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ABSTRACT
A fundamental challenge in improving the file system perfor-
mance is to design effective block replacement algorithms to
minimize buffer cache misses. Despite the well-known inter-
actions between prefetching and caching, almost all buffer
cache replacement algorithms have been proposed and stud-
ied comparatively without taking into account file system
prefetching which exists in all modern operating systems.
This paper shows that such kernel prefetching can have a
significant impact on the relative performance in terms of
the number of actual disk I/Os of many well-known replace-
ment algorithms; it can not only narrow the performance
gap but also change the relative performance benefits of
different algorithms. These results demonstrate the impor-
tance for buffer caching research to take file system prefetch-
ing into consideration.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measurements,

Simulation

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Buffer caching, prefetching, replacement algorithms

1. INTRODUCTION
A critical problem in improving file system performance

is to design an effective block replacement algorithm for the
buffer cache. Over the years, developing such algorithms
has remained one of the most active research areas in oper-
ating systems design. The oldest and yet still widely used
replacement algorithm is the Least Recently Used (LRU) re-
placement policy [9]. The effectiveness of LRU comes from
the simple yet powerful principle of locality: recently ac-
cessed blocks are likely to be accessed again in the near
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future. Numerous other replacement algorithms have been
developed [2, 11, 12, 13, 14, 18, 19, 21, 25, 27, 30, 33, 34].
However, the vast majority of these replacement algorithm
studies used trace-driven simulations and used the cache hit
ratio as the sole performance metric in comparing different
algorithms.

Prefetching is another highly effective technique for im-
proving the I/O performance. The main motivation for
prefetching is to overlap computation with I/O and thus
reduce the exposed latency of I/Os. One way to induce
prefetching is via user-inserted hints of I/O access patterns
which are then used by the file system to perform asyn-
chronous I/Os [7, 8, 32]. Since prefetched disk blocks need
to be stored in the buffer cache, prefetching can potentially
compete for buffer cache entries. The close interactions
between prefetching and caching that exploit user-inserted
hints have also been studied [7, 8, 32]. However, such user-
inserted hints place a burden on the programmer as the
programmer has to accurately identify the access patterns
of the application.

File systems in most modern operating systems imple-
ment prefetching transparently by detecting sequential pat-
terns and issuing asynchronous I/Os. In addition, file sys-
tems perform synchronous read-ahead where requests are
clustered to 64KB (typically) to amortize seek costs over
larger reads. As in the user-inserted hints scenario, such
kernel-driven prefetching also interacts with and potentially
affects the performance of the buffer caching algorithm be-
ing used. However, despite the well-known potential interac-
tions between prefetching and caching [7], almost all buffer
cache replacement algorithms have been proposed and stud-
ied comparatively without taking into account the kernel-
driven prefetching [2, 13, 18, 19, 25, 27, 30, 33, 34].

In this paper, we perform a detailed simulation study of
the impact of kernel prefetching on the performance of a set
of representative buffer cache replacement algorithms devel-
oped over the last decade. Using a cache simulator that
faithfully implements the kernel prefetching of the Linux
operating system, we compare different replacement algo-
rithms in terms of the miss ratio, the actual number of ag-
gregated synchronous and asynchronous disk I/O requests
issued from the kernel to the disk driver, as well as the ul-
timate performance measure – the actual running time of
applications using an accurate disk simulator, DiskSim [15].
Our study shows that the widely used kernel prefetching can
indeed have a significant impact on the relative performance
of different replacement algorithms. In particular, the find-
ings and contributions of this paper are:
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Figure 1: Various kernel components on the path from

file system operations to the disk.

• We develop a buffer caching simulator that faithfully
implements the Linux kernel prefetching to allow the
performance study of different replacement algorithms
in a realistic environment;

• We show how to adapt different cache replacement al-
gorithms to exploit kernel prefetching to minimize disk
I/Os while preserving the nature of these replacement
algorithms;

• We find that kernel prefetching can not only signif-
icantly narrow the performance gap of different re-
placement algorithms, it can even change the relative
performance benefits of different algorithms;

• We present results demonstrating that the hit ratio
is far from a definitive metric in comparing different
replacement algorithms, the number of aggregated disk
I/Os gives much more accurate information of disk I/O
load, but the actual application running time is the
only definitive performance metric in the presence of
asynchronous kernel prefetching.

The outline of the paper is as follows. Section 2 describes
kernel prefetching in Linux and in 4.4BSD. Section 3 shows
the potential impact of kernel prefetching on buffer caching
algorithms using Belady’s algorithm as an example. Sec-
tion 4 summarizes the various buffer cache replacement al-
gorithms that are evaluated in this paper. Section 5 presents
trace-driven simulation results of performance evaluation
and comparison of the studied replacement algorithms. Fi-
nally, Section 6 discusses additional related work, and Sec-
tion 7 concludes the paper.

2. PREFETCHING IN FILE SYSTEM
In this section, we describe the kernel prefetching mecha-

nisms in Linux and 4.4BSD.

2.1 Kernel Prefetching in Linux
The file system accesses from a program are processed

by multiple kernel subsystems before any I/O request is ac-
tually issued to the disk. Figure 1 shows the various steps

that a file system access has to go through before issued as a
disk request. The first critical component is the buffer cache,
which can significantly reduce the number of on-demand I/O
requests that are issued to the components below. For se-
quentially accessed files, the kernel also attempts to prefetch
consecutive blocks from the disk to amortize the cost of on-
demand I/Os. Moreover, the kernel has a clustering facility
that attempts to increase the size of a disk I/O to the size
of a cluster – a cluster is a set of file system blocks that are
stored on the disk contiguously. As the cost of reading a
block or the whole cluster is comparable, the advantage of
clustering is that it provides prefetching at minimal cost.

Prefetching in the Linux kernel is beneficial for sequential

accesses to a file, i.e., accesses to consecutive blocks of that
file. When a file is not accessed sequentially, prefetching can
potentially result in extra I/Os by reading data that is not
used. For this reason, it is critical for the kernel to make its
best guesses of whether future accesses are sequential, and
decide whether to perform prefetching.

The Linux kernel decides on prefetching by examining the
pattern of accesses to the file, and only considers prefetching
for read accesses. To simplify the description, we assume an
access is to one block only. Although an access (system call)
can be to multiple consecutive blocks, the simplification does
not change the behavior of the prefetching algorithm. On
the first access (A1) to a file, the kernel has no information
about the access pattern. In this case, the kernel resorts to
conservative prefetching 1; it reads the on-demand accessed
block and prefetches a minimum number of blocks follow-
ing the on-demand accessed block. The minimum number
of blocks prefetched is at least one, and is typically three.
This prefetching is called synchronous prefetching, as the
prefetched blocks are read along with the on-demand ac-
cessed block. The blocks that are prefetched are also re-
ferred to as a read-ahead group. The kernel remembers the
current read-ahead group per file and updates it on each ac-
cess to the file. Note that as A1 was the first access, no
blocks were previously prefetched for this file, and thus the
previous read-ahead group was empty.

The next access (A2) may or may not be sequential with
respect to A1. If A2 accesses a block that the kernel has not
already prefetched, i.e., the block is not in A1’s read-ahead

group, the kernel decides that prefetching was not useful
and resorts to conservative prefetching as described above.
However, if the block accessed by A2 is in the previous read-

ahead group, showing that prefetching was beneficial, the
kernel decides that the file is being accessed sequentially and
performs more aggressive prefetching. The size of the pre-
vious read-ahead group, i.e., the number of blocks that were
previously prefetched, is doubled to determine the number
of blocks (N) to be prefetched on this access. However, N is
never increased beyond a pre-specified maximum (usually 32
blocks). The kernel then attempts to prefetch the N contigu-
ous blocks that follow the blocks in the previous read-ahead

group in the file. This prefetching is called asynchronous

prefetching as the on-demand block is already prefetched,
and the new prefetching requests are issued asynchronously.
In any case, the kernel updates the current read-ahead group

to contain the blocks prefetched on the current access.
So far, we used the previous read-ahead group to determine

whether a file is being accessed sequentially or not. After the

1An exception is that if A1 is to the first block in the file,
the kernel assumes the following accesses to be sequential.
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prefetching associated with A2 is also issued, the next access
can benefit from prefetching if it either accesses a block in
A2’s read-ahead group or in A1’s read-ahead group. For this
reason, the kernel also defines a read-ahead window which
contains the current read-ahead group as well as the previous
read-ahead group. The read-ahead window is updated at the
completion of an access and its associated prefetching, and
is used for the access that immediately follows.

Any further (on-demand) access to the file falls into one of
the following two cases: (i) the block is within the read-ahead

window and has already been prefetched, justifying further
asynchronous prefetching; or (ii) the block is outside the
read-ahead window and synchronous prefetching is invoked.

Figure 2 (adapted from [4]) shows the adjustment of the
read-ahead group and the read-ahead window under syn-
chronous and asynchronous prefetching. In Figure 2(a), the
light-gray area represents the previous read-ahead group, the
dark-gray area represents the current read-ahead group, and
the read-ahead window is also shown at the completion of
an access. If the next access (shown as black) is to a block
outside the read-ahead window, synchronous prefetching is
employed, and the read-ahead window is reset to the new
read-ahead group (Figure 2(b)). If the next access is to a
block within the read-ahead window, asynchronous prefetch-
ing is employed, and the read-ahead group and read-ahead

window are updated accordingly (Figure 2(c)).
Note that in both synchronous and asynchronous prefetch-

ing, it is possible that some blocks in the coverage of the
read-ahead group already exist in the cache, in which case
they are not prefetched, but are included in the current read-

ahead group.
A subtlety with kernel prefetching is that prefetching of

multiple blocks is atomic, but the creation of ready entries
in the cache is done one by one. Linux first sequentially cre-
ates entries in the cache, marking all entries locked, implying
I/O has not completed on them. It then issues prefetch-
ing which results in these blocks being read either at once
for synchronous prefetching or sequentially for asynchronous
prefetching. It marks the entries unlocked as the blocks ar-
rive from the disk. In any case, a newly created entry will
never be evicted before it is marked as unlocked.

Two special situations can occur in asynchronous prefetch-
ing. First, before the actual I/O operation on a prefetched
block is completed, an on-demand access to the block may
arrive. When this happens, the kernel does not perform
any further prefetching. This is because the disk is already

busy serving the prefetched block, and thus starting addi-
tional prefetching may over-load the disk [4]. Second, it is
possible that an on-demand accessed block is found in the
read-ahead window but not in the current read-ahead group,
i.e., it is found in the previous read-ahead group. Further
prefetching is not performed in this case either. For exam-
ple, if the next access after the situation in Figure 2(c) is to
the light-gray area, no further prefetching will be performed.

After the kernel has issued I/O requests for blocks that
it intends to prefetch, I/O clustering is invoked to minimize
the number of disk requests that are issued by clustering
multiple I/O requests into a single disk request. When an
I/O is requested on a block, it is passed to the clustering
function, which puts the I/O request in the I/O request
queue. If this I/O request is for a block following the block
accessed by the previous I/O request (which is still in the
queue), no new disk request is generated. Otherwise, a new
disk request is created to fetch all the consecutive blocks
by all the previous I/O requests accumulated in the queue.
A new disk request can also be triggered directly (e.g., via
timing mechanisms) to ensure that I/O requests are not left
in the queue indefinitely.

2.2 Kernel Prefetching in 4.4BSD
The file system prefetching employed in 4.4BSD is similar

to that used in Linux. An access is considered sequential if
it is either to the last accessed block, or a block immediately
following the last accessed block, i.e., access to a block B is
sequential if last access was to block B or B-1. For sequential
accesses, the file system prefetches one or more additional
blocks. The number of blocks that are prefetched is doubled
on each disk read. However, it does not exceed the maximum
cluster size (usually 32) or the remaining blocks of a file. If
the file only occupies a fraction of the last block allocated
to it, this final fragmented block is not prefetched.

It may happen that a prefetched block is evicted before
it is used even once. If the accesses remain sequential, the
block will be subsequently accessed but will not be found in
the cache (as it was prefetched and evicted), indicating that
the prefetching process is too aggressive. This is addressed
by halving the number of blocks to be prefetched on each
access whenever such an event occurs. Finally, if the access
is not sequential, no prefetching is used. This is in contrast
to Linux, where one extra block is always read from the disk
even if the access falls outside the read-ahead window.

3. MOTIVATION
The goal of buffer replacement algorithm is to minimize

the number of disk I/O operations and ultimately reduce the
running time of the applications. To show the potential per-
formance impact of kernel prefetching on buffer caching re-
placement algorithms, we give an example that shows given
kernel prefetching, Belady’s algorithm [3] can be non-optimal
in reducing disk requests.

For simplicity, we assume a prefetching algorithm simpler
than that used in Linux. We use a cache size of 8 blocks,
and assume that prefetching is only done on a miss so that
the I/Os for the prefetched blocks can be clustered with
the I/O for the on-demand block. On the first access, the
minimum number of prefetched blocks is set to 3. If the
following access is to a block that has been prefetched on
the previous access, the number of blocks to be prefetched
on the next miss is increased to 8, otherwise it remains as



Acc. Blk Belady’s algorithm LRU
Num. cache content I/O cache content I/O

1 a [a b c - - - - -] y [a b c - - - - -] y
2 c [a b c - - - - -] n [a b c - - - - -] n
3 e [a b c e f g h i] y [e f g h i j k l] y
4 g [a b c e f g h i] n [e f g h i j k l] n
5 i [a b c e f g h i] n [e f g h i j k l] n
6 k [a b c e f g k l] y [e f g h i j k l] n
7 m [a b c e f g m n] y [g i k l m n o p] y
8 o [a b c e f g o p] y [g i k l m n o p] n
9 a [a b c e f g o p] n [k m n o p a b c] y
10 b [a b c e f g o p] n [k m n o p a b c] n
11 c [a b c e f g o p] n [k m n o p a b c] n
12 d [b c d e f g o p] y [d e f g h i j k] y
13 e [b c d e f g o p] n [d e f g h i j k] n
14 f [b c d e f g o p] n [d e f g h i j k] n
15 g [b c d e f g o p] n [d e f g h i j k] n
16 h [h i j k l m n o] y [d e f g h i j k] n
17 i [h i j k l m n o] n [d e f g h i j k] n
18 j [h i j k l m n o] n [d e f g h i j k] n
19 k [h i j k l m n o] n [d e f g h i j k] n
20 l [h i j k l m n o] n [i j k l m n o p] y
21 m [h i j k l m n o] n [i j k l m n o p] n
22 n [h i j k l m n o] n [i j k l m n o p] n
23 o [h i j k l m n o] n [i j k l m n o p] n
24 p [i j k l m n o p] y [i j k l m n o p] n

I/Os 8 6

Table 1: An example scenario where LRU results in

fewer disk I/Os compared to Belady’s replacement algo-

rithm. The cache content after each access are shown.

The blocks read on a cache miss are shown in bold.

3. Furthermore, if a block to be prefetched is already in
the cache, only the blocks between the on-demand accessed
block and the cached block are prefetched. The reason for
this is that prefetching beyond the cached block will prevent
some prefetched requests from being clustered with the on-
demand access. We also assume that if a block would cause
the eviction of the on-demand accessed block or any other
associated prefetched block, we do not prefetch it or the
blocks after it, as they would not be clustered with the on-
demand access.

Table 1 shows the behavior of Belady’s replacement algo-
rithm and LRU for a sequence of file system requests under
the above simple prefetching. In a system without prefetch-
ing as used in almost all previous studies of cache replace-
ment algorithms, the Belady algorithm will result in 16 cache
misses, which translate into 16 I/O requests, whereas LRU
will result in 23 cache misses, or 23 I/O requests. However,
with prefetching, the number of I/O requests is reduced to
8 using Belady’s algorithm and 6 using LRU. The reason for
this is that Belady’s algorithm has knowledge of the blocks
that will be accessed in the nearest future and keeps them in
the cache without any regard to how retaining these blocks
will affect prefetching. Since Belady’s algorithm results in
more I/O requests than LRU, it is not optimal in minimizing
the number of I/O operations.

4. REPLACEMENT ALGORITHMS
In this section, we discuss the eight representative re-

cency/frequency-based buffer cache replacement algorithms
used in our evaluation of the impact of kernel prefetching.
For each replacement algorithm, we summarize the origi-
nal algorithm followed by the adapted version that manages
the blocks brought in by kernel prefetching. We emphasize

that all algorithms assume an unmodified kernel prefetching
underneath. The reason is simply to compare the different
algorithms in a realistic scenario, i.e., when implemented in
the Linux buffer cache.

All practical replacement algorithms use the notion of re-

cency in deciding the victim block for eviction, and how to
assign the recency to prefetch blocks is an important issue.
Since placing prefetched blocks at the most recently used
(MRU) location is consistent with the actual Linux imple-
mentation, we use this design in LRU and all other algo-
rithms that utilize recency information, including LRU-2,
2Q, LIRS, LRFU, MQ, and ARC.

With the exception of LRU, the above algorithms also
use the notion of frequency in deciding the victim block for
eviction, and thus it is important to assign appropriate fre-
quency information to prefetched blocks to preserve the orig-
inal behavior of each replacement algorithm. Fortunately,
for most algorithms, this can be achieved by recording each
prefetched block as “not accessed yet”. When the block
is accessed, its frequency is adjusted accordingly. Some of
these algorithms also use a ghost cache to record the history
of a larger set of blocks than that can be accommodated in
the actual cache. For these schemes, if a prefetched block is
evicted from the cache before it is ever accessed, it is simply
discarded, i.e., not moved into the ghost cache.

OPT
The optimal or OPT scheme is based on Belady’s cache

replacement algorithm [3]. This is an off-line algorithm as it
requires an oracle to determine future references to a block.
OPT evicts the block that will be referenced farthest in the
future. As a result it maximizes the hit rate.

In the presence of the Linux kernel prefetching, prefetched
blocks are assumed to be accessed most recently, one after
another, and inserted into the cache according to the origi-
nal OPT algorithm. Note the kernel prefetching is oblivious
of future references. But OPT can immediately determine
wrong prefetches, i.e., prefetched blocks that will not be ac-
cessed on-demand at all. Such blocks become immediate
candidates for removal, and can be replaced right after they
are fetched. Similarly, prefetched blocks can also be right
away evicted if they are accessed further in future than all
other blocks in the cache. However, blocks prefetched to-
gether do not evict each other. This is because such blocks
are most likely prefetched in a single disk request, and all
the blocks should stay resident in the cache till the I/O op-
eration associated with them completes.

LRU
LRU is the most widely used replacement policy. It is usu-

ally implemented as an approximation [9] without significant
impact on the performance. LRU is simple and does not re-
quire tuning of parameters to adapt to changing workload.
However, LRU can suffer from its pathological case when
the working set size is larger than the cache and the appli-
cation has a looping access pattern. In this case, LRU will
replace all blocks before they are used again, resulting in
every reference incurring a miss.

Kernel prefetching is incorporated into LRU in a straight-
forward manner. On each access, the kernel determines the
number of blocks that need to be prefetched based on the
algorithm explained in Section 2.1. The prefetched blocks
are inserted in the MRU location just like regular blocks.



LRU-2
The LRU-K [30, 31] scheme tries to avoid the pathological

cases of LRU. LRU-K replaces a block based on the Kth-to-
the-last reference. The oldest resident based on this metric
is evicted. For simplicity, the authors recommended K=2.
By taking the time of the penultimate reference to a block
as the basis for comparisons, LRU-2 can quickly remove cold
blocks from the cache. However, for blocks without signif-
icant differences of reference frequencies, LRU-2 performs
similarly as LRU. In addition, LRU-2 is costly; each block
access requires log(N) operations to manipulate a priority
queue, where N is the number of blocks in the cache.

In the presence of kernel prefetching, LRU-2 is adapted
as follows. First, when a block is prefetched, it is marked
as without any access history, so that when it is accessed
on-demand for the first time, its prefetching time will not
be mistaken as its penultimate reference time. Second, to
implement the Correlated Reference Period (CRP), after a
block is accessed and before it becomes eligible for replace-
ment, it is put in a list for recording ineligible blocks. Only
eligible blocks are added to the replacement priority queue.
With prefetching, all prefetched blocks are initially ineligible
for replacement as they are considered to be last accessed
(together) less than the CRP.

2Q
2Q [19] was proposed to perform as well as LRU-2 yet with

a constant overhead. It uses a special buffer, called the A1in

queue, in which all missed blocks are initially placed. When
the blocks are replaced from the A1in queue in the FIFO
order, the addresses of these replaced blocks are temporarily
placed in a ghost buffer called A1out queue. When a block is
re-referenced and its address is in the A1out queue, it is pro-
moted to a main buffer called Am, which stores frequently
accessed blocks. Thus this approach filters temporarily high
frequency accesses. By setting the relative sizes of A1in

and Am, 2Q picks a victim block from either A1in or Am,
whichever grows beyond the preset boundary.

In the presence of kernel prefetching, 2Q is adapted simi-
larly as in previous schemes, i.e., prefetched blocks are treated
as on-demand blocks. When a block is prefetched before any
on-demand access, it is placed into the A1in queue. On the
subsequent on-demand access, the block stays in the A1in

queue, as if it is being accessed for the first time. If the
block is evicted from the A1in queue before any on-demand
access, it is simply discarded, as opposed to being moved
into the A1out queue. This is to ensure that that on its
actual on-demand access, the block will not be incorrectly
promoted to Am. If a block currently in the A1out queue

is prefetched, it is promoted into Am as if it is accessed
on-demand.

LIRS
Low Inter-reference Recency Set (LIRS) [18] (and its vari-

ant Clockpro [17]) is another recently proposed algorithm
that maintains a complexity similar to that of LRU by using
the distance between the last and second-to-the-last refer-
ences to estimate the likelihood of the block being referenced
again. LIRS maintains a variable-size LRU stack of blocks
that have been seen recently. LIRS classifies each block into
an LIR block if it has been accessed again since it was in-
serted on the LRU stack, or an HIR block if the block was
not on the LRU stack. HIR blocks are referenced less fre-
quently. The stack variability is caused by removal of blocks

below the least recently seen LIR block on the stack. Simi-
lar to CRP of LRU-2 or Kin of 2Q, LIRS allocates a small
portion of the cache, 1% as suggested by authors, to store
recently seen HIR blocks.

In the presence of kernel prefetching, LIRS is modified not
to insert any prefetched blocks into the LRU stack to prevent
distortion of the history stored in the LRU stack. Instead,
a prefetched block is inserted into the portion of the cache
that maintains HIR blocks, since an HIR block does not
have to appear in the LRU stack. If a prefetched block did
not have an existing entry on the stack, the first on-demand
access to the block will cause it to be inserted onto the stack
as an HIR block. If an entry for the block was present in
the stack, the first on-demand access that follows will result
in the block being treated as an LIR block. In both cases,
the outcome is consistent with the behavior of the original
LIRS.

LRFU
Least Recently/Frequently Used (LRFU) [25] is a recently

proposed algorithm that provides a continuous range of poli-
cies between LRU and LFU. A weight C(x) is associated
with every block x, and at every time t, C(x) is updated as

C(x) =



1 + 2−λC(x) if x is referenced at time t

2−λC(x) otherwise

where λ is a tunable parameter. The LRFU algorithm re-
places the block with the smallest C(x) value. The perfor-
mance of LRFU critically depends on the choice of λ.

Prefetching is employed in LRFU similarly as in LRU;
prefetched blocks are treated as the most recently accessed.
One problem arises as how to assign the initial weight for
a prefetched block, as the single weight combines both re-
cency and frequency information. Our solution is to set a
prefetched flag to indicate that a block is prefetched and
not yet accessed on-demand. When the block is accessed
on-demand and the prefetched flag is set, we reset the value
of C(x) to the default initial value instead of applying the
above function. This ensures that the algorithm counts an
on-demand accessed block as once-seen and not twice-seen.

MQ
The Multi-Queue buffer management scheme (MQ) [41]

was recently proposed as a second-level replacement scheme
for storage controllers. The idea is to use m LRU queues
(typically m = 8), Q0, Q1, ..., Qm−1, where Qi contains
blocks that have been seen at least 2i times but no more
than 2i+1 − 1 times recently. The algorithm also maintains
a history buffer Qout. Within a given queue, blocks are
ranked by the recency of access, i.e., according to LRU. On a
cache hit, the block frequency is incremented, and the block
is placed at the MRU position of the appropriate queue,
and its expireT ime is set to currentT ime+ lifeT ime. The
lifeT ime is a tunable parameter indicating the amount of
time a block can reside in a particular queue without an
access. On each access, expireT ime for the LRU block in
each queue is checked, and if it is less than currentT ime,
the block is demoted to the MRU position of the next queue.

In the presence of prefetching, MQ is adapted similarly as
in LRFU; the only issue is how to correctly count block ac-
cess frequency in the presence of prefetching. This is solved
by not incrementing the reference counter when a block is
prefetched. MQ also maintains a ghost cache equal to the
size of the cache for remembering information about blocks



that were evicted. We modified the behavior of the ghost
cache to not recording any prefetched blocks that have not
been accessed upon eviction from the cache.

ARC
The most recent addition to the recency/frequency-based

policies is Adaptive Replacement Cache (ARC) [27] (and its
variant CAR [2]). The basic idea of ARC/CAR is to parti-
tion the cache into two queues, each managed using either
LRU (ARC) or CLOCK (CAR): the first contains pages ac-
cessed only once, while the second contains pages accessed
more than once. A hit to the first queue moves the ac-
cessed block to the second queue. Moreover, a hit to a block
whose history information is retained in the ghost cache also
causes the block to move to the second queue. Like LRU,
ARC/CAR has a constant complexity per request.

Kernel prefetching is exploited in ARC similarly as in 2Q.
A prefetched block is put into the first queue with a special
flag, so that upon the subsequent on-demand access, it will
stay in the first queue. An important difference from 2Q is
that if a prefetched block is already in the ghost cache, it is
not moved to the second queue, but to the first queue. If the
block is prefetched correctly, it will be moved to the second
queue upon the subsequent on-demand access. In this way,
if prefetching brings in blocks that are not accessed again,
they do not pollute the second queue. Finally, ARC also
implements a ghost cache. As in MQ and 2Q, prefetched
blocks that have not been accessed upon eviction will not
be put into the ghost cache.

5. PERFORMANCE EVALUATION
In this section we evaluate the impact of Linux kernel

prefetching on the performance of replacement algorithms.

5.1 Traces
The detailed traces of the applications were obtained by

modifying the strace Linux utility. Strace intercepts the sys-
tem calls of the traced process and is modified to record
the following information about the I/O operations: access
type, time, file identifier (inode), and I/O size.

Tables 2 and 3 show the six applications and three concur-
rent executions of the mixed applications used in this study.
For each application, Table 2 lists the number of I/O refer-
ences, the size of the I/O reference stream, the number of
unique files accessed, and the fraction of references to con-
secutive file blocks. The selected applications and workload
sizes are comparable to the workloads in recent studies [12,
18, 25, 27] and require cache sizes of up to 1024MB. We
classify applications in three groups, sequential applications

that read entire files mostly sequentially, random access ap-

plications that perform small accesses to different parts of
the file, and a third group which represents applications con-
taining a mix of sequential and random accesses.

5.1.1 Sequential access applications
Cscope, glimpse, gcc and viewperf read entire files sequen-

tially and thus prefetching will benefit these applications.
Cscope [35] performs source code examination. The ex-

amined source code is Linux kernel 2.4.20. Glimpse [26] is
an indexing and query system and is used to search for text
strings in 550MB of text files under the /usr directory. In
both cscope and glimpse, an index is built first, and single
word queries are then issued. Only I/O operations during

Appl. Num. of Data Num. of Seq.
references size [MB] files refs.

cscope 1119161 260 10635 76%
glimpse 3102248 669 43649 74%

gcc 158667 41 2098 27%
viewperf 303123 495 289 99%
tpc-h 13468995 1187 49 3%
tpc-r 9415527 1087 49 3%

multi1 1278135 297 12246 70%
multi2 1580908 792 12514 75%
multi3 16571229 1855 43696 16%

Table 2: Applications and trace statistics

Appl. Applications executed concurrently
multi1 cscope, gcc
multi2 cscope, gcc, viewperf
multi3 glimpse, tpc-h

Table 3: Concurrent applications

the query phases are used in the experiments. Table 2 shows
that cscope and glimpse are good candidates for sequential
prefetching since 76% and 74% of references, respectively,
occur to the consecutive blocks. The remaining fraction of
references are not consecutive because they reference the
beginning of new files.

Gcc builds Linux kernel 2.4.20 and is one of the commonly
used benchmarks. It has a very small working set; 4MB of
buffer cache is enough to contain the header files. Gcc reads
entire files sequentially. However, the benefit of prefetching
will be limited since only 27% of references occur to consec-
utive blocks. Most of 73% of references are to the beginning
of new files, since in gcc, 50% of references are to files that
are at most two blocks long.

Viewperf is a SPEC benchmark that measures the perfor-
mance of a graphics workstation. The benchmark executes
multiple tests to stress different capabilities of the system.
The patterns are mostly regular loops as viewperf reads en-
tire files to render images. Over 99% of references are to
consecutive blocks within a few large files, resulting in a
perfect opportunity for prefetching.

5.1.2 Random access applications
The MySQL [29] database system is used to run TPC-

H (tpc-h) and TPC-R (tpc-r) benchmarks [39]. Tpc-h and
tpc-r access a few large data files, some of which have mul-
tiple concurrent access patterns. Tpc-h and tpc-r perform
random accesses to the database files. As a result, only 3%
of references occur to consecutive blocks. We can predict
that neither of these benchmarks will benefit from prefetch-
ing. Prefetching will not only increase the disk bandwidth
demand, but also pollute the cache.

5.1.3 Concurrent applications
Multi1 consists of concurrent executions of cscope and gcc.

It represents the workload in a code development environ-
ment. Multi2 consists of concurrent executions of cscope,
gcc, and viewperf. It represents the workload in a work-
station environment used to develop graphical applications
and simulations. Multi3 consists of concurrent executions of
glimpse and tpc-h. It represents the workload in a server en-
vironment running a database server and a web index server.



Scheme Parameters
OPT NA
LRU NA
LRU-2 CRP = 20, history size = cache size
LRFU λ = 0.001
LIRS HIR = 10% of cache, LRU stack = 2 * cache size
MQ 4 queues, ghost cache = cache size
2Q A1in = 25% of cache, ghost cache = cache size
ARC ghost cache = cache size

Table 4: Parameters for various replacement algorithms

5.2 Simulation environment
We implemented a buffer cache simulator that faithfully

implements the kernel prefetching and I/O clustering of Linux
2.4 kernel as described in Section 2.1. The I/O clustering
mechanism attempts to cluster I/Os to consecutive blocks
into disk requests of up to 64KB. In addition, our simulator
implements the eight cache replacement algorithm discussed
in Section 4, OPT, LRU, LRU-2, LRFU, LIRS, MQ, 2Q, and
ARC, as well as their corresponding adapted versions that
assume kernel prefetching and manage prefetched blocks.
Tables 4 lists the default parameters for each algorithm. To
evaluate each algorithm with comparable parameters, we
provide the additional history (ghost cache) equal to the
cache size for each algorithm that uses history information.

For each simulation, we measure the respective hit ratio,
the number of resulting (clustered) disk requests, and the
execution time. With prefetching, access to a prefetched
block is counted as a hit if the prefetching is completed, and
as a miss otherwise. Since obtaining an accurate hit ratio in
the presence of prefetching is not possible without a time-
aware simulator, we interfaced our buffer cache simulator
with DiskSim 3.0, an accurate disk simulator [15] to sim-
ulate the Seagate ST39102LW disk model. The combined
simulator allows us to simulate the I/O time of an applica-
tion and measure the reduction of the execution time under
each replacement algorithm.

In comparing the execution times of each application un-
der different replacement algorithms, we do not consider the
execution overhead of implementing the different replace-
ment algorithms. We believe that the effects of prefetching
on the execution time that we will observe in the follow-
ing overshadows the execution overhead of any reasonably
efficient implementations of the studied algorithms.

5.3 Results
In this section, we examine how prefetching affects each

group of the applications.

5.3.1 Sequential access applications
The accesses in the applications in this group exhibit loop-

ing reference patterns where blocks are referenced repeat-
edly with regular intervals. As expected for applications in
this group, prefetching improves the hit ratios. However, the
improvement from prefetching is more pronounced in some
applications than others.

Cscope

Figure 3 shows the results for cscope. The following ob-
servations can be made. First, kernel prefetching has a sig-
nificant impact on the hit ratio, but the improvement for
different algorithms differ. At 128MB cache size, while the
hit ratios for LRU, LRFU and ARC increase by 39%, 39%,
and 38%, respectively, the hit ratios for LRU-2, LIRS, and

2Q increase from 7.0%, 18.8%, and 58.4% to 78.1%, 77.1%,
and 75.8%, respectively. This suggests that it is critical
to consider kernel prefetching when comparing different re-
placement schemes.

Second, the clustering of I/O requests in the presence of
prefetching also results in a significant reduction in the num-
ber of disk requests compared to without prefetching. For
instance at 64MB cache size, all schemes besides OPT per-
form about 604,000 disk requests without prefetching, but
only about 422,000 requests with prefetching. This is be-
cause without prefetching, cscope offers little opportunity for
clustering as it reads files in small chunks (mostly 2 blocks at
a time). When prefetching is enabled, the sequential nature
of the accesses allows a larger number of contiguous blocks
to be read asynchronously. These blocks are clustered to-
gether, resulting in more blocks read per disk request. As a
result, the number of disk requests decreases.

Third, the effect of prefetching on disk requests cannot
always be predicted based on the effect of prefetching on
the hit ratio. The relationship between prefetching and disk
requests can be complex and is closely tied to the appli-
cation file access patterns. Cscope gives an example where
prefetching increases the opportunity for clustering, which
in turn reduces the number of disk requests. However, if
prefetched blocks are not accessed, it may not result in a
decrease in the number of disk requests. This is observed
for random assess applications in Section 5.3.2.

Fourth, the reduction in the number of disk requests due
to kernel prefetching does not necessarily translate into a
proportional reduction in the execution time. For example
with prefetching and at 64MB cache size, the numbers of
disk requests for LRU, LRFU and ARC decrease by 31%,
31%, and 30%, while the corresponding running times only
decrease by 1.6%, 1.2%, and 1.0%, respectively. In contrast,
at 128MB cache size, the number of disk requests for LIRS
and LRU-2 reduce by 64.4% and 75.4%, respectively, which
are significant changes and cause the execution time to de-
crease by 43.2% and 52.5%, respectively.

Lastly, prefetching can result in significant changes in the
relative performance of replacement algorithms. Some in-
teresting effects are seen as the cache size is increased to
128MB. For example, without prefetching the hit ratios of
2Q and OPT differ by 18%. With prefetching, the gap is re-
duced to under 6%. As another example, without prefetch-
ing LRU-2 and LIRS achieve 51% and 40% lower hit ratios
than 2Q, respectively, but with prefetching, they achieve 2%
and 1% higher hit ratios than 2Q, respectively.

Glimpse

Glimpse (Figure 4) also benefits from prefetching. The
curves for the hit ratio shift up by an average of 10% for
small cache sizes. In contrast, the hit ratios in cscope in-
crease by over 35%. The smaller increase can be explained
as follows. About 72% of the files accessed by glimpse are
one or two blocks long, where there is little benefit from
prefetching. In addition, 5% of the accesses to the rest of
the files read chunks of 25 or more blocks, which limits the
additional benefit that can be derived from clustering with
prefetching compared to without prefetching. As a result,
the benefit from prefetching is small compared to in cscope.

The changes in the relative behavior of different algo-
rithms observed in cscope with prefetching are also observed
in glimpse. In fact, there is a flip between the performance of
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Figure 3: The hit ratio, number of clustered disk requests, and execution time for cscope under various schemes.

2Q and ARC at 128MB cache size. Without prefetching, 2Q
and ARC have hit ratios of 7.2% and 11.4%, respectively;
with prefetching, the hit ratios change to 19.4% and 11.5%,
respectively. Similarly, there is a flip between 2Q and LIRS
at cache sizes 64MB and 128MB.

The improved hit ratio due to prefetching does not trans-
late into proportionally reduced disk requests, as shown in
Figure 4. The hit ratio for LRU-2 at 64MB cache size
increases by 10% with prefetching, but the corresponding
number of disk requests decreases by less than 2%. This
can be explained as follows. As discussed earlier, glimpse ei-
ther reads small files where clustering has little advantage, or
reads big files in big chunks where clustering is able to mini-
mize disk requests even without prefetching. While prefetch-
ing provides improvements in the hit ratio by bringing in
blocks before they are accessed, it does not provide any ad-
ditional benefit of clustering I/Os together into chunks as it
would for small-sized accesses to large files. Hence, there is
only a small reduction in the number of disk requests.

In contrast to the hit ratio, the number of disk requests
provides a much better indication of the relative execution
time among different replacement algorithms. For instance,
at 32MB cache size with prefetching, the hit ratio for 2Q,
LRU-2, LRFU, and MQ increase by 13%, 12%, 14%, and
14%, respectively. But the execution times for these schemes
show virtually no improvement (a mere 0.5% decrease in
time) as observed from the graph. Examining the number
of disk requests shows that for the four schemes, the num-
ber of disk requests decreases by under 1% with prefetch-
ing, which gives a much better indication of the effect of
prefetching on the execution time. As another example, at
128MB cache size, the hit ratios for 2Q, LRU-2, LRFU, and

MQ increase by about 12%. The corresponding numbers of
disk requests decrease by less than 1% except for LRU-2, for
which the number decreases by 2%. Hence, while the hit ra-
tio suggests improvement in execution time for all schemes,
the number of disk requests suggests a slight improvement
for LRU-2 only. The actual execution time is virtually un-
changed except for LRU-2 where it is 1% lower than without
prefetching. Similar correspondence between the number of
disk requests and the execution time can be observed for
other cache sizes.

Gcc

In gcc (the results for gcc can be found in [6]), the ben-
efit from prefetching is not as pronounced as in cscope and
glimpse. This is because in gcc many accesses are to small
files, for which there is little opportunity for prefetching. As
a result, all three performance metrics, the hit ratio, the
number of disk requests, and the execution time, are almost
identical with and without prefetching for each replacement
algorithm.

Viewperf

The behavior of the different cache replacement algorithms
in viewperf (the results for viewperf can be found in [6]) is
similar to that observed in cscope. As viewperf accesses large
files in small chunks, it is able to see maximum benefit from
prefetching. For instance, the hit ratio on average improves
from 35% to 87%, and the number of disk requests is reduced
by a factor of 11 when prefetching is turned on.

Finally, since viewperf is a CPU-bound application, the
improvement in the hit ratio and number of disk requests
do not translate into any significant reduction in the execu-
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Figure 4: The hit ratio, number of clustered disk requests, and execution time for glimpse under various schemes.

tion time. For example, while the hit ratio is improved and
the number of disk requests is reduced as mentioned above,
the execution time is reduced from 880 seconds to only 850
seconds, i.e., by 3.41%.

5.3.2 Random access applications
The two applications in this group, tpc-h and tpc-r, ex-

hibit predominantly random accesses. As expected (shown
in Figures 5 and 6), prefetching provides little improvement
in the hit ratio for these applications. Furthermore, most of
the prefetched blocks are not accessed and as a result both
the number of disk requests and the execution time are dou-
bled. For example, for tpc-h, with prefetching, the number
of synchronous disk requests, each of which prefetches an
extra block, is almost the same as the number of disk re-
quests that only access on-demand blocks without prefetch-
ing. Furthermore, an almost equal number of asynchronous
disk requests are issued, each of which prefetches between
2 to 4 blocks. As a result, the total number of disk blocks
under prefetching is about 5 times that without prefetch-
ing. This in turn results in the running time of tpc-h to be
doubled with prefetching.

Although with prefetching both tpc-h and tpc-h show small
improvement in hit ratio, the significant increase in the num-
ber of I/Os translates into a significant increase in the exe-
cution time. This is a clear example where the relative hit
ratio is not indicative of the relative execution time while the
number of disk requests gives a much better indication of the
relative performance of different replacement algorithms.

We observe that even the elaborate prefetching scheme
of the Linux kernel is unable to stop useless prefetching and
prevent performance degradation. This implies that applica-

tions dominated with random I/O accesses such as database
applications should disable prefetching or use alternative file
access methods when running on standard file systems such
as in Linux.

5.3.3 Concurrent applications
The applications in this group contain accesses that are

a mix of sequential and random accesses. Multi1 contains
more sequential accesses as compared to multi2 and multi3,
and are dominated by cscope. Therefore, the hit ratios and
disk requests for multi1 with or without prefetching exhibit
similar behavior as that for cscope. Multi2 behaves similarly
as multi1. However, prefetching does not improve the exe-
cution time, since this mix contains CPU-bound viewperf.
Multi3 has a large number of random accesses due to tpc-h,
and therefore its performance curves look similar to those
of tpc-h. The detailed results for these applications can be
found in [6].

5.3.4 Synchronous vs. asynchronous prefetching
We illustrate the breakdown of disk requests into syn-

chronous and asynchronous requests for cscope only at 128MB
cache size due to page limitation. Other sequential ac-
cess applications follow a similar trend. Table 5 shows the
number of (clustered) disk requests that are issued without
prefetching, along with synchronous and asynchronous disk
requests when prefetching is enabled. For each case, the
average number of blocks accessed per disk request is also
reported. The case without prefetching represents the actual
on-demand accesses issued by the programs. These blocks,
if not present in the cache, are always read synchronously.

Table 5 shows that the total number of disk requests (syn-
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Figure 5: The hit ratio, number of clustered disk requests, and execution time for tpc-h under various schemes.

PrefetchingNo prefetching
Synchronous Asynchronous

I/Os Size I/Os Size I/Os Size
OPT 190860 1.5 141128 1.5 15573 5.4
LIRS 486799 1.7 153078 1.5 14811 7.3
2Q 273568 1.7 161746 1.7 27718 6.9
LRU-2 609333 1.7 38542 1.8 111544 4.1
LRFU 607421 1.7 358085 1.7 61778 6.8
ARC 600312 1.7 352821 1.7 61682 6.8
MQ 607421 1.7 358064 1.4 6254 9.3
LRU 607421 1.7 358085 1.7 61778 6.8

Table 5: Number and size of synchronous and asyn-
chronous disk I/Os in cscope at 128MB cache size.

chronous and asynchronous) with prefetching is at least 30%
lower than without prefetching for all schemes except OPT,
and most of the reduction in disk requests comes from re-
ducing synchronous disk requests and instead issuing asyn-
chronous disk requests which can be overlapped with the
CPU time. The asynchronous disk requests prefetch be-
tween 5 to 9 blocks per access, efficiently utilizing the disk
bandwidth.

6. RELATED WORK

6.1 Other Replacement Algorithms
In addition to recency/frequency-based cache replacement

algorithms, many of which are described in Section 4, there
are two other classes of cache replacement algorithms: hint-
based and pattern-based.

Pattern-based algorithms SEQ [13] detects sequential
page fault patterns and applies the Most Recently Used

(MRU) policy to those pages. For other pages, the LRU
replacement is applied. However, SEQ does not distinguish
sequential and looping references. EELRU [34] detects loop-
ing references by examining aggregate recency distribution
of referenced pages and changes the eviction point using a
simple cost/benefit analysis. DEAR [11, 12], UBM [21], and
PCC [14] are three closely related pattern-based buffer cache
replacement schemes that explicitly separate and manage
blocks that belong to different reference patterns. The pat-
terns are classified into three categories: sequential, looping,
and other (random). The three schemes differ in the granu-
larity of classification; classification is on a per-application
basis in DEAR, a per-file basis in UBM, and a per-call-site
basis in PCC. Due to page limitation, we did not evaluate
pattern-based algorithms in this paper.

Hint-based algorithms In application-controlled cache man-
agement [8, 32], the programmer is responsible for inserting
hints into the application which indicate to OS what data
will or will not be accessed in the future and when. The OS
then takes advantage of these hints to decide what cached
data to discard and when. This can be a difficult task as the
programmer has to accurately identify the access patterns of
the application so that the resulting hints do not degrade the
performance. To eliminate the burden on the programmers,
compiler inserted hints are proposed [5]. These methods
provide the benefits of user inserted hints for existing ap-
plications that can be simply recompiled with the proposed
compiler. However, more complicated access patterns or in-
put dependent patterns may be difficult for the compiler to
characterize.
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Figure 6: The hit ratio, number of clustered disk requests, and execution time for tpc-r under various schemes.

6.2 I/O Prefetching
A number of work have considered I/O prefetching based

on hints (reference patterns) about an application’s I/O be-
havior. Such hints can be explicitly inserted by the pro-
grammer, or derived and inserted by a compiler [28], or even
explicitly prescribed by a binary rewriter [10] in cases where
recompilation is not possible.

Alternatively, dynamic prefetching has been proposed to
detect reference patterns in the application and predict fu-
ture block references. Future references to the file can be
predicted by probability graphs [16, 40]. Another approach
uses time series modeling [38] to predict temporal access
patterns and issue prefetches during computation intervals.
Prefetch algorithms tailored for parallel I/O systems have
also been studied [1, 20, 22].

6.3 Integrated Prefetching and Caching
In [7], Cao et al. point out the interaction between in-

tegrated prefetching and caching and derive an aggressive
prefetching policy with excellent competitive performance in
the context of complete knowledge of future accesses. The
work is followed by many integrated approaches, for exam-
ple, [1, 8, 20, 22, 23, 32, 37] which are either offline or based
on hints of I/O access patterns.

While an integrated prefetching and caching design is not
supported in any modern operating system, all modern op-
erating systems implement some form of kernel prefetching
in their file systems, on which buffer caching is layered on
top. Though not integrated, kernel prefetching is expected
to affect the buffer caching behavior as in integrated ap-
proaches. However, most recent caching algorithm studies

did not consider the performance impact of kernel prefetch-
ing [2, 13, 18, 19, 25, 27, 30, 33, 34].

Finally, in [36], Belady’s algorithm [3] is extended to si-
multaneously perform caching and read-ahead and the ex-
tended algorithm minimizes the cache miss ratio, or the
number of disk I/Os. The offline algorithm is effectively
a layered approach where caching is layered on top of disk
read-ahead.

7. CONCLUSION
Despite the well-known interactions between prefetching

and caching, almost all buffer cache replacement schemes
proposed over the last decade were studied without taking
into account the file system prefetching which exists in all
modern operating systems. In this paper, we performed a
detailed simulation study of the impact of the Linux kernel
prefetching on the performance of a set of eight replacement
algorithms.

Our study shows such kernel prefetching can have a signif-
icant impact on the relative performance of different replace-
ment algorithms. In particular, prefetching can significantly
improve the hit ratios of some sequential access applications
(cscope) but not other sequential access applications (gcc)
or random access applications (tpc-h and tpc-r); the differ-
ence in hit ratios may (cscope, gcc, viewperf) or may not
(glimpse, tpc-h, tpc-r) translate into similar difference in the
number of disk requests; the difference in the number of disk
requests may (gcc, glimpse, tpc-h, tpc-r) or may not (cscope,
viewperf) translate into differences in the execution time; as
a result, the relative hit ratios and numbers of disk requests
may (gcc) or may not (cscope, glimpse, viewperf) be a good
indication of the relative execution times; for random access



applications (tpc-h and tpc-r), prefetching has little impact
on the relative hit ratios of different algorithms, but can have
a significant adverse effect on the number of disk requests
and the execution time compared to without prefetching.
This implies that ,if possible, prefetching should be disabled
when running random access applications such as database
systems on standard file systems such as in Linux. These re-
sults clearly demonstrate the importance for buffer caching
research to take file system prefetching into consideration.

Our study also raise several questions on the buffer cache
replacement algorithm design. How to modify an existing
buffer cache replacement algorithm (or design a new one)
to leverage the knowledge about access history to explic-
itly perform prefetching, as opposed to passively using ker-
nel prefetching? What are the potential benefits of such a
change? How should the Linux or BSD kernel prefetching
be changed to avoid counter-productive prefetches for ran-
dom access applications? We are studying these questions
as part of our future work.
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