al. (2003b) show that these are negszeity
the right things to do, if one is interested in classification error. They shai th
one can select active learning queries that minimize the (estimated) gerteraliza
error, in a graph-based semi-supervised learning framework.
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11.6 Nonlinear Dimensionality Reduction

The goal of nonlinear dimensionality reduction is to find a faithful low dimeredion
mapping of the high dimensional data. As such it belongs to unsupervigaihiga
However the way it discovers low dimensional manifold within a high dimensional
space is closely related to spectral graph semi-supervised learningedeatative
methods include Isomap (Tenenbaum et al., 2000), locally linear embeddiBg (
(Roweis & Saul, 2000) (Saul & Roweis, 2003), Hessian LLE (Donoh@iénes,
2003), Laplacian eigenmaps (Belkin & Niyogi, 2003), and semidefinite ethbgd
(SDE) (Weinberger & Saul, 2004) (Weinberger et al., 2004) (Weigpdeet al.,
2005).

If one has some labeled data, for example in the form of the target low-diomeths
representation for a few data points, the dimensionality reduction probleamizs
semi-supervised. One approach for this setting is presented in (Yahg29G6).

11.7 Learning a Distance Metric

Many learning algorithms depend, either explicitly or implicitly, on a distance met-
ric on X. We use the term metric here loosely to mean a measure of distance or
(dis)similarity between two data points. The default distance in the featuoce spa
may not be optimal, especially when the data forms a lower dimensional manifold
in the feature vector space. With a large amount/oft is possible to detect such
manifold structure and its associated metric. The graph-based methodsaeov
based on this principle. We review some other methods next.

The simplest example in text classification might be Latent Semantic Indexing
(LSI, a.k.a. Latent Semantic Analysis LSA, Principal Component AnalyGi4,P
or sometimes Singular Value Decomposition SVD). This technique defines a lin-
ear subspace, such that the variance of the data, when projected tthpace,
is maximumly preserved. LSl is widely used in text classification, where the orig-
inal space forX is usually tens of thousands dimensional, while people believe
meaningful text documents reside in a much lower dimensional space. daikov
and Hirsh (2001) and Cristianini et al. (2001) both @&ein this case unlabeled
documents, to augment the term-by-document matrix.of. Sl is performed on
the augmented matrix. This representation induces a new distance metric. By the
property of LSI, words that co-occur very often in the same documeetarged
into a single dimension of the new space. In the extreme this allows two docu-
ments with no common words to be ‘close’ to each other, via chains of ca-occu
word pairs in other documents.

Oliveira et al. (2005) propose a simple procedure for semi-supergseding:
First one runs PCA o, U U (ignoring the labels). The result is a linear subspace
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that is constructed with more data points if one uses dnip PCA. In the next
step, onlyL is mapped onto the subspace, and an SVM is learned. The method is
useful when class separation is linear and along the principal compdinections,
and unlabeled helps by reducing the variance in estimating such directions.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is an impor-
tant improvement over LSI. Each word in a document is generated by ia"(ep
multinomial, i.e. unigram). Different words in the document may be generated by
different topics. Each document in turn has a fixed topic proportion (a nodltin
mial on a higher level). However there is no link between the topic proportions
different documents.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one step further. It
assumes the topic proportion of each document is drawn from a Dirichtebdis
tion. With variational approximation, each document is represented bytarjmrs
Dirichlet over the topics. This is a much lower dimensional representatioif. Gr
fiths et al. (2005) extend LDA model to ‘HMM-LDA which uses both shtatm
syntactic and long-term topical dependencies, as an effort to integratansics
and syntax. Li and McCallum (2005) apply the HMM-LDA model to obtain word
clusters, as a rudimentary way for semi-supervised learning on sesgienc

Some algorithms derive a metric entirely from the densitofThese are mo-
tivated by unsupervised clustering and based on the intuition that data jotinés
same high density ‘clump’ should be close in the new metric. For instan€g, if
is generated from a single Gaussian, then the Mahalanobis distancedrimjuite
covariance matrix is such a metric. Tipping (1999) generalizes the Mahztano
distance by fitting/ with a mixture of Gaussian, and define a Riemannian mani-
fold with metric atz being the weighted average of individual component inverse
covariance. The distance betwegnandz, is computed along the straight line (in
Euclidean space) between the two points. Rattray (2000) further dizeerthe
metric so that it only depends on the change in log probabilities of the density, n
on a particular Gaussian mixture assumption. And the distance is computed along
a curve that minimizes the distance. The new metric is invariant to linear transfor
mation of the features, and connected regions of relatively homogeneasi#yd
in U will be close to each other. Such metric is attractive, yet it depends on the
homogeneity of the initial Euclidean space. Their application in semi-supdrvise
learning needs further investigation. Sajama and Orlitsky (2005) analgdewier
and upper bounds on estimating data-density-based distance. Thieve aceirces
of error: one stems from the fact that the true dengity) is not known, the second
is that for practical reasons one typically build a grid on the data points githste
aregular grid inkR?. The authors separate these two kinds of errors (computational
and estimation), and analyze them independently. It sheds light on the cemple
ity of density-based distance, independent of the specific method oseltiatso
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sheds some light on approximation errors when using neighborhood gyaph
data points, which is used widely in semi-supervised learning and non-kiear
mensionality reduction, etc. Understanding this dichotomy is helpful whengtryin
to improve methods for semi-supervised learning.

We caution the reader that the metrics proposed above are based @emunsu
vised techniques. They all identify a lower dimensional manifold within which the
data reside. However the data manifold may or may not correlate with a particula
classification task. For example, in LSI the new metric emphasizes words with
prominent count variances, but ignores words with small variancethel€lassi-
fication task is subtle and depends on a few words with small counts, LSI might
wipe out the salient words all together. Therefore the success of thededs
is hard to guarantee without putting some restrictions on the kind of classificatio
tasks. It would be interesting to includeinto the metric learning process.

In a separate line of work, Baxter (1997) proves that there is a unigtieal
metric for classification if we use 1-nearest-neighbor. The metric, namedrGa
cal Distortion Measure (CDM), defines a distanke,, x2) as the expected loss if
we classifyz; with xo’s label. The distance measure proposed in (Yianilos, 1995)
can be viewed as a special case. Yianilos assume a Gaussian mixture @del h
been learned fron/, such that a class correspond to a component, but the corre-
spondence is unknown. In this case COM:, z2) = p(z1, zofrom same component
and can be computed analytically. Now that a metric has been learned/firara
can find withinZ the 1-nearest-neighbor of a new data painand classifyr with
the nearest neighbor’s label. It will be interesting to compare this schemé&with
based semi-supervised learning, whéris used to label mixture components.

Weston et al. (2004) propose the neighborhood mismatch kernel anaddbedb
mismatch kernel. More precisely both d&ernel transformatiorthat modifies an
input kernel. In the neighborhood method, one defines the neighbddf@opoint
as points close enough according to certain similarity measure (note thit is
the measure induced by the input kernel). The output kernel betwasnippis
the average of pairwise kernel entries betwésmeighbors ang’s neighbors. In
bagged method, if a clustering algorithm thinks they tend to be in the same cluster
(note again this is a different measure than the input kernel), the conmdsm
entry in the input kernel is boosted.

11.8 Inferring Label Sampling Mechanisms

Most semi-supervised learning methods assunandU are bothi.i.d. from the
underlying distribution. However as (Rosset et al., 2005) points outishabt
always the case. For exampjecan be the binary label whether a customer is
satisfied, obtained through a survey. It is conceivable survey paticip (and
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thus labeled data) depends on the satisfagfion

Let s; be the binary missing indicator fay;. The authors modeb(s|x,y)
with a parametric family. The goal is to estimatés|x,y) which is the label
sampling mechanism. This is done by computing the expectation of an arbi-
trary functiong(x) in two ways: onL UU as1/n) ., g(x;), and onL only as
1/n) e 9(xi)/p(si = 1|5, y;). By equating the twe(s|x,y) can be estimated.
The intuition is that the expectation dnrequires weighting the labeled samples
inversely proportional to the labeling probability, to compensate for ignattieg
unlabeled data.

11.9 Metric-Based Model Selection

Metric-based model selection (Schuurmans & Southey, 2001) is a methetkttd d
hypotheses inconsistency with unlabeled data. We may have two hypoittashs
are consistent ofi, for example they all have zero training set error. However they
may be inconsistent on the much lardér If so we should reject at least one of
them, e.g. the more complex one if we employ Occam’s razor.

The key observation is that a distance metric is defined in the hypotheses spac
H. One such metric is the number of different classifications two hypothedas ma
under the data distributiop(z): dp(h1,he) = Ep[hi(z) # he(z)]. Itis easy to
verify that the metric satisfies the three metric properties. Now consider tae tru
classification functiorh* and two hypotheses,, ho. Since the metric satisfies the
triangle inequality (the third property), we have

dp(hl, hg) < dp(hl, h*) + dp(h*, hg)

Under the premise that labels inis noiseless, let's assume we can approximate
dy(h1,h*) andd,(h*, he) by hy andhy’s training set error ratedy, (h;, h*) and
dr(ho, h*), and approximatel,(h, he) by the differenceh; andhy make on a
large amount of unlabeled data d; (hi, he). We get

dU(hl, hz) < dL(hl, h*) + dL(h*, hg)

which can be verified directly. If the inequality does not hold, at leastajrtbe
assumptions is wrong. IUU] is large enough and/ Y p(z), du(hi, ha) will be

a good estimate at,(h1, he). This leaves us with the conclusion that at least one
of the training errors does not reflect its true error. If both trainingrsrare close

to zero, we would know that at least one model is overfitting. An Occara@rra
type of argument then can be used to select the model with less complexity. Suc
use of unlabeled data is very general and can be applied to almost aningear
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algorithms. However it only selects among hypotheses; it does not gemsna
hypothesis based on unlabeled data.

The co-validation method (Madani et al., 2005) also uses unlabeled data fo
model selection and active learning. Kaariainen (2005) uses the metricye de
generalization error bound, see Section 9.

11.10 Multi-Instance Learning

In multi-instance learning the training set consists of labeled bags, easistog

of many unlabeled instances. A bag is positively labeled if it contains atdeast
positive instance, and negatively labeled if all instances in it are negdtia and

Xu (2007) show that under the i.i.d. instance assumption, multi-instance lgarnin
is a special case of semi-supervised learning, and can be solved wittcialsp
semi-supervised support vector machine (MissSVM).

12 Scalability Issues of Semi-Supervised Learning Meth-
ods

Current semi-supervised learning methods have not yet handled langena of
data. The complexity of many elegant graph-based methods is clagéntd.
Speed-up improvements have been proposed (Mahdaviani et al. RéHepau et
al. 2005; Zhu and Lafferty 2005; Yu et al. 2005; Garcke and Gri@béb; and
more), their effectiveness has yet to be proven on real large probl&woe of
them are discussed in Section 6.3.

Figure 7 compares the experimental dataset sizes in many represergative s
supervised learning papers. The unlabeled dataset size in thess papevidently
not large. Ironically huge amount of unlabeled data should have beewoptire
mal operation environment for semi-supervised learning. More relseffiarts are
needed to address the scalability issue.

Recent advances include (Sindhwani & Keerthi, 2006) and (Tsangv&kK
2006).

13 Do Humans do Semi-Supervised Learning?

Now let us turn our attention fromnachinelearning tohumanlearning. It is pos-
sible that understanding of the human cognitive model will lead to novel machin
learning approaches (Langley, 2006; Mitchell, 2006). We ask thetignesDo
humans do semi-supervised learning? My hypothesis is yes. We humamsiacc
late ‘unlabeled’ input data, which we use (often unconsciously) to heldibg
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Figure 7: As recently as 2005, semi-supervised learning methods hawednot
dressed large-scale problems. Shown above are the largest détasgalseled
and unlabeled portion respectively) used in representative semivisgubiearn-
ing papers. Each dot is a paper, with darkness indicating publication{gadest:
2005, lightest: 1998). Most papers only used hundreds of labeledspaniil tens
of thousands of unlabeled points. Also shown are some interesting langieens
for comparison. Note the log-log scale.
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Figure 8: Classify teapot images by its spout orientation. Some images within the
same class are quite different, while some images from different classsisralar.

the connection between ‘labels’ and input once labeled data is provigedsént
some evidence below.

13.1 Visual Object Recognition with Temporal Association

The appearance of an object usually changes greatly when viewaddifferent
angles. In the case of faces, the difference between the same facénooview
points can be much larger than the difference between two faces fronathe s
angle. Human observers nonetheless can connect the correct fates been
suggested that temporal correlation serves as the glue, as summarizsishoy (
etal., 2006) (Result 14). It seems when we observe an object witlyicitaangles,
we link the images as ‘containing the same object’ by the virtue that the images are
close in time. Wallis and 8lthoff (2001) created artificial image sequences where
a frontal face is morphed into the profile face of a different personeMébservers
are shown such sequences during training, their ability to match frontgiraxite
faces was impaired during test, due to the wrong links. The authors flathee
that the object has to have similar location in the images to establish the link.
The idea of spatio-temporal link is directly related to graph-based semnsspe
learning. Consider the Teapot dataset used in (Zhu & Lafferty, 20@ginally
from (Weinberger et al., 2004)), with images of a teapot viewed fromeuwdfit
angles. Now suppose we want to classify an image by whether its spous poin
to the left or right. As Figure 8 shows there are large within-class distaaumgs
small between-class distances. However the similarity between adjacentsimage
(which comes from temporal relation) allow a graph to be constructed foi-se
supervised learning. In another work, Balcan et al. (2005a) carisdrgraph on
webcam images using temporal links (as well as color, face similarity links) for
semi-supervised learning.
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13.2 Infant Word-Meaning Mapping

17-month old infants were shown to be able to associate a word with a vigeat ob
better if they have heard the word many times before (Graf Estes et al.).2006
the word was not heard before, the infant’s ability to associate it with thecbbje
was weaker. If we view the sound of the word as unlabeled data, andjhet as

the label, we can propose a model where an infant builds up clustersaiaia
sounding words, which are easily labeled as a whole. This is similar to semi-
supervised learning with mixture models (Nigam et al., 2000) or clustersa(Dar
et al., 2002; Demiriz et al., 1999).

13.3 Human Categorization Experiments

Perhaps the first attempt to observe semi-supervised learning in humaes is d
scribed in (Stromsten, 2002) (Chapter 3), who uses drawings of attifigiato
show that human categorization behavior can be influenced by the pessenn-
labeled examples. However, the experiment uses a single positive lakalagle
and no negative labeled examples, making it a one-class setting similar to novelty
detection or quantile estimation instead of binary classification. In addition, the
fish stimulus is a familiar real-world concept which might induce prior bias.

Zhu et al. (2007) show that human binary classification behavior corsfarell
to a generative model (Gaussian Mixture Models) for semi-supervisedirga
In particular, they set up the data such that the decision boundariesdiémm
labeled data only vs. labeled and unlabeled data are different undeerhie s
supervised machine learning model. They then observe similar decisioddiyun
differences in a human behavioral experiment. The stimuli are novel Bapes
which do not correspond to real-world objects, thus avoiding prior Giagy also
observe that people’s reaction time (time between a stimulus is display and a key
is pressed to classify it) peaks around the decision boundary, ancaitteoretime
peak also changes accordingly with and without unlabeled data. Thesi@aus
mixture model, trained with the EM algorithm, fits the human behavior nicely both
in terms of classification and reaction time.
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