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A quaternion can be conveniently thought of as either

(i) a vector with four components; or

(ii) a scalar plus a vector with three components; or

(iii) a complex number with three different “imaginary’’ parts.

Here are three quaternions written in the “hyper complex’’ number form:

p̊ = p0 + ip1 + jp2 + kp3

q̊ = q0 + iq1 + jq2 + kq3

r̊ = r0 + ir1 + j r2 + kr3

The basic rules for multiplication are

i2 = j2 = k2 = ijk = −1

(reminiscent of the square of the imaginary unit i of the complex numbers). From
this follows

ij = −ji = k

jk = −kj = i

ki = −ik = j

(reminiscent of pairwise cross products of unit vectors x̂, ŷ , and ẑ in the directions
of orthogonal coordinate system axes). Then, if r̊ = p̊q̊, we obtain

⎡
⎢⎢⎣

r0
r1
r2
r3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q0
q1
q2
q3

⎤
⎥⎥⎦

or
r̊ = �q̊

similarly ⎡
⎢⎢⎣

r0
r1
r2
r3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p0

p1

p2

p3

⎤
⎥⎥⎦

or
r̊ = �∗p̊

These equations spell out in detail how to multiply two quaternions. Importantly,
multiplication is not commutative.
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Note that the matrices appearing above are orthogonal, in fact ��T = (p̊ ·
p̊) I where I is the 4×4 identity matrix. The above gives two useful isomorphisms
between quaternions (p̊ and q̊) with orthogonal 4×4 matrices (� and �∗) — one
for “pre-multiplication’’ and one for “post-multiplication.’’

“Scalar plus Vector’’ notation

Using the more compact “scalar plus vector’’ notation, we can write,

p̊ = (p,p), q̊ = (q,q), and r̊ = (r, r)

so that the product (r, r) = (p,p)(q,q) can be written out in the form

(r, r) = (pq − p · q, pq + qp + p × q)

(The appearance of the cross-product illustrates the lack of cummativity of quater-
nion multiplication). We now define the conjugate of a quaternion q̊ = (q,q):

q̊∗ = (q,−q)

and the dot-product of two quaternions

p̊ · q̊ = pq + p · q

It is useful to derive a few identities based on these basic operations:

(p̊q̊)∗ = q̊∗p̊∗

(p̊q̊) · (p̊r̊) = (p̊ · p̊)(q̊ · r̊)

(p̊q̊) · (p̊q̊) = (p̊ · p̊)(q̊ · q̊)

p̊q̊ · r̊ = p̊ · r̊q̊∗

Importantly if q̊ = (q,q) and q̊∗ = (q,−q), then

q̊q̊∗ = (q̊ · q̊)e̊

where e̊ = (1, 0). Hence q̊∗/(q̊ · q̊) is the inverse of q̊, that is(
q̊∗/(q̊ · q̊)

)
q̊ = e̊

and
q̊
(
q̊∗/(q̊ · q̊)

) = e̊.

This is a manifestation of the interesting algebra of quaternions — something not
possible with vectors of three components (i.e. there is no sensible definition for
multiplication for vectors that yields interesting properties such as an inverse).

Representing vectors and rotations

We use quaternions with zero “real’’ part to represent vectors. So the vector r is
represented by r̊ = (0, r). Consider the transformation of r to r ′ performed by

r̊′ = q̊r̊q̊∗

where r̊ is a “purely imaginary’’ quaternion (i.e. r̊ = (0, r)) and q̊ is a unit
quaternion (i.e. q̊ · q̊ = 1).
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Applying the above rule for multiplication of quaternions twice we find first
that the “real’’ part of the result is zero, so that we can write r̊′ = (0, r ′), and
second

r ′ = (q2 − q · q)r + 2q(q × r)+ 2(q · r)q.

which that can also be written in a form that involves fewer arithmetic operations:

r ′ = r + 2q(q × r)+ 2q × (q × r).

The operation r̊′ = q̊r̊q̊∗ turns a “purely imaginary’’ quaternion into another
purely imaginary quaternion. The inverse of this operation is simply r̊ = q̊∗r̊′q̊.
It is easy to show that the operation preserves dot-products. That is,

r ′1 · r ′2 = r1 · r2

where r̊′1 = q̊r̊1q̊∗ and r̊′2 = q̊r̊2q̊∗. A special case of this is r ′ ·r ′ = r ·r. This means
the operation preserves lengths and angles. It must therefore be a rotation — or
a rotation plus a reflection. Finally, we can show that the operation preserves
triple products

[r ′1 r ′2 r ′3] = [r1 r2 r3]

and hence must represent a rotation, since a rotation plus reflection would flip
the sign of the triple product.

It remains for us to figure out what rotation the unit quaternion q̊ represents.
Substituting q for r in the above formula yields (q̊ · q̊) q or r ′ = q. Hence q is
preserved by the rotation and hence is along the axis of rotation ω̂.

We still need to determine the angle of rotation θ . A vector r perpendicular
to the axis of rotation is turned into a vector r ′ making an angle θ with r. If we
pick r = q × a where a is an arbitrary vector that is not parallel to q, then we
find after some simplification that

r · r ′ = (q2 − q · q) ‖r‖2
Now since

r · r ′ = ‖r‖ ∥∥r ′
∥∥ cos θ

and
∥∥r ′

∥∥ = ‖r‖ we find that

q2 − q · q = cos θ

adding q2 + q · q = 1 to this equation we obtain 2q2 = 1+ cos θ or

q = ± cos(θ/2).

If we subtract, we obtain instead 2q · q = 1− cos θ or ‖q‖ = sin(θ/2). So finally

q = ± sin(θ/2)ω̂

Hence the unit quaternion representing rotation through an angle θ about the
axis ω̂ is q̊ = (q,q), with q and q are as defined above. Note, however, that −q̊
represents the same rotation, since

(−q̊)r̊(−q̊∗) = q̊r̊q̊∗.
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Finally, from
p̊(q̊r̊q̊∗)p̊∗ = (p̊q̊)r̊(q̊∗p̊∗) = (p̊q̊)r̊(p̊q̊)∗

we see that composition of rotations simply corresponds to multiplication of
quaternions.

Advantages of unit quaternion notation

There are at least eight methods used fairly commonly to represent rotation,
including: (i) orthonormal matrices, (ii) axis and angle, (iii) Euler angles, (iv)
Gibbs vector, (v) Pauli spin matrices, (vi) Cayley-Klein parameters, (vii) Euler or
Rodrigues parameters, and (viii) Hamilton’s quaternions.

One advantage of the unit quaternion representations is that it leads to a
clear idea of what the “space of rotations’’ is — we can think of it as the unit
sphere S3 in 4-space with antipodal points identified (−q̊ represents the same
rotation as q̊). (Equivalently it is the projective space P3). This makes it possible,
for example, to compute averages over all possible attitudes of an object. It
also makes it possible to sample the space of rotations in a systematic way — or
randomly — with uniform sampling density.

Another advantage is that, while redundant (4 numbers to represent 3 degrees
of freedom), the extra constraint (namely that it has to be a unit quaternion) is
relatively easy to deal with. This makes it possible to find closed-form solutions
to some optimization problems involving rotations. Such problems are hard to
solve when using orthonormal matrices to represent rotation because of the six
non-linear constraints to enforce orthonormality (RTR = I ), and the additional
constraint det(R) = +1.

If we compose rotations using multiplication of 3 × 3 matrices, numerical
problems will conspire to make the results not quite orthonormal. It is difficult
to find the “nearest’’ orthonormal matrix to one that is not quite orthonormal.
While multiplying unit quaternions may similarly lead to quaternions that are no
longer of unit length, these are easy to normalize.

When it comes to rotating vectors and composing rotations, quaternions
may have less of an advantage. While it takes fewer operations to multiply two
unit quaternions than it does to multiply two orthonormal matrices, it takes a few
more operations to rotate a vector using unit quaternions (although the details
depend in both cases on how cleverly the operation is implemented!).


