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It is a great pleasure to dedicate this paper to Steve Gelbart, who was one of the
first to work in this area.

1. Introduction

1.1. Steve Gelbart, Whittaker models and the metaplectic group.
The metaplectic double cover of Sp(2r) and the Weil representation were intro-
duced by Weil [37] in order to formulate results of Siegel on theta functions in the
adelic setting. This was followed by two initially independent developments. First,
Shimura [32], [33] gave two extremely important constructions involving modular
forms of half-integral weight. Both Shimura integrals involved Rankin-Selberg con-
volutions with a theta function which, in the modern view, lives on the metaplectic
double cover of SL2 (or GL2). Second, the mainstream modern context of auto-
morphic representations of adele groups emerged with Jacquet and Langlands [23]
and Godement and Jacquet [22]. (Gelbart’s book [11] was important in making
this modern point of view accessible to a generation of workers in the field.) It
became clear that the metaplectic group and Shimura’s constructions needed to be
reworked in the modern language. Gelbart [12] was perhaps the first to talk about
automorphic forms of half-integral weight, particularly theta functions, in com-
pletely modern terms. The Shimura constructions were carried out on the adele
group by Gelbart and Piatetski-Shapiro [17], [18] for the Shimura correspondence,
and by Gelbart and Jacquet [14], [15] for the symmetric square. Shimura’s im-
portant constructions were thus extended, and as a particular important point the
lifting from GL2 to GL3 was established.

Jacquet and Langlands [23] emphasized the uniqueness of Whittaker models
for representations of GL2. Shalika [31] and Piatetski-Shapiro [29] showed that
uniqueness holds over nonarchimedean local fields. (See also Gelfand and Kazh-
dan [21] and Bernstein and Zelevinsky [1].)

For metaplectic covers of these groups, the Whittaker models may or may not be
unique. Gelbart and Piatetski-Shapiro considered the representations of the double
cover of SL2 that have unique Whittaker models and found them to be associated
with theta functions. On the other hand Gelbart, Howe and Piatetski-Shapiro [13]
showed that representations of the double cover of GL2 have Whittaker models
(in a slightly modified sense) that are unique. The failure of uniqueness of Whit-
taker models might seem a defect, but Waldspurger [36] showed that precisely this
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lack of uniqueness is the source of an important phenomenon, in which the global
Whittaker models of modular forms of half-integral weight encode L-values of the
Shimura correspondent. Waldspurger’s phenomenon was clarifed by Gelbart and
Piatetski-Shapiro [19]. And Gelbart and Soudry [20] gave examples of automorphic
forms on the double cover of SL2 that have local Whittaker models at all places
but no global Whittaker models.

Higher metaplectic covers were defined by Kubota [26] (for SL2) and Matsu-
moto [28] (for general simply-connected groups), and in general Whittaker models
are not unique. Kazhdan and Patterson [24] showed that on the n-fold cover of
GLr, the Whittaker coefficients of theta functions (residues of Eisenstein series)
have unique Whittaker models if r = n or n− 1. However for general automorphic
forms, including Eisenstein series, Whittaker models are not unique.

At first sight, Whittaker models of Eisenstein series on metaplectic groups
seem to be difficult to compute. When uniqueness of Whittaker models fails, the
coefficients can sometimes be computed, but they at first appear chaotic, and this
may account for the fact that their properties remained hidden for a very long time.
Nevertheless in [3]–[10] a theory of Weyl group multiple Dirichlet series has been
developed by Brubaker, Bump, Chinta, Friedberg, Gunnells and Hoffstein. These
Dirichlet series are conjectured to be (global) Whittaker coefficients of metaplectic
Eisenstein series, though recent progress in developing their properties has been
made possible by not emphasizing this connection in favor of other methods.

1.2. Main results and outline of the paper. This paper continues to de-
velop the theory of Weyl group multiple Dirichlet series from the perspective of [6].
There, we presented a definition of multiple Dirichlet series attached to the root
system Ar, r ≥ 1. We recall the basic set-up.

Let F be a totally complex algebraic number field containing the group µ2n of
2n-th roots of unity. Let S be a finite set of places of F containing the archimedean
ones and those ramified over Q that is large enough that the ring oS of S-integers
in F is a principal ideal domain.

Then to any r-tuple of oS integers m = (m1, · · · ,mr), we associate a multiple
Dirichlet series of type Ar of form

ZΨ(s; m) = ZΨ(s1, · · · , sr;m1, · · · ,mr) =∑
HΨ(c1, · · · , cr;m1, · · · ,mr)Nc−2s1

1 · · ·Nc−2sr
r(1)

where the sum is over nonzero ideals ci of oS , and we are denoting s = (s1, · · · , sr) ∈
Cr.

Remark 1.1. Here H and Ψ are defined when ci are nonzero elements of oS ,
but their product is well-defined over ideals, since H and Ψ behave in a coordinated
way when ci is multiplied by a unit. Thus the sum is essentially over ideals cioS .
However we will want to consider H independently of Ψ, so for each prime p of oS
we fix a generator p of p, and only consider ci and mi which are products of powers
of these fixed p’s.

The function Ψ is chosen from a finite-dimensional vector spaceM of functions
on (F×S )n that is well-understood and defined in [5] and [4], but the function H
is more interesting. It has a twisted multiplicativity with respect to both the ci,
i = 1, . . . , r and m. That is, H can be decomposed into relatively prime pieces up
to an nth root of unity determined by the m and the ci. While this implies that ZΨ
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is not an Euler product, the specification of its coefficients is nevertheless reduced
to the case where the ci and mi are powers of the same prime p. See [3], [5] or [6]
for further details, including a precise definition of the twisted multiplicativity.

Thus to specify ZΨ we are reduced to defining H(pk1 , · · · , pkr ; pl1 , · · · , plr ) for
a fixed prime p. These “local coefficients” are defined by weighted sums over strict
Gelfand-Tsetlin patterns with a certain fixed top row. Recall that a Gelfand-Tsetlin
pattern of rank r is an array of integers

(2) T =


a00 a01 a02 · · · a0r

a11 a12 a1r

. . . . . .

arr


where the rows interleave; that is, ai−1,j−1 > ai,j > ai−1,j . We will say that the
pattern is strict if each row is strictly decreasing. The weighting factors attached to
each pattern are products of Gauss sums formed with nth power residue symbols.
A precise definition is reviewed in the next section.

In [6] we made two conjectures concerning these multiple Dirichlet series. The
first stated that the multiple Dirichlet series associated to Ar appear in the Fourier-
Whittaker coefficients of certain minimal parabolic metaplectic Eisenstein series on
n-fold covers of GL(r + 1). The second conjectured that these series have analytic
continuation to meromorphic functions on the whole complex space Cr and possess
functional equations isomorphic to the Weyl group Sr+1 of the corresponding root
system Ar. This paper concerns the latter of these two conjectures.

Several special cases of the conjecture, depending on the initial data r, m and
n, have been proved. For example, in [4] we proved this when n is sufficiently large
(depending on r and m). In this case, there are fewer non-zero local coefficients,
so the proofs of functional equations are much simpler. The conjecture for general
n remains open.

The present paper reduces this conjecture to a single combinatorial identity, and
then outlines an approach to proving this resulting identity. More detailed pieces
of this proof will appear in subsequent papers, but we feel that it is particularly
illuminating to see several examples of the sorts of combinatorial objects involved.

The key idea is that while the prime power contributions to H are in bijec-
tion with Gelfand-Tsetlin patterns of fixed top row, there is no canonical way of
identifying the two sets. In fact, given one such map from patterns to H, we can
compose this with any involution of Gelfand-Tsetlin patterns preserving the top
row to get another parametrization of the local coefficients H. A distinguished
role is played by an involution, originally defined by Schützenberger [30] for Young
tableaux, which has been translated into the language of Gelfand-Tsetlin patterns
by Berenstein and Kirillov [25].

In Theorem 2.2, we explain how our initial parametrization of H in terms of
patterns from [6] can be used to inductively prove all but one functional equa-
tion associated to simple reflections in the Weyl group. A second parametrization,
obtained by composing the coordinate map of [6] with the Schützenberger invo-
lution, can be used to inductively prove a different collection of all but one of
these functional equations. Thus, we reduce our conjecture to proving that the two
parametrizations of H by Gelfand-Tsetlin patterns are equal.
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In Theorem 3.5, we further reduce the conjecture by decomposing the Schützen-
berger involution into involutions ti corresponding to simple reflections σi, i =
1, . . . , r, and prove that one only needs the equivalence of two new parametrizations
of H by Gelfand-Tsetlin patterns which differ by a single tr. This allows us to
restrict our attention, within Gelfand-Tsetlin patterns, to the top three rows, as tr
does not affect the remaining rows.

In the final section, we illustrate some of the combinatorial techniques used
to prove the reduction resulting from Theorem 3.5. These techniques prove the
required identity for all but one class of degenerate patterns, and we give an example
in the degenerate case to give a flavor of the remaining complexity.

We would like to thank Gautam Chinta, Paul Gunnells and the referee for
helpful comments. This work was supported by NSF FRG grants DMS-0354662
and DMS-0353964 and by NSA grant H98230-07-1-0015.

2. Definitions and a first reduction of the FE Conjecture

As noted above, in [6] we defined a Weyl group multiple Dirichlet series of
type Ar in terms of Gauss sums indexed by strict Gelfand-Tsetlin patterns. We
will repeat the definition now, with slightly different notation and give a second dual
definition. The two definitions are not known to be equivalent, and the remainder
of this paper is devoted to progress toward this claim. To conclude the section, we
will explain how the equivalence of these two definitions would imply Conjecture 1
of [6], which asserts that the resulting multiple Dirichlet series possesses functional
equations isomorphic to the Weyl group Sr+1 of Ar. The conjecture will henceforth
be referred to as the FE conjecture. In the middle of the section, we also digress
to discuss the connections between these formulas and the representation theory of
SLr+1(C).

2.1. Definitions for coefficients of Weyl group multiple Dirichlet se-
ries. Given a number field F and a set of places S, as described in the introduction,
let ψ be an additive character of FS =

∏
v∈S Fv that is trivial on oS but no larger

fractional ideal. If m, c ∈ oS with c 6= 0 let

(3) g(m, c) =
∑

a mod c

(a
c

)
ψ
(am
c

)
,

where
(
a
c

)
is the n-th power residue symbol. In much of the following discussion,

we fix a prime p, and use the following abbreviated notation when no confusion can
arise:

(4) g(a) = g(pa−1, pa), h(a) = g(pa, pa), q = |o/po|.

If T is the Gelfand-Tsetlin pattern (2), define GR(T) = GL(T) = 0 if T is not
strict; assuming strictness, we define them as follows. Let 1 6 i 6 j 6 r and

(5) Ri,j = Ri,j(T) =
r∑
k=j

(ai,k − ai−1,k), Li,j = Li,j(T) =
j∑
k=i

(ai−1,k−1 − ai,k).
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We say that T is left-leaning at (i, j) if ai,j = ai−1,j−1 and that T is right-leaning
at (i, j) if ai,j = ai−1,j . We define

(6) GR(Ri,j) = GR(Ri,j(T)) =

 qRi,j if T is right-leaning at (i, j);
g(Ri,j) if T is left-leaning at (i, j);
h(Ri,j) otherwise.

Similarly, we define

(7) GL(Li,j) = GL(Li,j(T)) =

 qLi,j if T is left-leaning at (i, j);
g(Li,j) if T is right-leaning at (i, j);
h(Li,j) otherwise.

Thus we have attached one of the number-theoretic quantities in (4) to each entry
of the strict Gelfand-Tsetlin pattern.

Let

GR(T) =
∏

16i6j6r

GR(Ri,j), GL(T) =
∏

16i6j6r

GL(Li,j).

If the dependence on p is to be emphasized, we will sometimes denote these by
GR(T; p) and GL(T; p). We further define two sets of “local coordinates”

kR(T) = (kR1 , · · · , kRr ), kL(T) = (kL1 , · · · , kLr ),

by

(8) kRi = kRi (T) =
r∑
j=i

(ai,j − a0,j)

and

(9) kLi = kLi (T) =
r∑

j=r+1−i
(a0,j−r−1+i − ar+1−i,j).

Finally, we define

(10) HR(pk1 , · · · , pkr ; pl1 , · · · , plr ) =
∑

kR(T)=(k1,··· ,kr)

GR(T)

and similarly

(11) HL(pk1 , · · · , pkr ; pl1 , · · · , plr ) =
∑

kL(T)=(k1,··· ,kr)

GL(T),

where, in each case, the sum runs over all Gelfand-Tsetlin patterns with top row

(12) λ+ ρ = {l1 + . . .+ lr + r, l2 + . . .+ lr + r − 1, · · · , lr + 1, 0} ,

satisfying the indicated condition beneath each sum. Here

λ = {l1 + . . .+ lr, l2 + . . .+ lr, · · · , lr, 0} ,

and ρ = (r, r − 1, · · · , 0). As noted in the introduction, because we know how to
decompose the multiple Dirichlet series in (1), via twisted multiplicativity in m
and the ci, i = 1, . . . , r., into prime power pieces, then either description (10) or
(11) suffices to complete the definition of the series. For a precise description of the
twisted multiplicativity, see [6].
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2.2. Gelfand-Tsetlin patterns and representation theory. We now ex-
plain how the above data defined from Gelfand-Tsetlin patterns relates to the rep-
resentation theory of SLr+1(C).

First we review the case where n = 1, which is explained more fully in [6].
When n = 1, the Weyl group multiple Dirichlet series are just Whittaker coeffi-
cients of Eisenstein series of minimal parabolic type on PGLr+1. According to the
formula of Shintani [34] and of Casselman-Shalika [7], these are Schur polynomials,
represented by the Weyl character formula. Specifically, the Satake isomorphism
associates with s and the prime p a conjugacy class A in the L-group SLr+1(C),
and the Shintani-Casselman-Shalika formula identifies the p-part of a Whittaker
coefficient of the Eisenstein series with the character of an irreducible representa-
tion of SLr+1(C) applied to A. Here the Whittaker coefficient is with respect to
a character of the maximal unipotent whose p-part is determined by a partition λ
associated to a highest weight vector in the representation.

The relevance of Gelfand-Tsetlin patterns can be seen from this – one may
give a description of the irreducible representations of SLr+1(C) based on Gelfand-
Tsetlin patterns in which the patterns parametrize vectors in irreducible modules of
SLr+1(C); in this parametrization, the top row of the pattern is the highest weight
vector of the representation, and the row sums are data determining the weight
space in which the vector lies. We will not use this description – rather we will use
a variant due to Tokuyama in which the top row of the pattern is not λ but λ+ ρ
as in (12), and only strict Gelfand-Tsetlin patterns are used. But we mention it
in order to inculcate the idea that the top row of the pattern corresponds to the
highest weight vector, and the row sums correspond to weights.

We return to the fact that the p-part of the multiple Dirichlet series when n = 1
is the character of the irreducible representation with highest weight vector λ ap-
plied to the conjugacy class A in SLr+1(C). The Weyl character formula expresses
this character value as a ratio of two quantities. The numerator is an alternating
sum of |W | = (r + 1)! monomials (where W is the Weyl group). The denominator
in the Weyl character formula can be expressed as either an alternating sum or as a
product. Writing it as a product, it resembles the p-part of the normalizing factor
of the Eisenstein series, which is a product of 1

2r(r + 1) zeta functions. However,
the zeta functions are at the wrong values; they are shifted.

But Tokuyama [35] gave a deformation of the Weyl character formula in which
both the numerator and the denominator are altered. The denominator remains a
product of 1

2r(r + 1) factors, and these can be brought into agreement with the p-
part of the normalizing factor. The numerator becomes a sum over Gelfand-Tsetlin
patterns. This deformation of the Weyl character formula can now be recognized
as the p-part of the multiple Dirichlet series as we have defined it. Specifically, HR

as we have defined it in (10) is the contribution of all terms in a particular weight
space of the irreducible representation to Tokuyama’s formula. The row sums of
the pattern, that is, the numbers kR, correspond to the weight to which the term
contributes in the formula for Tokuyama’s numerator. Summing over all kR gives
the p-part of the multiple Dirichlet series, which is in exact agreement with the
numerator in Tokuyama’s formula. The denominator in Tokuyama’s formula is
then the p-part in the normalizing factor of the Eisenstein series.

Thus when n = 1, there is a well-understood connection with the representation
theory of SLr+1(C). When n > 1, we are presented with a further “deformation” of
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Tokuyama’s formula involving Gauss sums. The connection apparently persists but
it is no longer with the representation theory of SLr+1(C) but with its quantum
analog.

Before we can address this point, it will be useful explain the roles of kR and
kL as defined in (8) and (9). The patterns T with fixed top row and fixed value
of either kR or kL parametrize basis vectors for a weight space given by the values
(k1, . . . , kr). (Typically, the coordinates for weight spaces are expressed in terms
of differences of row sums in the Gelfand-Tsetlin pattern, and so our choice of kR
or kL can be seen as a composition of these usual coordinates with an affine linear
map. The affine linear map has been chosen so that the support of the coordinates
has ki non-negative for all i = 1, . . . , r.) The two coordinate choices kR and kL are
related by the Schützenberger involution on Gelfand-Tsetlin patterns, an involution
originally defined on semistandard Young tableaux by Schützenberger [30] in the
context of jeu de taquin, which was translated into the language of Gelfand-Tsetlin
patterns by Kirillov and Berenstein [25].

Following [25], the Schützenberger involution is defined in terms of simpler in-
volutions on Gelfand-Tsetlin patterns labelled t1, . . . , tr. For any i with 1 ≤ i ≤ r,
ti affects only the entries in the (i+ 1)st row of the pattern. Using the indexing as
in (2), we observe that ai,j is constrained (by the definition of Gelfand-Tsetlin pat-
terns) to lie between max(ai−1,j , ai+1,j+1) and min(ai−1,j−1, ai+1,j). The involution
ti reflects it in this range, so that

(13) ti(ai,j) = min(ai−1,j−1, ai+1,j) + max(ai−1,j , ai+1,j+1)− ai,j
for j ∈ [i+ 1, r− 1]. At the ends of the (i+ 1)st row, we must modify this slightly:

ti(ai,i) = ai+1,i + max(ai−1,i, ai+1,i+1)− ai,i,(14)
ti(ai,r) = min(ai−1,r−1, ai+1,r) + ai−1,r − ai,r

From these ti, we can build a collection of involutions as follows.
Let q0 be the identity map, and define recursively

(15) qi = t1t2 · · · tiqi−1.

In particular, qr is the desired Schützenberger involution. (Note the operations
ti obviously have order 2. They do not satisfy the braid relations, so titi+1ti 6=
ti+1titi+1. However they do satisfy titj = tjti if |i − j| > 1, which implies that qi
has order 2.)

The Schützenberger involution interchanges the two weights kR and kL – see
(29) below. It would be nice if we could assert that GR(T) = GL(qrT), and indeed,
this is true if T is in some sense “in general position.” However, there are exceptions
to this, and careful bookkeeping is required. What appears to be actually true is
that ∑

kR(T)=(k1,··· ,kr)

GR(T) =
∑

kR(T)=(k1,··· ,kr)

GL(qrT),

and the thrust of the proof of our later Theorem 3.5 is to reduce this statement
to a simpler combinatorial one using the involution and its components ti. Al-
though only strict patterns have a nonzero contribution to (10) and (11), the
Schützenberger involution does not perserve the property of strictness. This is
the reason that in (10) and (11) we defined the terms to be zero and summed over
all patterns.
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Gautam Chinta and Paul Gunnells have called our attention to the fact that
the Rij and Lij defined in (5) are the numbers appearing in what we might call
Littelmann patterns. Littelmann [27] associated a sequence of integers with the
following data: first, a Gelfand-Tsetlin pattern (or, more generally, a vertex in a
crystal graph); and second, a reduced word representing the long element in the
Weyl group as a product of simple reflections. The sequence of integers is obtained,
as Littelmann explains in the introduction and in Section 5 of [27], by applying
rasing operators in an order determined by the reduced expression of the long Weyl
group element to the vertices of the crystal graph, and tabulating the number of
times each raising operator can be applied. For one reduced word these numbers,
put into an array, coincide with our Rij (later defined as a “Γ array” in (21)). For
another reduced word, they coincide with our Lij (later defined as a “∆ array”
in (22)). The observation of Chinta and Gunnells regarding this connection will be
of doubtless importance in the further development of this theory.

2.3. First Reduction of the FE Conjecture. The coefficients HR defined
in (10) agree with the coefficients H defined in [6], though the notation differs
slightly. Their equivalence is easy to see if one bears in mind that, with notation
as defined in this section, g(pa, pb) = h(b) whenever a > b. The coefficients HL

defined in (11) are introduced here for the first time.

Conjecture 2.1. With definitions as above, HR = HL.

Before exploring the proof of this conjecture in subsequent sections, we note an
important consequence.

Theorem 2.2. Conjecture 2.1 implies the FE conjecture (Conjecture 1 in [6]).

Proof. (Sketch) We will not make use of Conjecture 2.1 until quite late in the
proof, and so will take ZΨ to be defined by the sum (1) with H = HR until further
notice.

The functional equations that must be satisfied are formulated in [4]. In the
case of Ar, the dependence on m1, · · · ,mr can be made more explicit as follows.
Let

Z̃Ψ(s; m) = Z̃Ψ(s; m;Ar) =
∏
i,j

Nm
2

r+1 bijsj

i ZΨ(s; m),

where

bij =
{
i(r + 1− j) if i 6 j,
(r + 1− i)j if i > j,

and let Z̃∗ be Z̃ multiplied by certain Gamma factors, and a product of 1
2r(r + 1)

Dedekind zeta functions, which are given explicitly in [3]–[5].
Let A be the ring of (Dirichlet) polynomials in q±2s1

v , . . . , q±2sr
v where v runs

through the finite set of nonarchimedean places in S, and qv denotes the cardinality
of the residue field. Let M = A⊗M. As in [4] we regard elements of M as functions
Ψ : Cr × (F×S )r −→ C such that for any fixed (s1, . . . , sr) ∈ Cr the function

(C1, C2, . . . , Cr) 7−→ Ψ(s1, . . . , sr;C1, . . . , Cr)

defines an element of M, while for any (C1, . . . , Cr) ∈ (F×S )r, the function

s = (s1, . . . , sr) 7−→ Ψ(s1, . . . , sr;C1, . . . , Cr)
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is an element of A. Now the functional equation should have the following form:
there is an action of the Weyl group W ∼= Sr+1 on M such that

Z̃∗wΨ(ws; m) = Z̃∗Ψ(s; m).

As noted in [4] and [5], it suffices to prove one functional equation for each simple
reflection in the Weyl group as these generate the entire group. Denoting the simple
reflections by σ1, · · · , σr, we may argue inductively that the functional equations for
Ar−1 imply functional equations for σ2, · · · , σr, leaving us only to prove a functional
equation for σ1.

Indeed, the base case of this induction, r = 1, is handled by the paper [2],
where a single functional equation is proved for the Dirichlet series with coefficients
H(c;m) = g(m, c) as defined in (3). One can easily confirm that the Gauss sum de-
composes into prime-power pieces according to the twisted multiplicativity defined
in [5] and [6] and that the resulting H(pk; pl) for each prime p with ordp(m) = l > 0
is given by

GR(T) = GR

({
l + 1 0

k

})
= g(pl, pk),

according to the recipe outlined in (10) above. Hence, the Weyl group multiple
Dirichlet series for A1 coincides with the so-called “Kubota” Dirichlet series defined
in [2] and the functional equation follows.

We now sketch a proof of the induction step. Note that

(16) H(c1, · · · , cr;m1, · · · ,mr) = µc,m

∏
p

H(pk1(p), · · · , pkr(p); pl1(p), · · · , plr(p)),

where ki(p) = ordp(ci) and li(p) = ordp(mi), and µc,m denotes a certain n-th
root of unity depending on c = (c1, c2, . . . , cr) and m. More specifically, it may
be expressed in terms of the n-th power reciprocity law by the multiplicativity
properties of H that are set out in [3], [5] and [4]. The product is essentially
finite since unless p divides one of the ci or mi we have ki(p) = li(p) = 0 and the
corresponding factor equals 1 (as one may readily check from (6) and (8)).

Now using the definition H = HR, the coefficient H(pk1 , · · · , pkr ; pl1 , · · · , plr )
is a sum of the GR(Tp; p) over Gelfand-Tsetlin patterns, with top row (12) and
with the sum of the elements in the i+ 1-st row being ki minus the sum of the last
r+ 1− i elements of the top row. Now if for each p we are given a Gelfand-Tsetlin
pattern

Tp =


a00(p) a01(p) a02(p) · · · a0r(p)

a11(p) a12(p) a1r(p)
. . . . . .

arr(p)


we may consider the pattern

T =


a00 a01 a02 · · · a0r

a11 a12 a1r

. . . . . .

arr

 ,

where
aij =

∏
p

paij(p).
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This is a “Gelfand-Tsetlin pattern” in which the elements are not rational integers,
but rather elements of oS , and the inequalities defining a Gelfand-Tsetlin pattern
have been replaced by divisibility conditions, namely ai−1,j |ai,j |ai−1,j−1. We call
T a global Gelfand-Tsetlin pattern. Now denote

GR
(

T
)

= µc,m

∏
p

GR(Tp),

where µc,m is as in (16). We see that we may write HR(c; m) as a sum of GR
(

T
)
,

where now the sum is over global Gelfand-Tsetlin patterns. As explained in Re-
mark 1.1 we are only considering global patterns in which the elements are products
of powers of a fixed set of generators of the primes; if we considered HΨ instead of
H, we could sum over ideals.

Now Z̃∗Ψ is a sum over global patterns with fixed top row depending on m =
(m1, · · · ,mr). We may break this up as follows. Let us fix the top two rows and
consider the resulting sum. If the second row of the global pattern is∏

p

pd1(p)+···+dr(p)+r−1,
∏
p

pd2(p)+···+dr(p)+r−2, · · · ,
∏
p

pdr(p)

then let
m′i =

∏
p

pdi(p), (i = 1, · · · , r − 1).

One may check that the sum over the patterns with fixed top two rows is a Weyl
group multiple Dirichlet series attached to Ar−1 of the form

Z̃∗Ψ′(s2, · · · , sr;m′1, · · · ,m′r−1;Ar−1)

times a product of Gamma functions and Dedekind zeta functions, and a product of
powers of the norms of themi that is invariant under the transformations σ2, · · · , σr.
Thus one obtains functional equations for this subset of Weyl group generators for
Z̃∗Ψ.

Now we may explain at last why Conjecture 2.1 implies the FE Conjecture. If
one defines ZΨ in terms of HL instead of HR, the argument proceeds as above, but
we obtain instead the functional equations for σ1, · · · , σr−1. Combining these with
the functional equations for the simple reflections that we had before, one obtains
functional equations with respect to the full Weyl group. �

3. A second reduction to a combinatorial conjecture

Let q be either a complex number or an indeterminate, and let R be a Z[q]-
algebra with generators h(a) and g(a), one for each positive integer a, subject to
the following relations.

Relation (i). Suppose that a, b > 0. Then

h(b)h(a+ b) = qbh(b)h(a), h(b)g(a+ b) = qbh(b)g(a).

Relation (ii). Suppose that a, b > 0 and a+ b > 0. Then

(17) g(a+ b)h(a)h(b) = h(a+ b)g(a)g(b) + h(a+ b)g(a+ b).

Relation (iii). If a > 0 we have

(18) h(a)2 = g(a)h(a) + qah(a).

We also define h(0) = 1, but g(0) will never appear.
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Let g and h be as in the previous section. We reiterate that g(a) is only defined
if a > 0. Let q be the cardinality of o/po.

Lemma 3.1. If n|a and a > 0 then

h(a) = φ(pa) = qa−1(q − 1), g(a) = −qa−1,

while if n - a then h(a) = 0 and |g(a)| = qa−
1
2 . If n - a, b but n|a+ b then

g(a)g(b) = qa+b−1.

If a ≡ b modulo n with a, b > 0, then h(a) = qa−bh(b) and g(a) = qa−bg(b).

These facts about Gauss sums are standard.
The Lemma implies that there is an algebra homomorphism from the algebra

R to the Z[q]-algebra generated by g(a) and h(a) for a > 0, for if one replaces
g(a) by g(a) and h(a) by h(a) then Relations (i), (ii) and (iii) are still satisfied.
The Relations can be proved on a case-by-case basis depending on the divisibility
properties of a, b and a+ b. Relation (i) follows since if h(b) = 0, both sides of both
equations vanish; otherwise n|b, and so Relation (i) follows from the last statement
of Lemma 3.1. Both sides of (18) vanish unless n|a since h(a) appears in every
term; and if n|a, then by Lemma 3.1 we have h(a) = g(a) + qa, so (iii) follows. As
for (ii), equation (17) is harder than (18) but also follows from Lemma 3.1.

Remark 3.2. When one begins to investigate in this area, one encounters a
bewildering array of identities. One could base their combinatorial study on either
Lemma 3.1 or on Relations (i), (ii) and (iii). There are two advantages of the latter
approach. First, it avoids a descent into case-by-case considerations depending on
the divisibility of various parameters by n. A second very important advantage is
that it allows one to work in R; as we will illustrate later the relations that define
R are precisely those needed to prove the combinatorial Conjecture 3.4 below in
the rank one case, and it is our experience that no further identities will be needed
in higher rank. There are also advantages to working directly with g and h, and we
may do so in subsequent papers, but to clarify the issues we formalize the relations
in this one.

By a short Gelfand-Tsetlin pattern (or short pattern) we mean an array

(19) t =

 l1 l2 l3 · · · lr+1

a1 a2 ar
b1 · · · br−1

 ,

where the rows are nonincreasing sequences of integers that interleave, that is,

(20) li > ai > li+1, ai > bi > ai+1.

We will refer to l1, · · · , lr+1 as the top row of t, a1, · · · , ar as the middle row and
b1, · · · , br−1 as the bottom row .

Our aim is to define two R-valued functions GΓ and G∆ on the set of short
Gelfand-Tsetlin patterns. Let us assume momentarily that t is strict. We will
associate with t two arrays

Γ = Γ(t) =
{

Γ1,1 Γ1,2 Γ1,r

Γ2,1 · · · Γ2,r−1

}
and

∆ = ∆(t) =
{

∆1,1 ∆1,2 ∆1,r

∆2,1 · · · ∆2,r−1

}
,
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where Γi,j = Γi,j(t) and ∆i,j = ∆i,j(t) are to be defined. If t is as in (19) then

(21) Γ1,j = Γ1,j(t) =
r∑
k=j

(ak − lk+1), Γ2,j = Γ2,j(t) =
j∑

k=1

(ak − bk),

and

(22) ∆1,j = ∆1,j(t) =
j∑

k=1

(lk − ak), ∆2,j = ∆2,j(t) =
r−1∑
k=j

(bk − ak+1).

Let

Γ̃1,j = Γ̃1,j(t) =

 qΓ1,j if aj = lj+1;
g(Γi,j) if aj = lj ;
h(Γ1,j) otherwise,

Γ̃2,j = Γ̃2,j(t) =

 qΓ2,j if bj = aj ;
g(Γ2,j) if bj = aj+1;
h(Γ2,j) otherwise,

and also let

∆̃1,j =

 q∆1,j if aj = lj ;
g(∆1,j) if aj = lj+1;
h(∆1,j) otherwise,

∆̃2,j =

 q∆2,j if bj = aj+1

g(∆2,j) if bj = aj ;
h(∆2,j) otherwise.

Now define

(23) GΓ(t) =
∏
i,j

Γ̃i,j(t), G∆(t) =
∏
i,j

∆̃i,j(t).

The above definition assumed that t is strict. If t is not strict we define GΓ(t) =
G∆(t) = 0.

Remark 3.3. Observe the following important difference between how we de-
fine the products GR and GL for ordinary (r + 1-rowed) Gelfand-Tsetlin patterns
and the products GΓ and G∆ for short patterns. Referring to (5), if T is an or-
dinary Gelfand-Tsetlin pattern, we use a “right-leaning rule” to define Ri,j and
GR(Ri,j) in every row; similarly we use a “left-leaning rule” to define the L array.
(The reader will understand the meaning of “left-leaning” and “right-leaning” in
this context after computing an example.) In contrast, for the short pattern, the Γ
array is obtained by using a right-leaning rule in the middle row and a left-leaning
rule in the bottom row, while the ∆ array is obtained using a left-leaning rule in
the middle row and a right-leaning rule in the bottom row.

We define the weight k of t to be the sum of the ai. Finally, if t is a short
pattern we define another short pattern t′ as the image of t under t1 defined in (13)
and (14). More explicitly,

(24) t′ =

 l1 l2 l3 · · · lr+1

a′1 a′2 a′r
b1 · · · br−1

 ,

where

(25) a′i = min(li, bi−1) + max(li+1, bi)− ai, (i = 2, · · · , r − 1),

(26) a′1 = l1 + max(l2, b1)− a1, a′r = min(lr, br−1) + lr+1 − ar.
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By a short pattern type S of rank r we mean a triple (l,b, k) specifying the following
data: a top row consisting of an integer sequence l = (l1, · · · , lr+1), a bottom row
consisting of a sequence b = (b1, · · · , br−1), and a positive integer k. It is assumed
that l1 > l2 > . . . > lr+1, that b1 > b2 > . . . > br−1, that li > bi > li+2, and that∑
li > k >

∑
bi.

We say that a short pattern t of rank r belongs to the type S if it has the
prescribed top and bottom rows, and its weight is k (so

∑
i ai = k). By abuse of

notation, we will use the notation t ∈ S to mean that t belongs to the type S.

Conjecture 3.4. We have

(27)
∑
t∈S

GΓ(t) =
∑
t∈S

G∆(t′).

Theorem 3.5. Conjecture 3.4 implies Conjecture 2.1.

Hence by Theorem 2.2 we see that Conjecture 3.4 implies the FE Conjecture.

Proof. We begin by observing that the operations t1, · · · , tr on Gelfand-
Tsetlin patterns that were previously defined in (13) and (14) of our discussion of
the Schützenberger involution boil down to the operation t 7−→ t′ on short Gelfand-
Tsetlin patterns. Indeed, if 1 6 k 6 r, we extract from the Gelfand-Tsetlin pattern
T given by (2) the short pattern made with the (r−k)-, (r+1−k)- and (r+2−k)-th
rows of T. We apply the operation t 7−→ t′ to this short pattern and reinsert it
into T; the resulting pattern we call tkT. Note that only the (r + 1 − k)-th row
is changed by this procedure. If k = 1, the (r + 1)-th row of T is empty, so t1
should be interpreted as just replacing arr by ar−1,r−1 + ar−1,r − ar,r. We have
t1 · · · ti−1 = qi−1q

−1
i−2 = qi−1qi−2 and therefore

(28) qi = qi−1qi−2tiqi−1.

Next let us consider the effect of the Schützenberger involution on the weights.
Let A0 =

∑
j ai,j be the sum of the i-th row of T. It may be checked that the row

sums of qrT are (in order)

A0, A0 −Ar, A0 −Ar−1, · · · , A0 −A1.

From this it may easily be deduced that

(29) (qrT) = kL(T).

From this we see that Conjecture 2.1 will follow if we prove

(30)
∑

kR(T)=k

GR(T) =
∑

kR(T)=k

GL(qrT).

We note that the sum is over all patterns with fixed top row and row sums. The
proof of will involve an induction on r, and so we introduce the temporary notations
(r)GR(T) = GR(T) and (r)GL(T) = GL(T).

Note that the sum in (29) is over all patterns with fixed top row and row sums.
The proof of will involve an induction on r, and so we introduce the temporary
notations (r)GR(T) = GR(T) and (r)GL(T) = GL(T).

If we discard the top row of T, we obtain a Gelfand-Tsetlin pattern Tr−1 of
rank r − 1; similarly let Tr−2 be the pattern obtained by discarding the top two
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rows. We will denote

GiR(T) =
r∏
j=i

GR(Ri,j)(T), GiL(T) =
r∏
j=i

GL(Li,j)(T).

Let us show that if k = (k1, · · · , kr) is a fixed r-tuple then

(31)
∑

kR(T)=k

GR(qr−1T) =
∑

kR(T)=k

GrR(T)Gr−1
L (T)

r−2∏
i=1

GiL(T)

and

(32)
∑

kR(T)=k

GL(qr−1qr−2T) =
∑

kR(T)=k

GrL(T)Gr−1
R (T)

r−2∏
i=1

GiL(T).

To prove (31), the left-hand side equals∑
kR(T)=k

GrR(qr−1T)
r−1∏
i=1

GiR(qr−1T).

We have GrR(qr−1T) = GrR(T), because qr−1 does not affect the top two rows of T.
Also, let Tr−1 be the pattern of rank r − 1 obtained by discarding the top row of
T. Then we obtain ∑

kR(T)=k

GR(qr−1T) =

∑
kR(T)=k

GrR(T) · (r−1)GR(qr−1Tr−1) =
∑

kR(T)=k

GrR(T) · (r−1)GL(Tr−1),

where we have used our induction hypothesis, and this is the right-hand side of (31).
This step must be understood as follows: fix the top row of Tr−1 (that is, the top
two rows) and then sum over all remaining rows, with the row sums fixed (depending
on k). In this summation GrR(T) is constant and may be pulled out of the inner
summation (over all rows but the top). The inner sum may be treated using (30)
with r replaced by r − 1. This proves (31).

Next we note that qr−1qr−2 does not affect the top two rows of T, soGiL(qr−1qr−2T) =
GiL(T) when i = r. Thus the left-hand side of (32) equals∑
kR(T)=k

GrL(qr−1qr−2T)·(r−1)GL(qr−1qr−2Tr−1) =
∑

kR(T)=k

GrL(T)·(r−1)GR(qr−2Tr−1),

where we have used the induction hypothesis. Let Tr−2 be the pattern obtained by
omitting the top two rows of T; we see that the left-hand side of (32) equals∑

kR(T)=k

GrL(T)Gr−1
R (qr−2T) · (r−2)GR(qr−2Tr−2).

We note that qr−2 does not change the top three rows of T, and that by induction
we have (r−2)GR(qr−2Tr−2) = (r−2)GL(Tr−2). Equation (32) follows.

Now Conjecture 3.4 implies that

(33)
∑

kR(T)=k

GrR(T)Gr−1
L (T)

r−2∏
i=1

GiL(T) =
∑

kR(T)=k

GrL(trT)Gr−1
R (trT)

r−2∏
i=1

GiL(T).
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Indeed, let t be the short pattern obtained by discarding all but the top three rows
of T. Then

GrR(T)Gr−1
L (T) = GΓ(t), GrL(trT)Gr−1

R (trT) = G∆(t′).

So we may fix all rows but the second of T, and sum over all patterns with that row
allowed to vary, but with fixed row sum. In the inner summation

∏r−2
i=1 G

i
L(T) is

constant, since it does not depend on the second row of T, so it may be pulled out
of the inner summation. Applying Conjecture 3.4 to the inner sum proves (33).

Now (31), (32) and (33) show that∑
kR(T)=k

GR(qr−1T) =
∑

kR(T)=k

GL(qr−1qr−2trT).

Replacing T by qr−1T (and changing k) gives∑
kR(T)=k

GR(T) =
∑

kR(T)=k

GL(qr−1qr−2trqr−1T).

The theorem follows by (28). �

4. Gauss sum combinatorics

With the reduction to Conjecture 3.4 we have entered into a very rich combi-
natorial landscape. We will only mention a few features.

A short pattern t is called superstrict if each defining inequality (20) is strict.
We call t nonresonant if li+1 6= bi for 1 6 i 6 r− 1. Finally, we call t stable if each
element of the middle and bottom rows is equal to one of the two elements above it.
(Note that a short pattern may satisfy more than one of these conditions at once.)

Theorem 4.1. If t is superstrict, nonresonant or stable, then

(34) GΓ(t) = G∆(t′).

Thus in Conjecture 3.4 there is no need to sum over patterns of these three
classes. The proof of Theorem 4.1 will be given in a subsequent paper. To give
some feeling for the combinatorial nature of this situation, we discuss briefly the
superstrict case.

Lemma. There exists orderings of the Γij(t) and ∆ij(t′) such that{
Γij(t)} = {γ1, γ2, · · · , γ2r−1},

{
∆ij(t′)} = {δ′1, δ′2, · · · , δ′2r−1}

with the following property. Extend the labelings by letting γ0 = γ2r = 0. Then

(35) δ′k =
{
γk if k is even,
γk + γk−1 − γk+1 if k is odd.

The proof of this somewhat tricky combinatorial Lemma will be given else-
where, but let us do an example. Suppose that

t =

 45 37 28 14 5 0
40 30 15 7 3

34 20 10 6

 ,
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t′ =

 45 37 28 14 5 0
42 32 19 9 2

34 20 10 6

 .

The arrays Γ(t) and ∆(t′) are as follows:

Γ(t) =


11 // 8 6 5 3

6 16 21 22

11
 ,

∆(t′) =


3 ,, 8 17 22 // 25

8 6 5 4

 .

We have indicated the ordering of the entries with a pair of “snakes.” If we compute
the ordered sets Γij and ∆ij defined above, we have:

k 0 1 2 3 4 5 6 7 8 9 10
γk 0 11 8 6 6 16 5 21 22 3 0
δk 3 8 8 6 17 5 4 22 25

we see that the Lemma is satisfied. We note that the snakes depend on the original
data, and we will give a recipe for finding them in a later paper, where the proof of
this “Snake Lemma” is given. Assuming the lemma and proceeding with the proof,
we now assume that t is superstrict. We have

GΓ(t) =
∏
i

h(γi), G∆(t′) =
∏
i

h(δi).

Assuming the Lemma, we rewrite the latter product∏
i even

h(γi)
∏
i odd

h(γi + γi−1 − γi+1) =
∏
i even

h(γi)
∏
i odd

h(γi)qγi−1−γi+1 ,

where we have used Relation (i). The powers of q cancel, so (34) is satisfied.
This shows that the Lemma implies Theorem 4.1 in the superstrict case. The
nonresonant and stable cases require other ideas.

Although the patterns handled in Theorem 4.1 are in some sense most, still
(34) is not true for all patterns. For example, it may be that t is non-strict while
t′ is strict. Then GΓ(t) = 0 but G∆(t′) 6= 0. Thus (27) is not true without the
summation.

Resonance is a phenomenon that occurs when, in the notation (19), we have
li+1 = bi for one or several values of i. The terminology is suggested by quantum
chemistry, where some compounds such as benzene can occur with two or more
structures contributing to the wave function. In the context of small Gelfand-
Tsetlin patterns, patterns associated with a resonance can generally be grouped
into fairly small sets called packets such that if Π is a packet then all members of
Π belong to the same type, and

(36)
∑
t∈Π

GΓ(t) =
∑
t∈Π

G∆(t′).
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The first example that occurs is with A2. We consider (short) patterns in the
resonant type  l1 l2 l3

a1 a2

l2

 ,

with a fixed row sum a1 +a2 = k. Among these patterns there will be two extremal
ones, one in which a1 is as large as possible (so either a1 = l1 or a2 = l3 or both),
and one in which a1 is as small as possible (so a2 equals a1 or a2 or both).

Proposition 4.2. These two extremal patterns form a packet.

Proof. (Sketch) To prove this, there are several cases, and we take a typical
one. Suppose that the extremal patterns are

t1 =

 l1 l2 l3
l1 x

l2

 , t2 =

 l1 l2 l3
l2 y

l2

 ,

where x+ l1 = y + l2 and l2 > x > l3, l2 > y > l3. Then

t′1 =

 l1 l2 l3
l2 l2 + l3 − x

l2

 , t′2 =

 l1 l2 l3
l1 l2 + l3 − y

l2

 .

We find that

GΓ(t1) =

 c a

b

 , GΓ(t2) =


c c

?>=<89:;0

 ,

GΓ(t′1) =


b c

a

 , G∆(t′2) =

?>=<89:;0 c

c

 ,

where a = x− l3, b = l1− l2, c = a+b = y− l3 = l1 +x− l2− l3, and our convention
is that we circle an entry w if it contributes qw; box it if it contributes g(w), and
leave it unboxed and uncircled if it contributes h(w) in the definitions (23). Thus
if Π = {t1, t2}, then (36) boils down to the identity

g(c)h(a)h(b) + g(c)h(c) = g(b)h(c)g(a) + h(c)2, c = a+ b,

which the reader will easily deduce from our relations. Even for A2 there are several
more cases, and the reader may treat them as an exercise. �

For higher resonances, in which li+1 = bi for several consecutive i, many fas-
cinating phenomena occur. We will give just one example, cautioning the reader
that in some ways it is not entirely typical. We now consider short patterns in the
resonant type

t =

 l1 l2 l3 l4
x y z

l2 l3


where l1 > l2 > l3 > l4 and x+ y + z = k.

We will assume first that

2l2 > l1 + l3, max(l1 + l2 + l4, l1 + 2l3) < k < 2l2 + l3.
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For example, one could take the top row to be (63, 47, 25, 0) and the row sum to be
117. Let u = k − l2 − l3 − l4 = α1 + α2 = β1 + β2 = γ1 + γ2 = δ1 + δ2, where

α1 = l1 − l2, β1 = l1 − l3, γ1 = l2 − l3, δ1 = l3 − l4.

We will also denote

gα = g(α1)g(α2), hα = h(α1)h(α2),

and similarly define gβ , gγ , gδ and hβ , hγ , hδ.
It is convenient to visualize the patterns in a type by mapping them into Zr by

means of the second row. Since the row sum is fixed, one element is redundant, and
we may vizualize the type as the set of lattice points in some polytope. In this case
with r = 3, we embed the patterns into Z2 by mapping this t to (y, z). Assuming
(4) the patterns form a trapezoid, which we can diagram thus:

a

??
??

??
??

??
??

??
?? b

??
??

??
??

c

e

??
??

??
??

d

The labeled spots are the following five short patterns:

t GΓ(t) G∆(t′)

a =

 l1 l2 l3 l4
l1 l2 k − l1 − l2

l2 l3

 g(u)gαhβ h(u)gαgβ

b =

 l1 l2 l3 l4
l2 l2 k − 2l2

l2 l3

 0 h(u)2gγ

c =

 l1 l2 l3 l4
l2 k − l2 − l3 l3

l2 l3

 quh(u)gδ g(u)h(u)hδ

d =

 l1 l2 l3 l4
l1 k − l1 − l3 l3

l2 l3

 g(u)hαgδ g(u)gαhδ

e =

 l1 l2 l3 l4
l1 2l2 − l1 k − 2l2

l2 l3

 g(u)hαhγ h(u)gαhγ

Any pattern in the interior of the trapezoid is superstrict, hence consists of a sin-
gleton packet. On the other hand, the patterns on the boundary must be grouped
into packets of size 2, 3 and 5.

We claim that {a, b, c, d, e} is a packet. Indeed, from the above table this means

g(u)gαhβ + quh(u)gδ + g(u)hαgδ + g(u)hαhγ =

h(u)gαgβ + h(u)2gγ + g(u)h(u)hδ + g(u)gαhδ + h(u)gαhγ .
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By Relation (iii) it is enough to prove the vanishing of

g(u)gαhβ + h(u)2gδ − h(u)g(u)gδ + g(u)hαgδ + g(u)hαhγ
−h(u)gαgβ − h(u)2gγ − g(u)h(u)hδ − g(u)gαhδ − h(u)gαhγ .

Indeed, this may be rewritten

+(hγ + gδ)[g(u)hα − h(u)gα − h(u)g(u)]
+h(u)[g(u)hγ − h(u)gγ − h(u)g(u)]

−(h(u) + gα)[g(u)hδ − h(u)gδ − h(u)g(u)]
+gα[g(u)hβ − h(u)gβ − h(u)g(u)],

which vanishes by Relation (ii).
The patterns on the interior of the segments from c to b and from e to d are

equal in number, and they can be grouped into packets of order two by combining
two patterns that lie on the same vertical line. To see this, let k−2l2 < a 6 l3. Let
u = k − l2 − l3 − l4 as before, and write u = α1 + α2 = ε1 + ε2, where α1 = l1 − l2
and ε1 = a − l4. As before we will denote gα = g(α1)g(α2), hα = h(α1)h(α2) and
similarly for gε and hε. Consider the following two patterns.

t GΓ(t) G∆(t)

t[d,e](a) =

 l1 l2 l3 l4
l1 k − l1 − a a

l2 l3

 g(u)hαhε h(u)hεgα

t[c,b](a) =

 l1 l2 l3 l4
l2 k − l2 − a a

l2 l3

 qug(u)hε h(u)2hε

The notation indicates which segment each pattern lies in. It is straightforward to
check that the relations imply

g(u)hα + qug(u) = h(u)gα + h(u)2.

Thus {t[d,e](a), t[c,b](a)} is a packet.
On the other hand, the three segments from a to b, from a to e and from c

to d each have the same number of patterns, and these can be grouped together
in packets of order 3. To see this, denote again u = k − l2 − l3 − l4 = α1 + α2 =
ε1 + ε2 = θ1 + θ2 = δ1 + δ2 where α1 = l1 − l2, ε1 = a − l4, θ1 = a + l2 − l3 − l4
and δ1 = l3 − l4. Consider the following three patterns, one from each of these
segments.

t GΓ(t) G∆(t′)

t[a,e](a) =

 l1 l2 l3 l4
l1 k − l1 − a a

l2 l3

 g(u)hαhε h(u)gαhε

t[a,b](a) =

 l1 l2 l3 l4
k − l2 − a l2 a

l2 l3

 h(u)gθhε h(u)hθgε

t[d,c](a) =

 l1 l2 l3 l4
k − l2 − a a+ l2 − l3 l3

l2 l3

 h(u)hθgδ g(u)hθhδ



20 BEN BRUBAKER, DANIEL BUMP, AND SOLOMON FRIEDBERG

To see that these three form a packet, one must prove

g(u)hαhε + h(u)gθhε + h(u)hθgδ =
h(u)gαhε + h(u)hθgε + g(u)hθhδ.

This may be deduced from the relations as follows. The right-hand side minus the
left-hand side equals

hε[g(u)hα − h(u)gα] + h(u)[gθhε − hθgε] + hθ[h(u)gδ − g(u)hδ] =
hεh(u)g(u) + h(u)[gθhε − hθgε]− h(u)g(u)hθ =
hε[h(u)g(u) + h(u)gθ]− hθ[h(u)gε + g(u)hθ] =

g(u)hθhε − g(u)hθhε = 0.

The above considerations verify Conjecture 3.4 for this particular resonant type.
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