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By a Hecke Algebra we will usually mean an Iwahori Hecke algebra. We will now
explain what these are. A Coxeter group consist of data (W, I) where W is a group
and I = {s1, · · · , sr} of elements of order 2 which generate W , subject to a certain
condition, which we will now explain. If 1 6 i, j 6 r and i 6= j let m(i, j) be the
order of sisj. Since si and sj have order 2, we have

sisjsisj · · · = sjsisjsi · · · (1)

where there are m(i, j) factors on both sides. For example, if m(i, j) = 2, this means
sisj = sjsi, so that si and sj commute. If m(s, s′) = 3, then

sisjsi = sjsisj

which is Artin’s braid relation. In general we will refer to (1) as the braid relation
satisfied by si and sj. In order for W to be a Coxeter group it is required that the
given set of relations between elements of I give a presentation of W .

Informally, this means that any relation between generators in I can be deduced
from the fact that the s ∈ Σ have order 2 and the braid relations. Formally, it
means the following. More formally, it means that W is isomorphic to the free group
on r generators σ1, · · · , σr modulo the smallest normal subgroup containing σ2

i and
(σiσj)

m(i,j).
For example, the symmetric group Sr+1 is a Coxeter group with generators si =

(i, i+ 1). If r = 2, we have a presentation in generators and relations:

S3 =
〈
s1, s2|s2

1 = s2
2 = 1, s1s2s1 = s2s1s2

〉
Weyl groups (both finite and affine) are important examples of Coxeter groups.

Finite Weyl groups arise in the theory of Lie groups; there is one for every Cartan
type. There is also an affine Weyl group which is infinite.
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Given a Coxeter group W as above, there is an algebra called the Iwahori Hecke
algebra which we now describe. The ground field F is assumed to contain a quantity
q which might be an indeterminate or (for some purposes) an integer prime power
or (for other purposes) a root of unity. So we will denote the algebra Hq(W ). It has
generators T1, · · · , Tr subject to relations which we now state. First, it must satisfy
the braid relations:

TiTjTi · · · = TjTiTj · · · , (2)

where there are m(i, j) factors on both sides. Second, instead of the relation s2
i = 1,

it satisfies a quadratic relation

T 2
i = (q − 1)Ti + q.

Note that if q = 1, this becomes T 2
i = 1, soH1(W ) is isomorphic to the group algebra

C[W ]. In general, Hq(W ) may be thought of as a deformation of C[W ].
How do Iwahori Hecke algebras arise in nature? As it turns out, they are quite

important.

• If G is a group of Lie type over a finite field, and W is its Weyl group, then
Hq(W ) can be embedded in C[G(Fq)], and this helps us understand the repre-
sentation theory of G(Fq). For example, if G = GLn then we gain insight into
the representation theory of GLn(Fq).

• Let F be a nonarchimedean local field such asQp, and let Fq be the residue field.
Let Waff be the affine Weyl group. It is an infinite Coxeter group containing
W as a finite subgroup. Then Iwahori and Matsumoto showed that Hq(Waff)
can be realized as a convolution ring of functions on G(F ). This turns out to
be very important, and we will spend quite a bit of time explaining it, in the
process getting a good start on the representation theory of G(F ), needed for
the theory of automorphic forms.

But Iwahori Hecke algebras appear in other ways, too, seemingly unrelated to the
representation theory of p-adic groups.

• Kazhdan and Lusztig used them to define Kazhdan-Lusztig polynomials. These
appear in different seemingly unrelated contexts, such as the theory of singu-
larities of Schubert varieties, and in the decomposition of Verma modules of
Lie algebras.

• Jimbo showed that Iwahori Hecke algebras appear in a duality theory for quan-
tum groups. This is a deformation of Frobenius-Schur duality, which is an
important relationship between representations of symmetric groups and of
GLn(C).
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• The Iwahori Hecke algebra is closely related to the Temperly-Lieb algebras
which arise in both statistical physics and quantum physics. The related ex-
amples were key in the discovery of quantum groups.

• Iwahori Hecke algebras were used in Vaughn Jones’ first paper defining the
Jones polynomial.

• They appear in Dipper and James’ important papers on modular representa-
tions of finite groups of Lie type.

Thus Iwahori Hecke algebras are involved in many diverse problems.

1 Hecke Algebras reduce infinite dimensional prob-

lems to finite-dimensional ones

In this section, we will not give proofs, but explain some “facts of life” about repre-
sentations of p-adic groups to orient the reader. We will come back to these matters
more rigorously later. In the next sections, we will give analogs of these facts of life
for finite groups, with proofs. Later we will return to the p-adic case giving proofs.

Let F be a nonarchimedean local field, and let o be its ring of integers. Thus we
could take F = Qp and o = Zp. Let p be the maximal ideal of the discrete valuation
ring o. Then o/p is a finite field Fq.

Let G = GL(n, F ). This group is totally disconnected: its topology has a neigh-
borhood basis at the identity consisting of open subgroups. Thus let K◦ = GL(n, o).
This is a maximal compact subgroup. If N is any positive integer, let K(N) = {g ∈
K◦|g ≡ 1 mod pN}. Then K(N) are a family of open subgroups forming a basis of
neighborhoods of the identity.

A representation π : G −→ GL(V ), where V is a complex vector space is called
smooth if when 0 6= v ∈ V the stabilizer {k ∈ G|π(k)v = v} is open. It is called
admissible if furthermore given any open subgroup K the vector subspace V K is
finite-dimensional. The admissible representations contain the ones that are needed
in the theory of automorphic forms. For example, if π : G −→ GL(H) is any unitary
representation on a Hilbert space, then H contains a dense subspace V on which G
acts, and π : G −→ GL(V ) is admissible. In the theory of automorphic forms one
often works mainly with admissible representations.

The space V is usually infinite-dimensional. It is very useful to know that we
may capture the representation in a finite-dimensional subspace V as follows. Let
K be an open subgroup, and let HK be the vector space of all compactly supported
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functions φ on G such that φ(kgk′) = φ(g) when k, k′ ∈ K. We make K into a ring
as follows:

(φ ∗ ψ)(g) =

∫
G

φ(gx−1)ψ(x) dx.

Now if φ ∈ HK and v ∈ V , where (π, V ) is any smooth representation, we may
define π(φ) ∈ End(V ) by

π(φ)v =

∫
G

φ(g)π(g)v dv. (3)

It is easy to check that
π(φ ∗ ψ) = π(φ) ◦ π(ψ).

The spherical Hecke algebra HK◦ is commutative.
On the other hand, let J be the subgroup of k ∈ K◦ = GL(n, o) such that k̄

is upper triangular, where k̄ ∈ GL(n,Fq) is the image under the homomorphism
GL(n, o) −→ GL(n,Fq). This subgroup J is the Iwahori subgroup. The algebra HJ

is nonabelian, but it has a beautiful structure. It has generators T0, · · · , Tn−1 and t
such that Ti and Tj commute unless i ≡ j ± 1 mod n, with the braid relations

TiTi+1Ti = Ti+1TiTi+1,

where we interpret i+ 1 as 0 if i = n− 1. Moreover

T 2
i = (q − 1)Ti + q.

Thus T0, · · · , Tn generate an Iwahori Hecke algebra. The Coxeter group is the (infi-

nite) affine Weyl group of type A
(1)
n−1. The extra element t has the effect tTit

−1 = Ti+1,
where we again interpret things mod n, so tTn−1t

−1 = T0.
Returning to the general case of an arbitrary open subgroup K, if φ ∈ HK then

π(φ) projects V onto the finite-dimensional subspace V K . We make V K into an
HK-module with the multiplication φ · v = π(φ)v for φ ∈ HK , v ∈ V K . We assume
that V is admissible and that K is chosen to be small enough that V K is nonzero.

Theorem 1 (i) If (π, V ) is an irreducible admissible representation and V K is nonzero,
then V K is an irreducible (i.e. simple) HK-module.

(ii) If (π, V ) and (σ,W ) are irreducible admissible representations, and if V K ∼=
WK as HK-modules, then π and σ are equivalent representations.
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The proof will be given later in Section 3.
Thus the representation theory finite-dimensional of HK faithfully captures the

representation theory of G, provided we limit ourselves to the representations of G
that have a nonzero subspace of K-fixed vectors.

We will be mainly interested in Iwahori Hecke algebras, so we will mainly be
interested in representations that have Iwahori fixed vectors. This excludes, for ex-
ample, supercuspidal representations. Nevertheless, this class of representations is
large enough for many purposes. It includes the spherical representations, that is,
those that have K◦-fixed vectors. If π = ⊗πv is an automorphic cuspidal representa-
tion of the adele group A of a number field F , written as a restricted tensor product
over the places of F , then πv is spherical for all but finitely many places v.

Then why not just restrict to the spherical Hecke algebra HK◦ instead of the
larger, nonabelian Iwahori Hecke algebra? The answer is that even if one is only
concerned with spherical representations, their theory naturally leads to the Iwahori
subgroup and the Iwahori Hecke algebra. We will see why later.

2 Hecke Algebras of Finite Groups

Even for finite groups, the theory of Hecke algebras has nontrivial important content,
which we turn to now.

Let G be a finite group.
If (π, V ) is a representation, let (π̂, V̂ ) be the contragredient representation. Thus

V̂ = V ∗ is the dual space of V . If v̂ ∈ V̂ then v̂ is a linear functional on V . We
will use the notation 〈v, v̂〉 instead of v̂(v). The representation π̂(g) is defined by the
condition

〈π(g)v, v̂〉 =
〈
v, π̂(g−1)v̂

〉
.

If φ, ψ are functions on G, the convolution φ ∗ ψ is defined by

(φ ∗ ψ)(g) =
1

|G|
∑
x∈G

φ(x)ψ(x−1g) =
1

|G|
∑
x∈G

φ(gx)ψ(x−1).

The space H of all functions on G with convolution as multiplication is a ring iso-
morphic to the group algebra. Namely, if φ ∈ H let φ′ = 1

|G|
∑

g∈G φ(g) g.

Lemma 1 φ 7→ φ′ is a ring isomorphism H −→ C[G].

Proof The coefficient of g in φ′ψ′ = 1
|G|2
∑
φ(x)ψ(y)xy is 1

|G|(φ ∗ ψ)(g). �
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Suppose that π : G −→ GL(V ) is a representation of G on a complex vector
space and that φ ∈ H. Define π(φ) ∈ End(V ) by

π(φ)v =
1

|G|
∑
g∈G

φ(g)π(g)v.

Lemma 2 If φ, ψ ∈ H then π(φ ∗ ψ) = π(φ) ◦ π(ψ).

Proof We leave the proof of this to the reader. �

Let K be a subgroup of G. We define the Hecke algebra HK to be the vector
space of K-biinvariant functions on G, that is, functions φ : G −→ C such that
φ(kgk′) = φ(g) for k, k′ ∈ K. It too is a ring under convolution.

Suppose that (π, V ) is a representation of G. Let

V K = {v ∈ V |π(k)v = v for all k ∈ K}

be the space of K-fixed vectors. Then if φ ∈ HK , π(φ) maps V into V K . We then
make V K into an HK-module with the multiplication φ · v = π(φ)v for φ ∈ HK and
v ∈ V .

Lemma 3 Let l : V K −→ C be any linear functional. Then there exists a vector
v̂ ∈ V̂ K such that l(v) = 〈v, v̂〉.

Proof We extend l to a linear functional v̂0 on V . Let v̂ = 1
|K|
∑

k∈K π̂(k)v0. Then

v̂ agrees with v̂0 on V K since if v ∈ V K we have

〈v, v̂〉 =
1

|K|
∑
k∈K

〈v, π̂(k)v̂0〉 = 〈v, v̂〉 =
1

|K|
∑
k∈K

〈
π(k−1)v, v̂0

〉
=

1

|K|
∑
k∈K

〈v, v̂0〉

because v ∈ V K . �

Proposition 1 If V K 6= 0 then V̂ K 6= 0.

Proof This is immediate from the Lemma. �

Proposition 2 Let R be an algebra over a field F and let M1,M2 be simple R-
modules which are finite-dimensional vector spaces over F . Assume there exist linear
functionals Li : Mi −→ F and mi ∈ Mi such that Li(mi) 6= 0 and L1(rm1) =
L2(rm2) for all r ∈ R. Then M1

∼= M2 as R-modules.
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In the next Proposition, we will apply this whenR is a group algebra. In that case,
we could equally well use Schur orthogonality of matrix coefficients for irreducible
representations of finite groups. However the statement at hand will be useful later.
Proof Let M be a simple R-module. If m ∈ M and L is in the dual space M∗ let
us define φm,L ∈ EndF (M) and fm,L : R −→ F by

φm,L(x) = L(x)m, fm,L(r) = L(rm).

Let RM be the ring of functions on R which are finite linear combinations of the
functions fm,L. Then the maps (m,L) −→ φm,L and (m,L) −→ fm,L are bilinear,
hence there are linear maps M ⊗M∗ −→ EndF (M) and M ⊗M∗ −→ RM sending
m ⊗ L to φm,L and fm,L respectively. The first map is a vector space isomorphism
and so there exists a linear Λ : EndF (M) −→ RM such that Λφm,L = fm,L.

We define left R-module structures on EndF (M) and on RM as follows. If φ ∈
EndF (M) and r ∈ R then rφ is the endomorphism (rφ)(m) = rφ(m). On the other
hand, if f ∈ RM and r ∈ R we define rf : R −→ F by rf(s) = f(sr) for s ∈ R.
To see that rf ∈ RM we may assume that f = fm,L, in which case we easily check
that rfm,L = frm,L. We also have rφm,L = φrm,L, and it follows that the map Λ is an
R-module homomorphism with these structures.

Now as an R-module EndF (M) decomposes as a direct sum of d copies of M ,
where d = dimF (M). Since this R-module contains only copies of this one isomor-
phism class of simple modules, and since Λ : EndF (M) −→ RM is a surjection, it
follows that any simple R-submodule of RF is isomorphic to M .

Because RM1 and RM2 have a nonzero element in common, it follows that M1

and M2 are isomorphic. �

If (π, V ) is an irreducible representation of G we call any function of the form
〈π(g)v, v̂〉 a matrix coefficient of V . Applying Proposition 2 to the group algebra, we
see that two irreducible representations are equivalent if they have a matrix coefficient
in common. The next result shows that the HK-module V K contains complete
information about V , even though it may be much smaller, provided V K 6= 0. This
is the analog of Theorem 1, which we have not yet proved.

Theorem 2 (i) Suppose that (π, V ) is an irreducible representation of G such that
V K is nonzero. Then V K is an irreducible HK submodule.

(ii) If (σ,W ) is another irreducible representation of G such that V K and WK

are both nonzero, and V K ∼= WK as HK-modules. Then π and σ are equivalent
representations.
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Proof Let us prove (i). Suppose that U ⊂ V K is a nonzero submodule. We wish
to show that U = V K . Let 0 6= u ∈ U . It is sufficient to show that HKu = V K .
Therefore let v ∈ V K . We will show that there is φ ∈ HK such that π(φ)u = v.

Since V is irreducible, and since Hu is a G-submodule of V , we have Hu = V .
Therefore let ψ ∈ H such that π(ψ)u = v. Let

φ(g) =
1

|K|2
∑
k,k′∈K

ψ(kgk′).

Clearly φ ∈ HK . Now we have

π(φ)u =
1

|K|2
∑
k,k′∈K

1

|G|
∑
g∈G

ψ(kgk′)π(g)u.

Make the variable change g → k−1g(k′)−1 to obtain

π(φ)u =
1

|K|2
∑
k,k′∈K

1

|G|
∑
g∈G

ψ(g)π(k)−1π(g)π(k′)−1u.

Now we may drop the summation over k′ since u ∈ V K , and interchanging the
summation write this as

1

|K|
∑
k∈K

1

|G|
∑
g∈G

ψ(g)π(k)−1π(g)u =
1

|K|
∑
k∈K

π(k)−1π(ψ)u.

Since π(ψ)u = v, this equals 1
|K|
∑

k∈K π(k−1)v and since v ∈ V K , this equals v.

Thus v ∈ Hu and Hu = V . This proves (i).
To prove (ii), suppose that V K and WK are isomorphic as HK-modules, with

V and W irreducible G-modules. Let λ : V K −→ WK be an isomorphism. Pick a
nonzero linear functional l : WK −→ C. By the Lemma there exist v̂ ∈ V̂ K and
ŵ ∈ ŴK such that l(λ(v)) = 〈v, v̂〉 for v ∈ V K and 〈w, ŵ〉 = l(w) for w ∈ WK .

Since λ is an HK-module homomorphism, if φ ∈ HK we have, for v ∈ V K

〈σ(φ)λ(v), ŵ〉 = 〈λ (π(φ)v), ŵ〉 = l(λ(π(φ)v)) = 〈π(φ)v, v̂〉 . (4)

Since l is nonzero we may pick w0 ∈ WK such that 〈w0, ŵ〉 = l(w0) 6= 0. Since λ is
an isomorphism, there exists v0 ∈ V K such that λ(v0) = w0. Then (4) implies that

〈σ(φ)w0, ŵ〉 = 〈π(φ)v0, v̂〉 (5)
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for φ ∈ HK . Now we claim that (5) is true for all φ ∈ H. Indeed, if φ ∈ H, we
project it into H by defining

φK(g) =
1

|K|2
∑
k,k′∈K

φ(kgk′).

Clearly φK ∈ HK . On the other hand

〈σ(φK)w0, ŵ〉 =
1

|K|2

〈 ∑
k,k′∈K

σ(k)σ(φ)σ(k′)w0, ŵ

〉
=

1

|K|2
∑
k,k′∈K

〈
σ(φ)σ(k′)w0, σ̂(k−1)ŵ

〉
= 〈σ(φ)w0, ŵ〉

since w0 ∈ WK and ŵ ∈ ŴK . Similarly 〈π(φK) v0, v̂〉 = 〈π(φ)v0, v̂〉, and so (5) for
φK ∈ HK implies (5) for φ ∈ H.

Now let g ∈ G. Take φ = φg where

φg(x) =

{
|G| if x = g,
0 otherwise.

Then π(φg) = π(g), and so (5) implies that

〈σ(g)w0, ŵ〉 = 〈π(g)v0, v̂〉 .

We see that the representations π and σ have a matrix coefficient in common, and
it follows from Proposition 2 that the two representations are isomorphic. �

Let G be a finite group, H a subgroup and (π, V ) a representation of H. We will
define V G to be the vector space of all functions f : G −→ V such that f(hx) =
π(h)f(x) when h ∈ H and x ∈ G. Define, for g ∈ G

(πG(g)f)(x) = f(xg).

Thus g acts on V G by right translation. The representation (πG, V G) is the induced
representation.

Exercise 1 Check that if f ∈ V G and g ∈ G then πG(g)f ∈ V G. Also check that

πG(g1g2) = πG(g1)πG(g2),

so that (πG, V G) is a representation of G.

9



Theorem 3 (Frobenius reciprocity) Let (π, V ) be a representation of H and let
(σ,W ) be a representation of G. We have a vector space isomorphism

HomG(W,V G) ∼= HomH(W,V ).

In this isomorphism the G-module homomorphism Φ : W −→ V G corresponds to the
H-module homomorphism φ : W −→ V , where we may express Φ in terms of φ and
φ in terms of Φ by the following formulae.

φ(w) = Φ(w)(1), Φ(w)(g) = φ(σ(g)w).

Proof We first check that if Φ : W −→ V G is a G-module homomorphism, then
φ(w) = Φ(w)(1) defines an H-module homomorphism. Indeed, we have, for h ∈ H

φ(σ(h)w) = Φ(σ(h)w)(1) = (πG(h)Φ(w))(1) = Φ(w)(1·h) = Φ(w)(h·1) = π(h)Φ(w)(1),

where we have used the definition of φ, the assumption that Φ is a G-module homo-
morphism, the definition of ΦG, the identity 1 · h = h · 1, and the assumption that
Φ(w) ∈ V G. This equals π(h)φ(w), so φ is an H-module homomorphism.

We leave the reader to complete the proof (Exercise 2). �

Exercise 2 Complete the above proof as follows.
(a) Show that if φ : W −→ V is anH-module homomorphism then Φ(w)(g) = φ(σ(g)w)

defines an element of V G, and that Φ : W −→ V G is a G-module homomorphism.
(b) Show that the two constructions φ 7−→ Φ and Φ 7−→ φ are inverse maps between

HomG(W,V G) and HomH(W,V ).

Let us explain why this Theorem 3 is called Frobenius reciprocity. Frobenius
considered characters before representation theory was properly understood. For
him, induction was an operation on characters that was adjoint to restriction. If H
is a subgroup of G and χ is a character of H then the induced character χG of G is
characterized by the adjointness property〈

χG, θ
〉
G

= 〈χ, θ〉H

where 〈 , 〉G is the inner product on L2(G). It follows from the following statement
that the induced character χG is the character of V G.

Proposition 3 Let G be a finite group, (π, V ) and (σ,W ) two representations. Let
χπ and χσ be their characters. Then

〈χπ, χσ〉G = dim HomC[G](V,W ).
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Proof Both sides are bilinear in the sense that if π = π1 ⊕ π2 for representa-
tions (πi, Vi) then 〈χπ, χσ〉 = 〈χπ1 , χσ〉+ 〈χπ2 , χσ〉 and Hom(V,W ) ∼= Hom(V1,W )⊕
Hom(V2,W ), and similarly for W . Hence we are reduced to the case where π and σ
are irreducible. Then

〈χπ, χσ〉 =

{
1 if V ∼= W
0 if V � W

}
= dim HomC[G](V,W )

by Schur orthogonality of characters and Schur’s Lemma. �

Mackey theory asks the following question: if H1 and H2 are subgroups of G and
V1 and V2 are modules for H1 and H2 respectively, then what is HomG(V G

1 , V
G

2 )?
Mackey theory answers this and related questions. For simplicity, we will limit

ourselves to the special case where V1 and V2 are one-dimensional, which makes for
a minor simplification, and is already enough for some important examples.

We recall that H is the space of all functions on G. As we explained earlier, it
is a ring under convolution, isomorphic to the group algebra. We recall the right
regular representation ρ : G −→ End(H) is the action (ρ(g)f)(x) = f(xg).

Lemma 4 Let T : H −→ H be a linear transformation that commutes with ρ(g); that
is, T (ρ(g)f) = ρ(g)T (f). Then there exists a unique λ ∈ H such that T (f) = λ ∗ f .

Proof Define δ0(g) = |G| if g = 1, and 0 if g 6= 1. Then δ0 is the unit in the
convolution ring H, that is, δ0 ∗ f = f ∗ δ0 = f for all f ∈ H. If λ exists such that
T (f) = λ ∗ f for all f , then λ = λ ∗ δ0 = T (δ0). Hence it is unique, and it remains
to be shown that λ = T (δ0) works. We claim that if f ∈ H then

f =
1

|G|
∑
g∈G

f(g)ρ(g−1)δ0. (6)

Indeed, applying the right-hand side to x ∈ G gives

1

|G|
∑
g∈G

f(g)(ρ(g−1)δ0)(x) =
1

|G|
∑
g∈G

f(g)δ0(xg−1).

Only one term contributes, which is g = x, and that term equals f(x). This
proves (6).

Now applying T to (6) gives

Tf =
1

|G|
∑
g∈G

f(g)T
(
ρ(g−1)δ0

)
=

1

|G|
∑
g∈G

f(g)ρ(g−1)T (δ0) =
1

|G|
∑
g∈G

f(g)ρ(g−1)λ.
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Thus

Tf(x) =
1

|G|
∑
g

(ρ(g−1)λ)(x)f(g) =
1

|G|
∑
g

λ(xg−1)f(g) = (λ ∗ f)(x).

�

If H is a group, a one-dimensional representation is basically the same thing as
a linear character , that is, a homomorphism ψ : H −→ C×. That is, if (π, V ) is
a representation of H and dim(V ) = 1 then there is a linear character ψ such that
π(g)v = ψ(g)v for all g ∈ G. We will sometimes write ψG instead of V G for the
induced representation. Identifying V = C this is the representation of G on the
space of functions f : G −→ C such that f(hg) = ψ(h)f(g) for h ∈ H. The action of
G is by right translation, that is, from the right regular representation ρ acting on
functions by ρ(g)f(x) = f(xg).

Theorem 4 (Geometric form of Mackey’s Theorem) Let H1, H2 be subgroups
of the finite group G, and let ψi be a linear character of Hi. Let Λ ∈ HomG(ψG1 , ψ

G
2 ).

Then there exists a function ∆ : G −→ C such that

∆(h2gh1) = ψ2(h2)∆(g)ψ1(h1), hi ∈ Hi, (7)

and Λf = ∆ ∗ f for all f ∈ ψG1 . The map Λ 7−→ ∆ is a vector space isomorphism of
HomG(ψG1 , ψ

G
2 ) with the space of all functions satisfying (7).

Proof Given ∆ satisfying (7), it is straightforward to check that ∆ ∗ f ∈ ψG2
for any f ∈ H. In particular, this is true if f ∈ ψG1 . Moreover, left convolution
commutes with right translation, so ρ(g)(∆ ∗ f) = ∆ ∗ ρ(g)f . This means that the
map Λf = ∆ ∗ f is an intertwining operator in HomG(ψG1 , ψ

G
2 ).

Let us consider, conversely, how to start with Λ and produce ∆. Let ψ̇1 : G −→ C
be the function

ψ̇1(g) =

{
|G|
|H1|ψ1(g) if g ∈ H1,

0 otherwise.

Thus for any function f we have

(ψ̇1 ∗ f)(g) =
1

|H1|
∑
h∈H1

ψ1(h)f(h−1g).

It is easy to check that the map p : H −→ H defined by p(f) = ψ̇1 ∗ f is a projection
with image ψG1 . This means that p2 = p, for any f ∈ H we have p(f) ∈ ψG1 and that
p(f) = f if f ∈ ψG1 . We define T : H −→ H to be Λ ◦ p.
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Then since Λ is a G-module homomorphism, we have Λ◦ρ(g) = ρ(g)◦Λ. It is also
true that ρ(g) ◦ p = p ◦ ρ(g) since p is left convolution with ψ1, and left convolution
commutes with right translation. Therefore T satisfies T ◦ ρ(g) = ρ(g) ◦ T . By
Lemma 4 we have Tf = ∆ ∗ f for some unique ∆. Let us check that ∆ has the
property (7). This can be separated into two statements,

∆(gh1) = ∆(g)ψ1(h1), h1 ∈ H1, (8)

and
∆(h2g) = ψ2(h2)∆(g), h2 ∈ H2. (9)

For (8) we note that if f ∈ H we have

∆ ∗ ψ̇1 ∗ f = T (p(f)) = Λ(p2(f)) = Λ(p(f)) = ∆ ∗ f.

Since this is true for every f , we have ∆ = ∆ ∗ ψ̇1. Since ψ̇1(gh1) = ψ̇1(g)ψ1(h1) for
g ∈ G and h1 ∈ H1, we obtain (8). We leave (9) to the reader, with the hint that it
follows from the fact that the image of T is contained in ψG2 .

We leave the reader to check that the two maps ∆ 7→ Λ and Λ 7→ ∆ described
above are inverses of each other. �

Exercise 3 Fill out the details in the proof of Theorem 4.

Exercise 4 Let G be a finite group and V,W vector spaces. Let C(G,V ) be the space of
maps G −→ V . There is a representation ρV : G −→ End(C(G,V )) by right translation:

(ρV (g)f)(x) = f(xg), g, x ∈ G, f ∈ C(G,V ).

Let T : C(G,V ) −→ C(G,W ) be a linear map that commutes with this action, i.e.

T (ρV (g)f) = ρW (g)T (f), g ∈ G, f ∈ C(G,V ).

Prove that there is a map λ : G −→ Hom(V,W ) such that T (f) = λ ∗ f , where the
convolution is

(λ ∗ f)(x) =
1
|G|

∑
g∈G

λ(g)f(g−1x). (10)

Exercise 5 In Theorem 4 we assumed that the two modules were one-dimensional. This
exercise removes that restriction. Let G be a finite group, H1 and H2 subgroups and (πi, Vi)
an Hi-module for i = 1, 2. Let Λ ∈ HomG(V G

1 , V G
2 ). Prove that there exists a function

∆ : G −→ HomC(V1, V2) such that

∆(h2gh1) = π2(h2) ◦∆(g) ◦ π1(h1), hi ∈ Hi, (11)
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and Λf = ∆ ∗ f for all f ∈ V G
1 , with the convolution defined by (10). The map Λ 7−→ ∆

is a vector space isomorphism of HomG(V G
1 , V G

2 ) with the space of all functions satisfying
(11). Hint: Use Exercise 4 in place of Lemma 4.

A G-module homomorphism is sometimes called an intertwining operator . We
see that intertwining operators between induced representations are obtained by con-
volution with functions ∆ such as in the geometric form of Mackey’s theorem. This
geometric interpretation of intertwining operators is one reason for the remarkable
usefulness of Mackey’s theorem.

Now let H1, H2, H3 three subgroups, with linear characters ψi of Hi. Let Λ ∈
HomG(ψG1 , ψ

G
2 ) and Λ′ ∈ HomG(ψG2 , ψ

G
3 ). Let ∆ and ∆′ be the functions on G

corresponding to these two intertwining operators by Mackey theory. Since Λ is
convolution with ∆ and Λ′ is convolution with ∆′ we see that Λ′◦Λ ∈ HomG(ψG1 , ψ

G
3 )

is convolution with ∆′ ∗∆.
A special case is when H1 = H2 = H3 = H. If ψ is a linear character of H we will

write ψG for the corresponding induced representation, suppressing the underlying
one-dimensional vector space.

Proposition 4 Let H be a subgroup of G and let ψ be a linear character of H. Then
the ring EndG(ψG) is isomorphic as a ring to the convolution ring Hψ, which is the
space of functions ∆ : G −→ C such that ∆(hgh′) = ψ(h)∆(g)ψ(h′) when h, h′ ∈ H.

This is a Hecke algebra in the sense that we have already considered when ψ = 1.
Proof This is clear from the above discussion. �

A representation of G is called multiplicity free if it is a direct sum of nonisomor-
phic irreducible representations, each appearing at most once.

Proposition 5 Let H be a subgroup of G and let ψ be a linear character of H. The
following conditions are equivalent:

(i) The induced representation ψG is multiplicity free;
(ii) For every irreducible representation π of G, π|H contains at most one invari-

ant subspace isomorphic to ψ;
(iii) The Hecke algebra Hψ is commutative.

Proof The equivalence if (ii) and (iii) is clear from Frobenius reciprocity. We show
that (i) is equivalent to (iii). Indeed, Hψ

∼= EndG(ψG), so we consider when this
is commutative. Write ψG =

⊕
diπi as a direct sum of distinct irreducibles with

multiplicities. Then EndG(ψG) =
⊕

Mat(di,C). This is commutative if and only if
all di 6 1. �
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If H ⊂ G is such that 1GH is multiplity-free then H is called a Gelfand subgroup.
We see that a necessary and sufficient condition is that the Hecke algebra HH be
commutative. We now discuss Gelfand’s method for proving such commutativity.

By involution of a group G we will mean a map ι : G → G of order 2 that is
anticommutative:

ι(g1g2) = ιg2
ιg1.

Similarly an involution of a ring R is an additive map of order 2 that is anticommu-
tative for the ring multiplication.

Theorem 5 Let H be a subgroup of the finite group G, and suppose that G admits an
involution fixing H, such that every double coset of H is invariant: HgH = H ιgH.
Then H is a Gelfand subgroup.

Proof The ring HH is just the convolution ring of H-bi-invariant functions on G.
We have an involution on this ring:

ι∆(g) = ∆(ιg).

It is easy to check that
ι(∆1 ∗∆2) =ι ∆2 ∗ι ∆1.

On the other hand, each ∆ is constant on each double coset, and these are invariant
under ι by hypothesis. So ι is the identity map. This proves that H is commutative,
so (G,H) is a Gelfand pair. �

Here is an example of Gelfand’s method. Let Sn denote the symmetric group.
We can embed Sn × Sm → Sn+m by letting Sn act on the first n elements of the set
{1, 2, 3, · · · , n+m}, and letting Sm act on the last m elements.

Proposition 6 The subgroup Sn × Sm is a Gelfand subgroup of Sn+m.

Proof Let H = Sn × Sm and G = Sn+m. We take the involution ι in Theorem 5 to
be the inverse map g −→ g−1. We must check that each double coset is ι-stable.

It will be convenient to represent elements of Sn+m by permutation matrices. We
will show that each double coset HgH has a representative of the form

Ir 0 0 0
0 0n−r 0 In−r
0 0 Im−n+r 0
0 In−r 0 0n−r

 . (12)

15



Here In and 0n are the n×n identity and zero matrices, and the remaining 0 matrices
are rectangular blocks.

We write g in block form: (
A B
C D

)
where A, B, C and D are matrices with only 1’s and 0’s, and with at most one
nonzero entry in each row and column. Here A is n× n and D is m×m. Let r be
the rank of A. Then clearly B and C both must have rank n− r, and so D has rank
m− n+ r.

Multiplying A on the left by an element of Sn we may arrange its rows so that its
nonzero entries lie in the first r rows, then multiplying on the right by an element of
Sn we may put these in the upper left corner. Similarly we may arrange it so that
D has its nonzero entries in the upper left corner. Now the form of the matrix is

Tr 0 0 0
0 0n−r 0 Un−r
0 0 Vm−n+r 0
0 Wn−r 0 0n−r

 .

where the sizes of the square blocks are indicated by subscripts. The matrices T , U ,
V and W are permutation matrices. Left multiplication by element of Sr × Sn−r ×
Sm−n+r×Sn−r can now replace these four matrices by identity matrices. This proves
that (12) is a complete set of double coset representatives.

Since these double coset representatives are all invariant under the involution, by
Theorem 5 it follows that Sn × Sm is a Gelfand subgroup. �

3 Proof of Theorem 1

If G is totally disconnected and locally compact, then its topology has a basis of
neighborhoods of the identity consisting of open and compact subgroups.

Proposition 7 Let K be a compact totally disconnected group. Then K has a neigh-
borhood basis at the identity consisting of open and compact subgroups which are
normal in K.

Proof If K ′ is an open subgroup of K then K ′ has an open subgroup K ′′ that is
normal in K. Indeed, K ′ has only finitely many conjugates since it is of finite index,
and we may take K ′′ to be the intersection of these. Now given any neighborhood
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base consisting of open subgroups, we may replace each by a smaller open subgroup
which is normal in K, and obtain another neighborhood base. �

Proposition 8 Let K be a totally disconnected compact group and ρ : K −→ GL(V )
a finite-dimensional complex representation. Then K has a normal subgroup K ′ of
finite index such that K ′ ⊂ ker(ρ). Therefore ρ is actually a representation of the
finite group K/K ′.

Proof Let Ω be an open neighborhood of the identity in GL(V ) that does not contain
any subgroup of GL(V ). Then ρ−1(Ω) is an open neighborhood of the identity in
K. Since K is totally disconnected and compact, it has a neighborhood base at
the identity consisting of compact open normal subgroups. Therefore there is some
compact open normal subgroup K ′ of K contained in ρ−1(Ω). Since ρ(K ′) ⊂ Ω we
have K ′ ⊂ ker(ρ). The quotient K/K ′ is finite since K is compact and K ′ open. �

Let G be a totally disconnected locally compact group and K◦ a compact open
subgroup, which we may take to be maximal. Let (π, V ) be a smooth representation.
We have already defined V to be admissible if V K is finite-dimensional for every
compact open subgroup K, but there is another way of thinking of this. If ρ is any
irreducible representation of K, then the Peter-Weyl theorem guarantees that ρ is
finite-dimensional, that is, one of the representations in Proposition 8. Let Vρ be the
ρ-isotypic subspace, that is, the direct sum of all K◦-invariant subspaces of V that
are isomorphic to ρ as K◦-modules.

Proposition 9 Let (π, V ) be a smooth representation of G. Then

V =
⊕
ρ

Vρ (algebraic direct sum)

where ρ runs through the finite-dimensional irreducible representations of K◦. The
representation V is admissible if and only if every Vρ is finite-dimensional.

Proof Since V is smooth, every vector v ∈ V is invariant under some open subgroup
K, which may be assumed normal by Proposition 7. Now there are a finite number
of irreducible representations that factor through the finite group K◦/K, and one of
these, say ρ, has finite multiplicity in V if and only if Vρ is finite-dimensional. �

Now let us consider the contragredient of an admissible representation. A linear
functional L on V is called smooth if there exists an open subgroup K of G such
that L(π(k)v) = L(v) for all v ∈ V and k ∈ K. Let V̂ be the space of smooth linear
functionals. Also, let V̂ρ be the dual space of the finite dimensional vector space Vρ.
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Proposition 10 Assume that V is admissible. Then

V̂ =
⊕
ρ

V̂ρ (algebraic direct sum).

Proof If v̂ is a smooth linear functional, then v̂ is invariant under an open subgroup
K that is normal in K◦. This means that v̂ annihilates Vρ for all ρ that do not factor

through K◦/K. Therefore v̂ lies in the finite direct sum of those V̂ρ that do factor

through K◦/K, and so lies in the algebraic direct sum
⊕

ρ V̂ρ. �

If v ∈ V and v̂ ∈ V̂ , we will write 〈v, v̂〉 instead of v̂(v). We have a representa-
tion π̂ on V̂ defined by 〈v, π̂(g)〉 = 〈π(g−1)v, v̂〉. Then (π̂, V̂ ) is the contragredient
representation.

Proposition 11 If (π, V ) is an admissible representation then so is (π̂, V̂ ), and π
is isomorphic to the contragredient of π̂.

Proof This follows immediately from Propositions 9 and 10, because each Vρ is

finite dimensional, and so therefore is V̂ρ, and Vρ is the dual space of V̂ρ . �

Let H be the space of all locally constant compactly supported functions on G.
It is easy to see that a compactly supported function is locally constant if and only
if it is constant on the cosets some open subgroup K. Therefore

H =
⋃
HK

where K runs through the open compact subgroups of G; we may choose any cofinal
family of subsets, for example the normal open subgroups of K◦ for some fixed
maximal compact subgroup K◦.

Although H is a ring under convolution, it does not have a unit. Rather it is an
idempotented algebra, which is a ring with a family of idempotents that substitutes
for the unit. Let us explain this point.

If R is a ring and e an idempotent, then eRe is a 2-sided ideal in which e serves
as a unit. Let R be a ring and let E be a set of idempotents on R. We may define a
partial order on E by writing e > f if f ∈ eRe. We assume that E is a directed set
with this order and that

R =
⋃
e∈E

eRe.

Then we call R an idempotented ring . It is clear that H is an idempotented algebra,
and we give another example in the following exercises.
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Exercise 6 Let G be a compact group, and let (π, V ) be a finite-dimensional irreducible
representation. Recall that a matrix coefficient of π is a function of the form g 7→ 〈π(g)v, v̂〉
with v ∈ V and v̂ ∈ V̂ . Prove Schur orthogonality for matrix coefficients in the form∫

G
〈π(g)v, v̂〉

〈
π
(
g−1
)
w, ŵ

〉
dg =

1
dim(V )

〈v, ŵ〉 〈w, v̂〉 ,

where Haar measure is normalized so that G has total volume 1.
Hint: With v̂, w fixed define a map T : V −→ V by

T (x) =
∫
G
〈π(g)x, v̂〉π(g−1)w dg.

Show that T (π(g)x) = π(g)T (x) and deduce that there is some scalar c such that∫
G
〈π(g)x, v̂〉π(g−1)w dg = c(w, v̂)x

for all v ∈ V . The integral is c(w, v̂) 〈v, ŵ〉. But it is also c(v, ŵ) 〈w, v̂〉. Thus c(w, v̂) =
c 〈w, v̂〉 for some constant c. To evaluate c, let v1, · · · , vd be a basis of V and let v̂1, · · · , v̂d
be the dual basis of V̂ . Note that the trace of π(g) is

∑
i 〈π(g)vi, v̂i〉, and compute∫

G tr(g) tr(g−1) dg in two different ways.

Exercise 7 Let Rπ be the space of matrix coefficients of an irreducible representation
(π, V ) of the compact group G and let d = dim(V ). We have a bilinear maps V × V̂ −→
EndC(V ) and V × V̂ −→ Rπ as follows. The first map sends v ⊗ v̂ to the rank one linear
transformation fv,v̂ ∈ End(V ) and the second maps v⊗ v̂ to the matrix coefficient φv,v̂(g),
where

fv,v̂(x) =
1
d
〈x, v̂〉 v, φv,v̂(g) = 〈π(g)v, v̂〉 .

Show that
fv,v̂ ◦ fw,ŵ =

1
d
〈w, v̂〉 fv,ŵ, φw,ŵ ∗ φv,v̂ =

1
d
〈w, v̂〉φv,ŵ.

Conclude that Rπ is isomorphic to the opposite ring of End(V ).

Exercise 8 Let G be any compact group. Let f ∈ C(G). Show that the following are
equivalent:

(i) The space of left translates of f spans a finite-dimensional vector space.
(ii) The space of right translates of f spans a finite-dimensional vector space.
(iii) There exists a finite-dimensional representation (π, V ) of G with a vector v0 ∈ V

and a linear functional L on V such that f(g) = L(π(g)v0).
Hint: To prove (i) ⇒ (iii), we may take V to be the space of functions spanned by

left-translates of f with the action π(g)v(x) = v(g−1x) with v0 = f and L(v) = v(1).
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Now let R be the space of functions that satisfy (i),(ii) and (iii). It is an algebra under
convolution. Show that

R =
⊕
Rπ (algebraic direct sum),

where π runs through the irreducible representations of G. Show thatR is an idempotented
algebra.

If K is a compact open subgroup, let εK be 1
vol(K)

times the characteristic function

of K. Then the set of such {εK} forms a directed set of idempotents and R is an
idempotented ring.

Recall that if (π, V ) is a smooth representation of G and φ ∈ H then

π(g)v =

∫
G

φ(g)π(g)v dg.

This integral reduces to a finite sum for the following reason. We may find an open
subgroup K ∈ V K , and we may choose K such that φ is constant on the cosets
γK. Choosing representatives γ1, · · · , γN for the finite number of cosets such that
φ(γK) 6= 0, the integral equals

vol(K)
N∑
i=1

φ(γi)π(γi)v.

We now may give the proof of Theorem 1, whose statement we recall.
Theorem 1. (i) If (π, V ) is an irreducible representation and V K 6= 0, then V K is
a simple HK-module.

(ii) If (π, V ) and (σ,W ) are irreducible admissible representations and V K ∼= WK

as HK-modules, and V K 6= 0, then π and σ are equivalent representations.
Proof The proof is the same as that of Theorem 2.

We prove (i). If V is irreducible and 0 6= U ⊂ V K is a nonzero submodule, we
claim U = V K . It is sufficient to show HKu = V K for a given nonzero u ∈ HK . Let
v ∈ V K . Since V is irreducible, we may find ψ ∈ H such that π(ψ)u = v; indeed,
{π(ψ)u|ψ ∈ H} is a nonzero invariant subspace, hence all of V . Now consider
φ = εK ∗ ψ ∗ εK ∈ HK . We have π(εK)u = u and π(εK)v = v since u, v ∈ V K . Now

π(φ)u = π(εK)π(ψ)π(εK)u = π(εK)π(ψ)u = π(εK)v = v,

proving that v ∈ HKu.
We prove (ii). Suppose that V K and WK are isomorphic as HK-modules, with

V and W irreducible G-modules.
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Let λ : V K −→ WK denote an isomorphism. Let l : WK −→ C be a nonzero
linear functional and let w ∈ WK be a vector such that l(w) 6= 0. We claim that
there exists ŵ ∈ ŴK such that l(x) = 〈x, ŵ〉 when x ∈ WK . Indeed, we extend
the functional l to an arbitrary smooth functional ŵ1, then take ŵ = σ̂(εK), and if
x ∈ WK then

〈x, ŵ〉 =
1

vol(K)

∫
K

〈x, σ̂(k)w1〉 dk =
1

vol(K)

∫
K

〈σ(k)x,w1〉 dk = l(x).

Similarly we may find v̂ ∈ V̂ K such that l(λ(x)) = 〈x, v̂〉 for x ∈ V K . Let v ∈ V K

be the unique vector such that λ(v) = w. We will show that if φ ∈ H then

〈π(φ)v, v̂〉 = 〈σ(φ)w, ŵ〉 . (13)

If φ ∈ HK , then we have

〈π(φ)v, v̂〉 = l(λ(π(φ)v)) = l(σ(φ)λ(v)) = l(σ(φ)w) = 〈σ(φ)w, ŵ〉 .

The general case follows from the following consideration. Let φ ∈ H and let φ′ =
εK ∗ φ ∗ εK . Then

〈π(φ′)v, v̂〉 = 〈π(εK)π(φ)π(εK)v, v̂〉 = 〈π(φ)π(εK)v, π̂(εK)v̂〉 = 〈π(φ) v, v̂〉 ,

and similarly 〈σ(φ′)w, ŵ〉 = 〈σ(φ)w, ŵ〉. Thus the general case of (13) follows from
the special case that is already proved.

Now let L ⊂ K be a smaller compact open subgroup. Since V L and WL are
finite-dimensional simple HL-modules we may apply Proposition 2 and conclude
that, then V L ∼= WL as HL-modules. This isomorphism λL is uniquely determined
up; it is determined up to scalar by Schur’s Lemma, and the scalar is determined if
we require that the isomorphism agree with λ on V K ⊂ V L. Now if L′ is another
compact open subgroup of K, then the isomorphism λL and λL′ must agree on
V L ∩ V L′ because they agree with λL∩L′ on V L∩L′ ⊃ V L ∩ V L′ . Therefore these
isomorphisms may be patched together to get an H-module isomorphism V −→ W .
It is a G-module isomorphism since π(g)v = π(φ)v agrees with π(φ)v if φ is any
function supported on a sufficiently small neighborhood of v such that

∫
G
φ = 1, so

the action of H determines the action of G on any admissible module. �

4 Root Systems and Weyl Groups

Before we can discuss more interesting Hecke algebras, we need a portion of the
theory of roots systems, and the theory of Coxeter groups. A root system and its
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Weyl group may be found in any group of Lie type. In this section, we will study
the Weyl group by its action on the roots, and finally prove that the Weyl group is a
Coxeter group. Many of the facts that we prove along the way are standard, useful
properties of Weyl groups and root systems.

Let V be a Euclidean space, that is, a real vector space with an inner product
〈 , 〉 that is symmetric and positive definite. If 0 6= α ∈ V is a nonzero vector, then
the reflection in the hyperplane perpendicular to α is the map rα : V −→ V given
by

rα(x) = x− 2 〈α, x〉
〈α, α〉

α. (14)

By a root system we mean a nonempty finite set Φ ⊂ V of nonzero vectors such that
if α ∈ Φ then rα(Φ) = Φ, and such that if α, β ∈ Φ then 2〈α,β〉

〈α,α〉 ∈ Z. Note that if

α ∈ Φ then −α = rα(α), so the axioms imply that −α ∈ Φ.
If α, β ∈ Φ and α = λβ for λ ∈ R implies that λ = ±1, then Φ is called reduced .

We will mainly deal with reduced root systems.
We do not assume that V is spanned by the roots. Let V0 be the vector subspace

spanned by Φ. Then dim(V0) is called the rank of Φ.
The root system is called reducible if we can write V = V1 ⊕ V2, an orthogonal

direct sum, such that Φ = Φ1∪Φ2, with Φ1 and Φ2 root systems in Vi. The irreducible
root systems were classified by Cartan, and lie in four infinite families Ar, Br, Cr, Dr

with five exceptional root systems G2, F4, E6, E7, E8. The subscript in every case is
the rank.

If the vectors are all of the same length, then Φ is called simply-laced . The
simply-laced Cartan types are Ar, Dr and Er. A reduced irreducible root system
that is not simply-laced always has roots of exactly two different lengths.

If V = Rk and 1 6 i 6 k let ei denote the i-th standard basis vector (0, · · · , 1, · · · , 0)
with the 1 in the i-th position.

Example 1 Let V = Rr+1, and let Φ consist of the r(r + 1) vectors αi,j = ei − ej
with i 6= j. For example if r = 2 then

Φ = {(1,−1, 0), (0, 1,−1), (1, 0,−1), (−1, 1, 0), (0,−1, 1), (−1, 0, 1)}.

This is the root system of Cartan type Ar. As a variant, we may take V to be the
hyperplane consisting of all x ∈ Rr+1 such that x = (x1, · · · , xr+1) and

∑
xi = 0,

with the same root system Φ.

Example 2 Let V = Rr, and let Φ consist of 2r2 vectors to be described. The long
roots are the vectors

±ei ± ej, i 6= j.
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The short roots are the vectors
±ei.

This Cartan type is called Br. In this example it is assumed that r > 2.

Example 3 Let V = Rr, and let Φ consist of 2r2 vectors to be described. The
short roots are the vectors

±ei ± ej, i 6= j.

The long roots are the vectors
±2ei.

This Cartan type is called Cr. In this example it is assumed that r > 2.

Example 4 Let V = Rr and let Φ consist of the 2r(r − 1) vectors

±ei ± ej, i 6= j.

This is the Cartan type Dr.

We will not describe the exceptional Cartan types, but you may get access to any
information you want about them if you are running Sage.

Let V be a Euclidean space, Φ ⊂ V a reduced root system. Since Φ is a finite
set of nonzero vectors, we may choose ρ0 ∈ V such that 〈α, ρ0〉 6= 0 for all α ∈ Φ.
Let Φ+ be the set of roots α such that 〈α, ρ0〉 > 0. This consists of exactly half the
roots, since evidently a root α ∈ Φ+ if and only if −α /∈ Φ+. Elements of Φ+ are
called positive roots. Elements of set Φ− = Φ− Φ+ are called negative roots.

If α, β ∈ Φ+ and α + β ∈ Φ, then evidently α + β ∈ Φ+. Let Σ be the set of
elements in Φ+ that cannot be expressed as a sum of other elements of Φ+. If α ∈ Σ,
then we call α a simple positive root, and we will denote rα as sα in this case. We
will reserve the notation sα for the case where α is a simple positive root. If α ∈ Σ
we call sα a simple reflection.

Proposition 12 (i) The elements of Σ are linearly independent.
(ii) If α ∈ Σ and β ∈ Φ+ then either β = α or sα(β) ∈ Φ+.
(iii) If α and β are distinct elements of Σ then 〈α, β〉 6 0.
(iv) Every element α ∈ Φ can be expressed uniquely as a linear combination

α =
∑
β∈Σ

nβ · β

in which each nβ ∈ Z, and either all nβ > 0 (if β ∈ Φ+) or all nβ 6 0 (if β ∈ Φ−).
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Proof Let Σ′ be a subset of Φ+ that is minimal with respect to the property that
every element of Φ+ is a linear combination with nonnegative coefficients of elements
of Σ′. (Subsets with this property clearly exists, for example Σ′ itself.) We will
eventually show that Σ′ = Σ.

First we show that if α ∈ Σ′ and β ∈ Φ+, then either β = α or rα(β) ∈ Φ+. If
not, then −rα(β) ∈ Φ+, and

2
〈β, α〉
〈α, α〉

α = β + (−rα(β))

is a sum of two positive roots β and −rα(β). Both β and −rα(β) can be expressed as
linear combinations of the elements of Σ′ with nonnegative coefficients, and therefore

2
〈β, α〉
〈α, α〉

α =
∑
γ∈Σ′

nγ · γ, nγ > 0.

Write (
2
〈β, α〉
〈α, α〉

− nα
)
α =

∑
γ ∈ Σ′

γ 6= α

nγ · γ.

Because β 6= α, and because Φ is assumed to be reduced, β is not a multiple of α.
Therefore at least one of the coefficients nγ with γ 6= α is positive. Taking the inner
product with ρ0 shows that the coefficient on the left is strictly positive; dividing by
this positive constant, we see that α may be expressed as a linear combination of the
elements γ ∈ Σ′ distinct from α, and so α may be omitted from Σ′, contradicting its
assumed minimality. This contradiction shows that rα(β) ∈ Φ+.

Next we show that if α and β are distinct elements of Σ′ then 〈α, β〉 6 0. We
have already shown that rα(β) ∈ Φ+. If 〈α, β〉 > 0, then write

β = rα(β) + 2
〈β, α〉
〈α, α〉

α. (15)

Writing rα(β) as a linear combination with nonnegative coefficients of the elements
of Σ′, and noting that the coefficient of α on the right side of (15) is strictly positive,
we may write

β =
∑
γ∈Σ′

nγ · γ

24



where nα > 0. We rewrite this

(1− nβ) · β =
∑
γ ∈ Σ′

γ 6= β

nγ · γ.

At least one coefficient, nα > 0 on the right, so taking the take the inner product with
ρ0 we see that 1−nβ > 0. Thus β is a linear combination with nonnegative coefficients
of other elements of Σ′, hence may be omitted, contradicting the minimality of Σ′.

Now let us show that the elements of Σ′ are R-linearly independent. In a relation
of algebraic dependence we move all the negative coefficients to the other side of the
identity, and obtain a relation of the form∑

α∈Σ1

cα · α =
∑
β∈Σ2

dβ · β, (16)

where Σ1 and Σ2 are disjoint subsets of Σ′, and the coefficients cα, dβ are all positive.
Call this vector v. We have

〈v, v〉 =
∑
α ∈ Σ1

β ∈ Σ2

cαdβ 〈α, β〉 6 0.

since we have already shown that the inner products 〈α, β〉 6 0. Therefore v = 0.
Now taking the inner product of the left side in (16) with ρ0 gives

0 =
∑
α∈Σ1

cα 〈α, ρ0〉 ,

and since 〈α, ρ0〉 > 0, cα > 0, this is a contradiction. This proves the linear indepen-
dence of the elements of Σ′.

Next let us show that every element of Φ+ may be expressed as a linear combi-
nation of elements of Σ′ with integer coefficients. We define a function h from Φ+ to
the positive real numbers as follows. If α ∈ Φ+ we may write

α =
∑
β∈Σ′

nβ · β, nβ > 0.

The coefficients nβ are uniquely determined since the elements of Σ′ are linearly
independent. We define

h(α) =
∑

nβ. (17)
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Evidently h(α) > 0. We want to show that the coefficients nβ are integers. Assume
a counterexample with h(α) minimal. Evidently α /∈ Σ′, since if α ∈ Σ′, then nα = 1
while all other nβ = 0, so such an α has all nβ ∈ Z. Since

0 < 〈α, α〉 =
∑
β∈Σ′

nβ 〈α, β〉 (18)

it is impossible that 〈α, β〉 6 0 for all β ∈ Σ′. Thus there exists γ ∈ Σ′ such that
〈α, γ〉 > 0. Then by what we have already proved, α′ = rγ(α) ∈ Φ+, and by (14) we
see that

α′ =
∑
β∈Σ′

n′β · β,

where

n′β =

{
nβ if β 6= γ;

nγ − 2 〈γ,α〉〈γ,γ〉 if β = γ.

Since 〈γ, α〉 > 0, we have
h(α′) < h(α)

so by induction we have n′β ∈ Z. Since Φ is a root system, 2 〈γ, α〉 / 〈α, α〉 ∈ Z, so
nβ ∈ Z for all β ∈ Σ′. This is a contradiction.

Finally, let us show that Σ = Σ′.
If α ∈ Σ, then by definition of Σ, α cannot be expressed as a linear combination

with integer coefficients of other elements of Φ+. Hence α cannot be omitted from
Σ′. Thus Σ ⊂ Σ′.

On the other hand if α ∈ Σ′, then we claim that α ∈ Σ. If not, then we may write
α = β + γ with β, γ ∈ Φ+, and β and γ may both be written as linear combinations
of elements of Σ′ with positive integer coefficients, and thus h(β), h(γ) > 1; so
h(α) = h(β) + h(γ) > 1. But evidently h(α) = 1 since α ∈ Σ′. This contradiction
shows that Σ′ ⊂ Σ. �

Let W be the Weyl group generated by the simple reflections sα with α ∈ Σ. Our
goal is to show that W and the set of simple reflections form a Coxeter group. We
will show that the rα with α ∈ Φ are all conjugates of the sα with α ∈ Σ.

We now introduce the important length function on W . We will give two defini-
tions, and eventually show they are the same.

If w ∈ W , let the length l(w) be defined to be the smallest k such that w admits
a factorization w = s1 · · · sk into simple reflections, or l(w) = 0 if w = 1. Let l′(w)
be the number of α ∈ Φ+ such that w(α) ∈ Φ−. We will eventually show that the
functions l and l′ are the same.
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Proposition 13 Let s = sα (α ∈ Σ) be a simple reflection and let w ∈ W . Then

l′(sw) =

{
l′(w) + 1 if w−1(α) ∈ Φ+;
l′(w)− 1 if w−1(α) ∈ Φ−,

(19)

and

l′(ws) =

{
l′(w) + 1 if w(α) ∈ Φ+;
l′(w)− 1 if w(α) ∈ Φ−.

(20)

Proof By Proposition 12, s(Φ−) is obtained from Φ− by deleting −α and adding α.
So (sw)−1Φ− = w−1(sΦ−) is obtained from w−1Φ− by deleting −w−1(α) and adding
w−1(α). Since l′(w) is the cardinality of Φ+∩w−1Φ−, we obtain (19). To prove (20),
we note that l′(ws) is the cardinality of Φ+∩ (ws)−1Φ−, which equals the cardinality
of s(Φ+∩ (ws)−1Φ−) = sΦ+∩w−1Φ−, and since sΦ+ is obtained from Φ+ by deleting
the element α and adjoining −α, (20) is evident. �

If w is any orthogonal linear endomorphism of V , then evidently wrαw
−1 is the

reflection in the hyperplane perpendicular to w(α):

wrαw
−1 = rw(α). (21)

We now come to the famous exchange property , which is a fundamental property of
Coxeter groups.

Proposition 14 (Exchange Property) Suppose that s1, · · · , sk and s are simple
reflections. Let w = s1 · · · sk and suppose that l(ws) < l(w). Then there exists a
1 6 j 6 k such that

s1s2 · · · sk = s1s2 · · · ŝj · · · sksα, (22)

where the “hat” on the right signifies the omission of sj.

Although we only prove this for Weyl groups, see Humphreys, Reflection Groups
and Coxeter Groups , Section 5.8 for general Coxeter groups.
Proof Let s = sα where α ∈ Σ. By Proposition 13 s1 · · · sk(α) ∈ Φ−. Thus there is
a minimal 1 6 j 6 k such that sj+1 · · · sk(α) ∈ Φ+. Therefore sjsj+1 · · · sk(α) ∈ Φ−.
Since αj is the unique element of Φ+ mapped into Φ− by sj, we have

sj+1 · · · sk(α) = αj,

and by (21) we have
(sj+1 · · · sk)sα(sj+1 · · · sk)−1 = sj,

or
sj+1 · · · sks = sjsj+1 · · · sk.

This implies (22). �
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Proposition 15 Suppose that α1, · · · , αk are elements of Σ and let si = sαi. Sup-
pose that l′(s1s2 · · · sk) < k. Then there exist 1 6 i < j 6 k such that

s1s2 · · · sk = s1s2 · · · ŝi · · · ŝj · · · sk, (23)

where the “hats” on the right signify omission of the elements si and sj.

Proof Evidently there is a first j such that l′(s1s2 · · · sj) < j, and (since l′(s1) = 1)
we have j > 1. Then l′(s1s2 · · · sj−1) = j − 1, and by Proposition 13, we have
s1s2 · · · sj−1(αj) ∈ Φ−. The existence of i satisfying s1 · · · sj−1 = s1 · · · ŝi · · · sj−1sj
now follows from Proposition 14, which implies (23). �

We can now prove that the two definitions of the length function agree.

Proposition 16 If w ∈ W then l(w) = l′(w).

Proof The inequality
l′(w) 6 l(w)

follows from Proposition 14 because we may write w = sw1 where s is a simple
reflection and l(w1) = l(w) − 1, and by induction on l(w1) we may assume that
l′(w1) 6 l(w1), so l′(w) 6 l′(w1) + 1 6 l(w1) + 1 = l(w).

Let us show that
l′(w) > l(w).

Indeed, let w = s1 · · · sk be a counterexample with l(w) = k, where each si = sαi
with αi ∈ Σ. Thus l′(s1 · · · sk) < k. Then by Proposition 15 there exist i and j such
that

w = s1s2 · · · ŝi · · · ŝj · · · sk.

This expression for w as a product of k−2 simple reflections contradicts our assump-
tion that l(w) = k. �

Proposition 17 The function w 7−→ (−1)l(w) is a character of W .

Proof A reflection, as an endomorphism of V , has eigenvalue −1 with multiplicity
1 and eigenvalue 1 with multiplicity dim(V ) − 1. Therefore det(rα) = −1 for every
reflection. In particular, det(sα) = −1 for every simple reflection. Writing w ∈ W
as a product of l(w) simple reflections, we see that det(w) = (−1)l(w), and so this is
a character. �

Proposition 18 If w(Φ+) = Φ+ then w = 1.

28



Proof If w(Φ+) = Φ+, then l′(w) = 0, so l(w) = 0, that is, w = 1. �

Proposition 19 If α ∈ Φ, there exists an element w ∈ W such that w(α) ∈ Σ.

Proof First assume that α ∈ Φ+. We will argue by induction on h(α), which is
defined by (17). In view of Proposition 12 (iv), we know that h(α) is a positive
integer, and if α /∈ Σ (which we may as well assume) then h(α) > 1. As in the
proof of Proposition 12, (18) implies that 〈α, β〉 > 0 for some β ∈ Σ, and then with
α′ = sβ(α) we have h(α′) < h(α). On the other hand α′ ∈ Φ+ since α 6= β, by
Proposition 12 (ii). By our inductive hypothesis, w′(α′) ∈ Σ for some w′ ∈ W . Then
w(α) = w′(α′) with w = w′sβ ∈ W . This shows that if α ∈ Φ+ then there exists
w ∈ W such that w(α) ∈ Σ.

If on the other hand α ∈ Φ−, then −α ∈ Φ+ so we may find w1 ∈ W such that
w1(−α) ∈ Σ, so if w1(−α) = β, then w(α) = β with w = sβw1.

In both cases w(α) ∈ Σ for some w ∈ W . �

Proposition 20 The group W contains rα for every α ∈ Φ.

Proof Indeed, w(α) ∈ Σ for some w ∈ W , so rw(α) ∈ W , and rα is conjugate in W
to sw(α) by (21). Therefore rα ∈ W . �

Proposition 21 The group W is finite.

Proof By Proposition 18, w ∈ W is determined by w(Φ+) ⊂ Φ. Since Φ is finite,
W is finite. �

Proposition 22 Suppose that w ∈ W such that l(w) = k. Write w = s1 · · · sk,
where si = sαi, α1, · · · , αk ∈ Σ. Then

{α ∈ Φ+|w(α) ∈ Φ−} = {αk, sk(αk−1), sksk−1(αk−2), · · · , sksk−1 · · · s2(α1)}.

Proof By Proposition 16, the cardinality of {α ∈ Φ+|w(α) ∈ Φ−} is k, so the result
will be established if we show that the described elements are distinct and in the set.
Let w = s1w1 where w1 = s2 · · · sk, so that l(w1) = l(w)− 1. By induction we have

{α ∈ Φ+|w1(α) ∈ Φ−} = {αk, sk(αk−1), sksk−1(αk−2), · · · , sksk−1 · · · s3(α2)},

and the elements on the right are distinct. We claim that

{α ∈ Φ+|w1(α) ∈ Φ−} ⊂ {α ∈ Φ+|s1w1(α) ∈ Φ−}. (24)
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If not, let α ∈ Φ+ such that w1(α) ∈ Φ− while s1w1(α) ∈ Φ+. Let β = −w1(α).
Then β ∈ Φ+ while s1(β) ∈ Φ−. By Proposition 12 (ii), this implies that β = α1.
Therefore α = −w−1

1 (α1). By Proposition 13, since l(s1w1) = k = l(w1) + 1, we have
−α = w−1

1 (α1) ∈ Φ+. This contradiction proves (24).
We will be done if we show that the last remaining element sk · · · s2(α1) is in

{α ∈ Φ+|s1w1(α) ∈ Φ−} but not {α ∈ Φ+|w1(α) ∈ Φ−}, since that will guarantee
that it is distinct from the other elements listed. This is clear since if α = sk · · · s2(α1),
we have w1(α) = α1 /∈ Φ−, while s1w1(α) = −α1 ∈ Φ−. �

Our goal is to show that W is a Coxeter group with I = {sα|α ∈ Σ}. We will
work with a larger (usually infinite) group B, the braid group. If α, β ∈ Σ, let n(α, β)
be the order of sαsβ. Then B is the group with generators uα and braid relations

uαuβuαuβ · · · = uβuαuβuα · · ·

where there are m(α, β) factors on each side. (This differs from W since it is not
true that u2

α = 1.)
The braid relations are satisfied in W so there exists a homomorphism B −→ W

in which uα 7→ sα. Let G be the group generated by elements tα subject to the braid
relations

tαtβtαtβ · · · = tβtαtβtα · · ·

and also the relations t2α = 1. Thus we have homomorphisms B −→ G −→ W such
that uα −→ tα −→ sα. We want to show that the last homomorphism G −→ W is
an isomorphism, which will show that W satisfies the definition of a Coxeter group.

Proposition 23 (Tits) Let w ∈ W such that l(w) = k. Let s1 · · · sk = s′1 · · · s′k
be two decompositions of w into products of simple reflections, where si = sαi and
s′i = sβi, for simple roots αi and βj. Let ui = uαi and u′i = uβi be the corresponding
elements of B, and let ti = tα and t′i = tβi be the corresponding elements of G. Then
u1 · · ·uk = u′1 · · ·u′k and t1 · · · tk = t′1 · · · t′k.

Proof The proof is identical for the braid group and the Coxeter group. We prove
this for the braid group.

Let us assume that we have a counterexample of shortest length. Thus l(s1 · · · sk) =
k and

s1 · · · sk = s′1 · · · s′k but u1 · · ·uk 6= u′1 · · ·u′k. (25)

We will show that

s2s3 · · · sks′k = s1 · · · sk but u2u3 · · ·uku′k 6= u1 · · ·uk. (26)
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Before we prove this let us explain how it implies the Proposition. The W element
in (26) is w and thus has length k, so we may repeat the process, obtaining

s3s4 · · · sks′ksk = s2s3 · · · sks′k but u3u4 · · ·uku′kuk 6= u2u3 · · ·uku′k.

Repeating the process, we eventually obtain

· · · s′ksks′ksk = · · · sks′ksks′k but · · ·u′kuku′kuk 6= · · ·uku′kuku′k (27)

Moving all the s’s on the left together (s′ksk)
k = 1, so k is a multiple of n(sk, s

′
k).

Now (27) contradicts the braid relation.
It remains to prove (26). Note that ws′k = s′1 · · · s′k−1 has length k − 1, so by

Proposition 13 we have w(βk) ∈ Φ−. Now by Proposition 14, we have

s1 · · · sk = s1 · · · ŝi · · · sks′k (28)

for some 1 6 i 6 k, where the hat denotes an omitted element. Using (25)

s1 · · · ŝi · · · sk = s′1 · · · s′k−1,

and this element of W has length k− 1. (If it had shorter length, multiplying on the
right by s′k would contradict the assumption that l(w) = k). By the minimality of
the counterexample, we have

u1 · · · ûi · · ·uk = u′1 · · ·u′k−1. (29)

We now claim that i = 1. Suppose i > 1. Cancel s1 · · · si−1 in (28) to obtain

si · · · sk = si+1 · · · sks′k

and since i > 1, this has length k−i+1 < k. By the minimality of the counterexample
(25) we have

ui · · ·uk = ui+1 · · ·uku′k.

We can multiply this identity on the left by u1 · · ·ui−1, then use (29) to obtain a
contradiction to (25). This proves that i = 1.

Now (28) proves the first part of (26). As for the second part, suppose u2 · · ·uk−1u
′
k =

u1 · · ·uk. Then multiplying (29) on the right by u′k gives a contradiction to (25) and
(26) is proved. �

Theorem 6 Let W be the Weyl group of the root system Φ, and let I be the set of
simple reflections in W . Then (W, I) is a Coxeter group.
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Proof We have to show that the homomorphism G −→ W is injective. Suppose
that t1 · · · tn is in the kernel, where ti = tαi for simple roots αi. We will denote
si = sαi . We have s1 · · · sn = 1, and we will show that t1 · · · tn = 1.

It follows from Proposition 17 that n is even. Let n = 2r. Letting s′1 = sn,
s′2 = sn−1, etc. and similarly t′i = t−1

n+1−i when 1 6 i 6 r we have

s1 · · · sr = s′1 · · · s′r
and we want to show that t1 · · · tr = t′1 · · · t′r. Suppose not; then

t1 · · · tr 6= t′1 · · · t′r. (30)

We assume this counterexample minimizes r. By Proposition 23, we already have a
contradiction unless l(s1 · · · sr) < r. It follows from Proposition 15 that

s1 · · · ŝi · · · ŝj · · · sr = s1 · · · sr = s′1 · · · s′r (31)

for some i and j. Moving s′r to the other side,

s1 · · · ŝi · · · ŝj · · · srs′r = s′1 · · · s′r−1,

and by the minimality of r we therefore have

t1 · · · t̂i · · · t̂j · · · trt′r = t′1 · · · t′r−1, so t1 · · · t̂i · · · t̂j · · · tr = t′1 · · · t′r−1t
′
r.

It follows from (30) that

t1 · · · t̂i · · · t̂j · · · tr 6= t1 · · · tr. (32)

Now comparing (31) and (32) we have

s1 · · · ŝi · · · ŝj · · · srsr = s1 · · · sr−1 but t1 · · · t̂i · · · t̂j · · · trtr 6= t1 · · · tr−1,

where there are r − 1 terms on both sides, again contradicting the minimality of r.
�

A connected component of the complement of the union of the hyperplanes

{x ∈ V |〈x, α〉 = 0 for all α ∈ Φ}.

is called an open Weyl chamber . The closure of an open Weyl chamber is called
a Weyl chamber . For example C+ = {x ∈ V | 〈x, α〉 > 0 for allα ∈ Σ} is called the
positive Weyl chamber . Since every element of Φ+ is a linear combination of elements
of C with positive coefficients, C+ = {x ∈ V | 〈x, α〉 > 0 for allα ∈ Φ+}. The interior

C◦+ = {x ∈ V | 〈x, α〉 > 0 for allα ∈ Σ} = {x ∈ V | 〈x, α〉 > 0 for allα ∈ Φ+}

is an open Weyl chamber.
If y ∈ V let W (y) be the stabilizer {w ∈ W |w(y) = y}.
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Proposition 24 Suppose that w ∈ W such that l(w) = k. Write w = s1 · · · sk,
where si = sαi, α1, · · · , αk ∈ Σ. Assume that x ∈ C+ such that wx ∈ C+ also.
(i) We have 〈x, αi〉 = 0 for 1 6 i 6 k.
(ii) Each si ∈ W (x).
(iii) We have w(x) = x.

Proof If α ∈ Φ+ and wα ∈ Φ− then we have 〈x, α〉 = 0. Indeed, 〈x, α〉 > 0 since
α ∈ Φ+ and x ∈ C+, and 〈x, α〉 = 〈wx,wα〉 6 0 since wx ∈ C+ and wα ∈ Φ−.

The elements of {α ∈ Φ+|wα ∈ Φ−} are listed in Proposition 22. Since αk is in
this set, we have sk(x) = x − (2 〈x, αk〉 / 〈αk, αk〉)αk = x. Thus sk ∈ W (x). Now
since sk(αk−1) ∈ {α ∈ Φ+|wα ∈ Φ−}, we have 0 = 〈x, sk(αk−1)〉 = 〈sk(x), αk−1〉 =
〈x, αk−1〉, which implies sk−1(x) = x − 2 〈x, αk−1〉 / 〈αk−1, αk−1〉 = x. Proceeding in
this way we prove (i) and (ii) simultaneously. Of course (ii) implies (iii). �

Theorem 7 The set C+ is a fundamental domain for the action of W on V . More
precisely, let x ∈ V .
(i) There exists w ∈ W such that w(x) ∈ C+.
(ii) If w,w′ ∈ W and w(x) ∈ C+, w

′(x) ∈ C◦+ then w = w′.
(iii) If w,w′ ∈ W and w(x) ∈ C+, w

′(x) ∈ C+ then w(x) = w′(x).

Proof Let w ∈ W be chosen so that the cardinality of S = {α ∈ Φ+| 〈w(x), α〉 < 0}
is as small as possible. We claim that S is empty. If not, then there exists an element
of β ∈ Σ∩S. We have 〈w(x),−β〉 > 0, and since sβ preserves Φ+ except for β, which
it maps to −β, the set S ′ = {α ∈ Φ+| 〈w(x), sβ(α)〉 < 0} is smaller than S by one.
Since S ′ = {α ∈ Φ+| 〈sβw(x), α〉 < 0} this contradicts the minimality of |S|. Clearly
w(x) ∈ C+. This proves (i).

We prove (ii). We may assume that w′ = 1, so x ∈ C◦+. Since 〈x, α〉 > 0 for all
α ∈ Φ+ we have Φ+ = {α ∈ Φ| 〈x, α〉 > 0} = {α ∈ Φ| 〈x, α〉 > 0}. Since w′(x) ∈ C+,
if α ∈ Φ+ we have 〈w−1(α), x〉 = 〈α,w(x)〉 > 0 so w−1(α) ∈ Φ+. By Proposition 18
this implies that w−1 = 1, whence (ii).

Part (iii) follows from Proposition 24 (iii). �

5 Dynkin Diagrams and Coxeter Groups

It is worth knowing that we can read off the Coxeter group presentation of the Weyl
group from the Dynkin diagram.

The Dynkin diagram has vertices in bijection with the simple roots. The following
labeling convention is used: two vertices i and j are linked with an edge if the
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corresponding simple roots αi and αj are not orthogonal. If these make an angle of
2π/3, then i and j are linked with an edge, which is drawn as a single bond. In this
case the roots αi and αj have the same length. If they make an angle of 3π/4, the
edge is drawn with a double bond and an arrow from the long root to the short root.
This arises with the Cartan types Br, Cr and F4. Finally (for G2) if they make an
angle of 5π/6, the edge is drawn with a triple bond and an arrow from the long root
to the short root.

As to the labeling of the nodes, there are two conventions, Dynkin’s and Bour-
baki’s. The Bourbaki conventions are used by most authors, an important exception
being Kac’ book Infinite-dimensional Lie algebras , which follows Dynkin. The Ap-
pendices at the end of Bourbaki’s Groupes et AlgÃbres de Lie Ch 4,5,6 give the
conventions. Sage follows Bourbaki’s convention.

α1 α2 α3 α4 α5 Type A5

α1 α2 α3 α4 α5 Type B5

α1 α2 α3 α4 α5 Type C5

α1 α2 α3 α4

α5

α6

Type D6

Table 1: The Dynkin diagrams of the classical Cartan types.

From the Dynkin diagram we can view the braid relations for the Coxeter group
presentation of the Weyl group. If i and j are not joined by an edge, then si and sj
commute. If i and j are joined by a single edge, then (sisj)

3 = 1, or sisjsi = sjsisj,
which is Artin’s braid relation. If they are joined by an double edge, then (sisj)

4 = 1,
and if they are joined by a triple edge, then (sisj)

6 = 1.
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α1 α2 Type G2

α1 α2 α3 α4 Type F4

α1 α3 α4 α5 α6

α2

Type E6

α1 α3 α4 α5 α6 α7

α2

Type E7

α1 α3 α4 α5 α6 α7 α8

α2

Type E8

Table 2: The Dynkin diagrams of the exceptional Cartan types.

6 Root Systems in GLr+1 and other algebraic groups

We wish to show how root systems arise in practice. Let us start with the case of
G = GLr+1.

A Lie algebra g is a vector space over a field F with a bracket operation X, Y 7−→
[X, Y ] that is bilinear, skew-symmetric and satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

As an example, if A is any associative algebra then A has a Lie group structure with
the bracket operation [x, y] = xy − yx for x, y ∈ A. We will denote this Lie algebra
as Lie(A). In particular, if A = End(V ) where V is a finite-dimensional vector space,
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then we will denote this Lie algebra as gl(V ). Equivalently, if A = Matr+1(F ) for
F any field, we will use the notation glr+1(F ) for Lie(A). These notations will be
justified when we show that glr+1 is Lie algebra is the Lie algebra of GLr+1.

A representation of g is a linear map ρ : g −→ End(V ) where V is a vector space
is a map that satisfies ρ([X, Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X). In other words,

ρ([X, Y ]) = [ρ(X), ρ(Y )] (33)

where the second bracket operation is in gl(V ).
As an example, we have a representation ad : g −→ gl(g), the so-called adjoint

representation, defined by
ad(X)Y = [X, Y ].

Then (33) follows from the Jacobi identity.
The adjoint representation of GLr+1 which we have described is a special case of

a more general situation. In general, if G is an algebraic group over a field F and
if g is the tangent space at the identity, then g has a Lie algebra structure. As a
particular case, suppose that G = GL(V ). Then G is a Zariski-open subset of the
vector space End(V ), so the tangent space to G at the identity may be identified
with the ambient space End(V ). It may be shown that Lie algebra structure we
obtain on End(V ) this way is the same as that described above, so gl(V ) is indeed
the Lie algebra of GL(V ).

Suppose that ρ : G −→ GL(V ) is a homomorphism. Then there is induced a map
of tangent spaces at the identity, which is a Lie algebra homomorphism dρ : g −→
gl(V ).

As a special case, G acts on itself by conjugation, fixing the identity, and so there
is a representation Ad : G(F ) −→ GL(g). If ρ = Ad then dρ = ad.

Restricting ourselves to GLr+1 has the advantage that we may see features of the
general situation without developing very much machinery. So we will look at this
example first.

Let T be the diagonal torus consisting of diagonal entries in G. Let B be the
Borel subgroup of upper triangular elements. We write B = TU where U is the group
of upper triangular unipotent matrices. These are algebraic groups. We will write
B(E), T (E) or U(E) for the group of elements with entries in E, when E is any field
(or commutative algebra) containing F . We have

T =


 ∗ . . .

∗


 , B =



∗ ∗ · · · ∗
∗ ∗

. . .
...
∗


 , U =




1 ∗ · · · ∗
1 ∗

. . .
...
1


 .
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Now if 1 6 i, j 6 r+ 1 let Ei,j be the matrix having 1 in the i, j position and 0’s
elsewhere. The Ei,j form a basis of g.

Let X∗(T ) be the group of rational characters of T . These are the homomor-
phisms

z =

 z1

. . .

zr+1

 7−→ zλ =
r+1∏
i=1

zλii , λ = (λ1, · · · , λr+1) ∈ Zr+1.

We will identify X∗(T ) with Zr+1 by this parametrization. Elements of X∗(T ) will
be called weights , and we will also denote X∗(T ) = Λ, the weight lattice. We will
embed Λ in V = Rr+1 = R ⊗ Zr+1 = R ⊗ X∗(T ). We make Rr+1 into a Euclidean
space with the usual inner product.

Let T (F ) act on g by the adjoint representation as above. Then we can decompose
g into invariant subspaces that are eigenspaces of weights:

g =
⊕
λ

gλ, gλ =
{
X ∈ g |Ad(z)X = zλX for z ∈ T (F )

}
.

If λ = 0, then g0 is the span of the Ei,i, which is the Lie algebra of T . On the other
hand if λ 6= 0 then each gλ that appears is one-dimensional, and is the span of the
Ei,j with i 6= j. The corresponding characters αi,j are exactly the roots of the root
system Φ of Type Ar listed in Example 1.

Let N(T ) be the normalizer of T . It consists of monomial matrices, that is,
matrices with exactly one nonzero entry in every row and column. The quotient
N(T )/T is isomorphic to the symmetric group Sr+1. It acts on T and hence on
X∗(T ) by conjugation.

We note that this is the Weyl group associated with the root system Φ as de-
veloped in the previous section. The simple roots Σ are αi = αi,i+1. The simple
reflection sαi is realized as in N(T )/T as the coset with representative

sαi =


Ii−1

0 1
1 0

Ir−i

 .

All of this generalizes to other root systems. The classical Cartan typesBr, Cr and
Dr can be realized in algebraic groups SO(2r + 1), Sp(2r) and SO(2r) respectively,
where SO(n) and Sp(2n) are the special orthogonal and symplectic groups. The
exceptional groups give rise to the exceptional root systems.

? ? ?
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We will next summarize (without proof) how root systems arise in algebraic
groups in general. We will not give proofs, for which see Borel, Linear Algebraic
Groups , especially Chapter 4 Section 14. For each of the classical Cartan types
the existence of a root system and Weyl group structure on N/T may be verified
independent of the general theory, as we have done for GLr+1 above.

An algebraic group is an algebraic variety G defined over some field F with mor-
phisms m : G × G −→ G and inv : G −→ G which become the multiplication
and inverse maps on G(E) making the group G(E) of E-rational points into a group
when E is any commutative F -algebra. We will only consider affine algebraic groups,
that is, G will be an affine variety. An example is the multiplicative group Gm, with
G(E) = E×, or more generally G = GLr+1.

A torus is a group T that is isomorphic to Gk
m for some k. If the isomorphism is

defined over F we say T is split (over F ). For example, the group

K =

{(
a b
−b a

)
|a2 + b2 = 1

}
over R is not split since K(R) is compact. But K(C) ∼= C× and indeed K ∼= Gm via

the isomorphism

(
a b
−b a

)
7−→ a+ bi. The isomorphism is defined over C but not

over R.
Let G be an affine algebraic group over F . By a representation we mean a

morphism ρ : G −→ GLn for some n such that ρ : G(E) −→ GLn(E) is a group
homomorphism for any commutative F -algebra E. Suppose that ρ is a faithful
representation and g ∈ G(F ). Then the condition that ρ(g) ∈ GLn(F ) is semisimple
(diagonalizable over F̄ ) or unipotent (having only eigenvalue 1) is independent of ρ.
Therefore elements of G(F ) may be classified as semisimple or unipotent. The group
G is called unipotent if every element is unipotent. The group G has a maximal
normal unipotent subgroup U , called the unipotent radical. If the unipotent radical
is trivial, then G is called reductive. If it is reductive and has no nontrivial normal
tori, it is called semisimple. The group{(

a b
0 d

)}

is not reductive since

{(
1 x

1

)}
is a normal unipotent subgroup. The group SLn

is semisimple. The group GLn is reductive but not semisimple.
If G is any smooth variety of dimension d defined over a field F , and if x is a point

in G(F ), then there is defined at x the Zariski tangent space TxG, which is a vector
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space of dimension d. If G is an algebraic group, then G is smooth and so the tangent
space g = T1(G) at the identity has dimension equal d. It may be given the structure
of a Lie algebra. Since G acts on itself by conjugation, with the identity as a fixed
point, it acts on g, and this is the adjoint representation Ad : G(F ) −→ End(g).

Let G be a reductive group. If G has a maximal torus that is split over F , then
G is called F -split .

All maximal tori in G(F ) are conjugate if F is algebraically closed. Let G be an
semisimple algebraic group, and let T be a maximal torus, that is, a subgroup as
large as possible such that T is a product of multiplicative groups. We assume that
T is split over F . If such a T exists, then G is called F -split .

We assume that G is an F -split reductive group and that T is an F -split maximal
torus. Let N be the normalizer of T . Then N/T is a Weyl group W .

To realize W as a Weyl group, we must introduce a vector space V and a root
system Φ in V . Let Λ = X∗(T ) be the group of rational characters of T , that
is, algebraic homomorphisms from T to the multiplicative group Gm, and let V =
R⊗X∗(T ). The elements of Λ are called weights , and are thus embedded as a lattice
in the ambient real vector space V . We may give V a Euclidean structure (real inner
product) that is W invariant.

We write
g =

⊕
λ

gλ

where for a weight λ, the space gλ is {X ∈ g |Ad(t)X = λ(t)X for t ∈ T (F )}. If
λ = 0 then g0 is the Lie algebra of T . If α 6= 0 and gα 6= 0 then gα is one-dimensional,
and in this case α is called a root .

Theorem 8 The roots in a split reductive algebraic group form a root system.

Proof See Borel, Linear Algebraic Groups , Chapter 4, Section 14. �

Let Φ be this root system. We may partition the roots Φ into positive and
negative ones. If Φ+ are the positive roots then⊕

α∈Φ+

gα

is the root system of a unipotent subgroup U that is normalized by T , and B = TU
is the positive Borel subgroup. It is a maximal subgroup of G and G/B is a projective
algebraic variety, the flag variety .
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7 The Bruhat Decomposition

The Bruhat decomposition is a basic fact about Lie groups. Remarkably for some-
thing so basic, it went undiscovered for a long time. It originated in Ehresmann’s
study of flag manifolds, but was not really articulated until Bruhat’s work in the
1950s.

Tits found axioms, which were slightly generalized later by Iwahori and Mat-
sumoto. Let G be a group and B,N subgroups. It is assumed that T = N ∩ B is
normal in N . The group W = N/T will be a Weyl group. If w ∈ W , then w is
actually a coset ωT , but we will write wB, Bw and BwB to denote the cosets and
double coset ωB, Bω and BωB. These do not depend on the representative ω since
T ⊆ B.
Axiom TS1. The group T = B ∩N is normal in N ;
Axiom TS2. There is specified a set I of generators of the group W = N/T such
that if s ∈ I then s2 = 1;
Axiom TS3. Let w ∈ W and s ∈ I. Then

wBs ⊂ BwsB ∪BwB; (34)

Axiom TS4. Let s ∈ I. Then sBs−1 6= B;
Axiom TS5. The group G is generated by N and B.
Then we say that (B,N, I) is a Tits’ system.

We will be particularly concerned with the double cosets C(w) = BwB with
w ∈ W . Then Axiom TS3 can be rewritten

C(w) C(s) ⊂ C(w) ∪ C(ws),

which is obviously equivalent to (34). Taking inverses, this is equivalent to

C(s) C(w) ⊂ C(w) ∪ C(sw). (35)

Theorem 9 Let (B,N, I) be a Tits’ system within a group G, and let W be the
corresponding Weyl group. Then

G =
⋃
w∈W

BwB, (36)

and this union is disjoint.

Proof Let us show that
⋃
w∈W C(w) is a group. It is clearly closed under inverses.

We must show that it is closed under multiplication.

40



So let us consider C(w1) · C(w2), where w1, w2 ∈ W . We will denote by l(w) the
length of a shortest decomposition of w ∈ W into a product of elements of I. We
show by induction on l(w2) that this is contained in a union of double cosets. If
l(w2) = 0, then w2 = 1 and the assertion is obvious. If l(w2) > 0, write w2 = sw′2
where s ∈ I and l(w′2) < l(w2). Then by Axiom TS3, we have

C(w1) · C(w2) = Bw1Bsw
′
2B ⊂ Bw1Bw

′
2B ∪Bw1sBw

′
2B,

and by induction, this is contained in a union of double cosets.
We have shown that the right side of (36) is a group, and since it clearly contains

B and N , it must be all of G by Axiom TS5.
It remains to be shown that the union (36) is disjoint. Of course two double

cosets are either disjoint or equal. So assume that C(w) = C(w′) where w, w′ ∈ W .
We will show that w = w′.

Without loss of generality, we may assume that l(w) 6 l(w′), and we proceed
by induction on l(w). If l(w) = 0, then w = 1, and so B = C(w′). Thus in N/T
a representative for w′ will lie in B. Since B ∩ N = T , this means that w′ = 1,
and we are done in this case. Assume therefore that l(w) > 0, and that whenever
C(w1) = C(w′1) with l(w1) < l(w) we have w1 = w′1.

Write w = w′′s where s ∈ I and l(w′′) < l(w). Thus w′′s ∈ C(w′), and since s
has order 2, we have

w′′ ∈ C(w′)s ⊂ C(w′) ∪ C(w′s)

by Axiom TS3. Since two double cosets are either disjoint or equal, this means that
either

C(w′′) = C(w′) or C(w′′) = C(w′s).

Our induction hypothesis implies that either w′′ = w′ or w′′ = w′s. The first case is
impossible since l(w′′) < l(w) 6 l(w′). Therefore so w′′ = w′s. Hence w = w′′s = w′,
as required. �

As a first example, let G = GL(r + 1, F ), where F is any field. As in the last
section, let B be the Borel subgroup of upper triangular matrices in G, let T be the
standard maximal torus of all diagonal elements, and let N be the normalizer in G of
T . The group N consists of the monomial matrices, that is, matrices having exactly
one nonzero entry in each row and column.

Our goal is to show that N and B form a Tits system.
If α = αi,j with i 6= j is a root, let xα : F −→ G(F ) be the homomorphism

xα(a) = 1 + aEi,j where Ei,j is (as in the last section) the matrix with 1 in the i, j
position and 0 elsewhere.

41



The positive roots are αi,j with i < j, and the simple roots are αi = αi,i+1 with
1 6 i 6 r. Suppose that α = αi is a simple root. The corresponding simple reflection
is

si =


Ii−1

0 1
1 0

In−1−i

 .

More precisely, the coset of this matrix in N/T is si. Let Tα ⊂ T be the kernel of α.
Let Mα be the centralizer of Tα, and let Pα be the “parabolic subgroup” generated
by B and Mα. We have a semidirect product decomposition Pα = MαUα, where Uα
is the group generated by the xβ(λ) with β ∈ Φ+ − {α}. For example if n = 4 and
α = α2 = α23 then

Tα =




t1
t2

t2
t4


 , Mα =



∗
∗ ∗
∗ ∗

∗




Pα =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗


 , Uα =




1 ∗ ∗ ∗
1 ∗

1 ∗
1


 ,

where ∗ indicates an arbitrary value.

Lemma 5 Let G = GL(n, F ) for any field F , and let other notations be as above.
If s is a simple reflection then B ∪ C(s) is a subgroup of G.

Proof First let us check this when n = 2. In this case there is only one simple root
sα where α = α12. We check easily that

C(sα) = BsαB =

{(
a b
c d

)
∈ GL(2, F )|c 6= 0

}
,

so C(sα) ∪B = G.
In the general case, both C(sα) and B are subsets of Pα. We claim that their

union is all of Pα. Both double cosets are right-invariant by Uα, since Uα ⊂ B. So
it is sufficient to show that C(sα) ∪ B ⊃ Mα. Passing to the quotient in Pα/Uα ∼=
Mα
∼= GL(2)× (F×)n−2, this reduces to the case n = 2 just considered. �
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The action of W on T by conjugation induces the action of W on Φ. This action
is such that if ω ∈ N represents the Weyl group element w ∈ W , we have

ωxα(λ)ω−1 ∈ xw(α)(F ). (37)

Lemma 6 Let G = GL(n, F ) for any field F , and let other notations be as above.
If α is a simple root and w ∈ W such that w(α) ∈ Φ+ then C(w)C(s) = C(ws).

Proof We will show that
wBs ⊆ BwsB.

If this is known, then multiplying right and left by B gives C(w)C(s) = BwBsB ⊆
BwsB = C(ws). The other inclusion is obvious, so this is sufficient. Let ω and σ
be representatives of w and s as cosets in N/T = W , and let b ∈ B. We may write
b = txα(λ)u where t ∈ T , λ ∈ F and u ∈ Uα. Then

ωbσ = ωtω−1.ωxα(λ)ω−1.ωσ.σ−1uσ.

We have ωtω−1 ∈ T ⊂ B since ω ∈ N = N(T ). We have ωxα(λ)ω−1 ∈ xw(α)(F ) ⊂ B,
using (37) and the fact that w(α) ∈ Φ+. We have σ−1uσ ∈ Uα ⊂ B since Mα

normalizes Uα and σ ∈Mα. We see that ωbσ ∈ BwsB as required. �

Proposition 25 Let G = GL(n, F ) for any field F , and let other notations be as
above. If w,w′ ∈ W are such that l(ww′) = l(w) + l(w′), then

C(ww′) = C(w) · C(w′).

Proof It is sufficient to show that if l(w) = r, and if w = s1 · · · sr be a decomposition
into simple reflections, then

C(w) = C(s1) · · · C(sr). (38)

Indeed, assuming we know this fact, let w′ = s′1 · · · s′r′ be a decomposition into
simple reflections with r′ = l(r′). Then s1 · · · srs′1 · · · s′r′ is a decomposition of ww′

into simple reflections with l(ww′) = r + r′, so

C(ww′) = C(s1) · · · C(sr)C(s′1) · · · C(s′r′) = C(w)C(w′).

To prove (38), let sr = sα, and let w1 = s1 · · · sr−1. Then l(w1sα) = l(w1) + 1,
so by Proposition 13 we have w′(α) ∈ Φ+. Thus Lemma 6 is applicable and C(w) =
C(w1)C(sr). By induction on r, we have C(w1) = C(s1) · · · C(sr−1) and so we are
done. �
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Theorem 10 With G = GL(n, F ) and B,N, I as above, (B,N, I) is a Tits’ system
in G.

Proof Only Axiom TS3 requires proof; the others can be safely left to the reader.
Let α ∈ Σ such that s = sα.

First, suppose that w(α) ∈ Φ+. In this case, it follows from Lemma 6 that
wBs ⊂ BwsB.

Next suppose that w(α) 6∈ Φ+. Then wsα(α) = w(−α) = −w(α) ∈ Φ+, so we
may apply the case just considered, with wsα replacing w, to see that

wsBs ⊂ Bws2B = BwB. (39)

By Lemma 5, B∪BsB is a group containing a representative of the coset of s ∈ N/T ,
so B ∪BsB = sB ∪ sBsB and thus

Bs ⊂ sB ∪ sBsB.

Using (39),
wBs ⊂ wsB ∪ wsBsB ⊂ BwsB ∪BwB.

This proves Axiom TS3. �

Similarly, if G is any split reductive group, T a maximal split torus, B a Borel
subgroup containing G and N the normalizer of T , then B(F ) and N(F ) are a Tits
system and so we have a Bruhat decomposition. For proofs, see Borel’s book Linear
Algebraic Groups .

8 Finite Field Iwahori Hecke algebras

Let W be a Coxeter group and let F be a field containing an element q. Let I =
{s1, · · · , sr} be the set of simple reflections. We recall that we defined the Iwahori
Hecke algebra Hq(W ) has basis T1, · · · , Tr subject to the braid relations

TiTjTiTj · · · = TjTiTjTi · · ·

where the number of terms is the order of sisj, and

T 2
i = (q − 1)Ti + q.

Proposition 26 For any Coxeter group W , if q = 1 then Hq(W ) is isomorphic to
the group algebra C[W ].
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Proof This is because the relations between the Ti become exactly the braid rela-
tions and T 2

i = 1, which are a presentation of W . �

We will assume that W is the Weyl group of a root system Φ. In this case, we
defined a braid group B with generators ui subject to the braid relations

uiujuiuj · · · = ujuiujui · · ·

Clearly there is a homomorphism B −→ Hq(W )× such that ui 7→ Ti.
We recall that if w ∈ W then the length l(w) is the smallest k such that we may

write w as a product of k simple reflections. An such representation w = si1 · · · sik
into a minimal number of simple reflections will be called a reduced decomposition.

Proposition 27 Assume that W is the Weyl group of a root system Φ. Then for
every w ∈ W there exists an element Tw of Hq(W ) such that if w = si is a simple
reflection then Tw = Ti, and if l(ww′) = l(w) + l(w′) then Tww′ = TwTw′. If s is a
simple reflection then

TsTw =

{
Tsw if l(sw) > l(w),
(q − 1)Tw + qTsw if l(sw) < l(w).

The Tw span Hq(W ) as a vector space, so dim Hq(W ) 6 |W |.

Proof Let w = si1 · · · sik be a reduced decomposition of w into a product of simple
reflections, where k = l(w). Then we will define Tw = Ti1 · · ·Tik . We must show this
is well-defined.

If w = sj1 · · · sjk is another reduced decomposition, then by Proposition 23 we
have ui1 · · ·uik = uj1 · · ·ujk in the braid group. Therefore applying the homomor-
phism ui 7→ Ti we have Ti1 · · ·Tik = Tj1 · · ·Tjk , and so Tw is well-defined.

It is clear that Tsi = Ti. Moreover if l(ww′) = l(w) + l(w′) then Tww′ = TwTw′
since we may obtain a reduced decomposition of ww′ by concatenating reduced de-
compositions of w and w′.

If l(sw) > l(w) we have l(sw) = l(w) + 1 = l(s) + l(w) and TsTw = Tsw. On
the other hand if l(sw) < l(w) we may write w = sw′ and l(w) = l(s) + l(w′) so
Tw = TsTw′ . Now using T 2

s = (q− 1)Ts + q we obtain TsTw = T 2
s Tw′ = (q− 1)TsTw′ +

qTw′ = (q − 1)Tw + qTsw.
Now it follows that the linear span of the Tw is closed under multiplication by

the generators Ti, and so this linear span is all of Hq(W ). �

Let F be a field. We will denote by U the group of upper triangular unipotent
matrices in GL(r + 1, F ).
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Proposition 28 Suppose that S is any subset of Φ such that if α ∈ S then −α /∈ S,
and if α, β ∈ S and α + β ∈ Φ, then α + β ∈ S. Let US be the set of g = (gij) in
GL(r + 1, F ) such that gii = 1, and if i 6= j then gij = 0 unless αij ∈ S. Then US is
a group.

Proof Let S̃ be the set of (i, j) such that the root αij ∈ S. Translating the
hypothesis on S into a statement about S̃, if (i, j) ∈ S̃ we have i < j, and

if both (i, j) and (j, k) are in S̃ then i 6= k and (i, k) ∈ S̃. (40)

From this it is easy to see that if g and h are in US then so are g−1 and gh. �

As a particular case, if w ∈ W then S = Φ+ ∩ wΦ− satisfies the hypothesis of
Proposition 28, and we denote

UΦ+∩wΦ− = U−w .

Similarly S = Φ+ ∩ wΦ+ meets this hypothesis, and we denote

UΦ+∩wΦ+ = U+
w .

Lemma 7 We have |Φ+ ∩ wΦ−| = l(w).

Proof We gave two definitions of the length function l, which were proved equivalent
by Proposition 16. One of them was the number of positive roots α such that
w(α) ∈ Φ−1, in other words, the cardinality of S = Φ+ ∩ w−1Φ−. From the other
definition as the length of a reduced decomposition, it is clear that l(w) = l(w−1)
and so |Φ+ ∩ wΦ−| = l(w). �

Proposition 29 Let F = Fq be finite, and let w ∈ W . Then and

|U−w | = ql(w).

Proof This follows from the Lemma. �

Proposition 30 Let w ∈ W . The multiplication map U+
w × U−w −→ U is bijective.

Proof We will prove this if F is finite, the only case we need. In this case U+
w ∩U−w =

{1} by definition, since the sets Φ+ ∩ wΦ− and Φ+ ∩ wΦ+ are disjoint. Thus if
u+

1 u
−
1 = u+

2 u
−
2 with u±i ∈ U±w , then (u+

2 )−1u+
1 = u−2 (u−1 )−1 ∈ U+

w ∩ U−w so u±1 = u±2 .
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Therefore the multiplication map U+
w × U−w −→ U is injective. To see that it is

surjective, note that

|U−w | = q|Φ
+∩wΦ−|, |U+

w | = q|Φ
+∩wΦ+|,

so the order of U+
w × U−w is q|Φ

+| = |U |, and the surjectivity is now clear. �

We are interested in the size of the double coset BwB. In geometric terms, G/B
can be identified with the space of F -rational points of a projective algebraic variety,
and the closure of BwB/B is an algebraic subvariety in which BwB/B is an open
subset; the dimension of this “Schubert cell” turns out to be l(w).

If F = Fq an equally good measure of the size of BwB is its cardinality. It can
of course be decomposed into right cosets of B, and its cardinality will be the order
of B times the cardinality of the quotient BwB/B.

Proposition 31 Let F = Fq be finite, and let w ∈ W . The order of BwB/B is
ql(w).

Proof We will show that u− 7−→ u−wB is a bijection U−w −→ BwB/B. The result
then follows from Proposition 29.

Note that every right coset in BwB/B is of the form bwB for some b ∈ B. Using
Proposition 30 we may write b ∈ B uniquely in the form u−u+t with u± ∈ U±w and
t ∈ T . Now w−1u+tw = w−1u+w.w−1tw ∈ B, because w−1u+w ∈ U and w−1tw ∈ T .
Therefore bwB = u−wB.

It is now clear that the map u− 7−→ u−wB is surjective. We must show that it
is injective, in other words if u−1 wB = u−2 wB for u−i ∈ U−w then u−1 = u−2 . Indeed,
if u− = (u−1 )−1u−2 then w−1u−w ∈ B from the equality of the double cosets. On
the other hand w−1u−w is lower triangular by definition of U−w . It is both upper
triangular and lower triangular, and unipotent, so u− = 1. �

With r and q fixed, let H be the convolution ring of B-bi-invariant functions on
G. The dimension of H equals the cardinality of B\G/B, which is |W | = (r+ 1)! by
the Bruhat decomposition. A basis of H consists of the functions φw (w ∈ W ), where
φw is the characteristic function of the double coset C(w) = BwB. We normalize the
convolution as follows:

(f1 ∗ f2)(g) =
1

|B|
∑
x∈G

f1(x)f2(x−1g) =
1

|B|
∑
x∈G

f1(gx)f2(x−1).

With this normalization, the characteristic function f1 of B serves as a unit in the
ring.

47



The ring H is a normed ring with the L1 norm. That is, we have

|f1 ∗ f2| 6 |f1| · |f2|,

where

|f | = 1

|B|
∑
x∈G

|f(x)|.

There is also an augmentation map, that is, a C-algebra homomorphism ε : H −→
C given by

ε(f) =
1

|B|
∑
x∈G

f(x).

By Proposition 31 we have
ε(φw) = ql(w). (41)

Proposition 32 Let w,w′ ∈ W such that l(ww′) = l(w) + l(w′). Then

φww′ = φw ∗ φw′ .

Proof By Proposition 25, we have C(ww′) = C(w)C(w′). Therefore φw ∗ φw′ is
supported in C(ww′) is a constant multiple of φww′ . Writing φw ∗ φw′ = cφww′ and
applying the augmentation ε and using (41), we see that c = 1. �

Proposition 33 Let s ∈ W be a simple reflection. Then

φs ∗ φs = qφ1 + (q − 1)φs.

Proof By (34) we have C(s)C(s) ⊆ C(1) ∪ C(s). Therefore there exist constants λ
and µ such that φs∗φs = λφ1+µφs. Evaluating both sides at the identity gives λ = q.
Now applying the augmentation and using the special cases ε(φs) = q, ε(f1) = 1 of
(41) we have q2 = λ · 1 + µ · q = q + µq, so µ = q − 1. �

Theorem 11 (Iwahori) The algebra H is isomorphic to Hq(W ) under a homomor-
phism such that φw 7−→ Tw.

Proof By Propositions 32 and 33 the φw satisfy the defining relations of Ti and so
there is a homomorphism Hq(W ) −→ H such that Tsi 7−→ φsi . The homomorphism
is surjective since the φsi generate H. We have dim Hq(W ) 6 |W | = dim H so this
homomorphism is an isomorphism. �
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9 The Spherical Hecke algebra for GL(n)

This section is optional. Omitting it will not cause any problems of continuity.
Let G = GLn(F ) where F is a nonarchimedean local field, and let K◦ = GLr+1(o)

be its maximal compact subgroup. There is a homomorphism K◦ −→ GLr+1(Fq),
where Fq = o/p is the residue field. The preimage J of the Borel subgroup B(Fq) is
the Iwahori subgroup.

The Iwahori Hecke algebra HJ is our main object of study. However the spherical
Hecke algebra H◦ = HK◦ is worth first considering. It is commutative, hence a
Gelfand subgroup. It is not a subring of HJ (since it does not contain the unit of
HJ). It is an ideal. Moreover H◦ does not play an important role in the theory of
HJ , which contains other commutative subrings that take its place – the center, and
a larger commutative subring.

We now describe a method of distinguishing the double cosets K◦\G/K◦. If
g ∈ G, let gcd(g) be the fractional ideal of o generated by the entries in g. Evidently
gcd(g) is invariant under both left and right multiplication by K◦. We may refine
this invariant of the double coset K◦gK◦ as follows: if 1 6 k 6 n, let

∧k : GL(n, F ) −→ GL

((
n

k

)
, F

)
be the k-th exterior power representation; the matrix entries ∧kg are the k × k mi-
nors of g. Then gcd

(
∧kg

)
is the fractional ideal generated by these minors. Clearly

∧k(K◦) ⊂ GL
((
n
k

)
, o
)
, so gcd

(
∧kg

)
is also invariant under left and right multiplica-

tion by K◦.

Proposition 34 (The Elementary Divisor Theorem) Let R be a principal ideal
domain, let M be a free R-module of rank n, and let N be a submodule of M which
is also free of rank n. Then there exists an R-basis ξ1, · · · , ξn of M and nonzero
elements D1, · · · , Dn of R such that each Di+1 divides Di (i = 1, · · · , n − 1) and
D1ξ1, · · · , Dnξn is a R-basis of N .

Proof See Theorem III.7.8 of Lang’s Algebra. �

Proposition 35 (The p-adic Cartan Decomposition) Every double coset in
K◦\G/K◦ has a unique representative of the form $λ1

. . .

$λn

 , λ1 > λ2 > · · · > λn. (42)
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Proof We show first that if g ∈ G, then there exist elements κ1, κ2 ∈ K◦ such that
κ1gκ2 is diagonal. If we know this for elements g ∈ Matn(o), then we can deduce
it for all g, since we can multiply g by a scalar to put it in Matn(o). Hence there
is no loss of generality in assuming g ∈ Matn(o). We apply the Elementary Divisor
Theorem with R = o, M = on, and N the submodule generated by the columns
of g. Let ξ1, · · · , ξn and Di be such that ξ1, · · · , ξn generate on and D1ξ1, · · · , Dnξn
generate the same o-module as the columns of g, there exists κ2 ∈ K◦ such that

(D1ξ1, · · · , Dnξn) = gκ2.

We may rewrite this

(ξ1, · · · , ξn)

 D1

. . .

Dn

 = gκ2,

and the first matrix on the left is an element of K◦, so we have shown that D1

. . .

Dn

 ∈ K◦gK◦.
We may clearly adjust the Di’s by units, proving that every coset has a representative
of the form (42).

It remains to be shown the matrices (42) lie in distinct double cosets. Indeed, the
invariants gcd

(
∧kg

)
determine λ1, · · · , λn, since clearly if g equals the matrix (42)

we have gcd(g) = λn, gcd (∧2g) = λn−1λn, and so forth. �

Theorem 12 (i) The spherical Hecke algebra H◦ is commutative.
(ii) If (π, V ) is an irreducible admissible representation of GL(n, F ), then the

space V K◦ of K◦-fixed vectors in V is at most one-dimensional.

Proposition 5 shows that it is expected that commutativity of the Hecke alge-
bra will have dim(V K◦) 6 1 as a consequence. The following “involution” method
of proof is due to Gelfand. The second assertion is sometimes expressed by the
statement that K◦ is a Gelfand subgroup of GL(n, F ).
Proof Define a map ι : H◦ → H◦ by (ιf)(g) = f(tg). Since K◦ is stable under
transposition, this is a well-defined transformation of H◦, and because transposition
is an anti-automorphism of G, it is easy to see that ι is an anti-automorphism of H◦:

ι(f1 ∗ f2) = ι(f2) ∗ ι(f1).
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On the other hand, ι is just the identity map, since every double coset has a rep-
resentative which is diagonal, hence stable under transposition, by Proposition 35.
We see that the identity map is an anti-automorphism of H◦. This means that H◦
is commutative.

For the second statement, V K◦ , if nonzero, is a finite-dimensional simple module
over the commutative C-algebra H◦. It is therefore one-dimensional. �

We call an irreducible admissible representation (π, V ) spherical if it has a K◦-
fixed vector. The commutative Hecke algebraH◦ is called the spherical Hecke algebra.
We recall the partial order on partitions, in which µ 4 ν means that

µ1 + . . .+ µr 6 ν1 + . . .+ νr

for each r. Now let us study the product of two double cosets.

Proposition 36 Suppose that λ and µ are partitions of k and l, respectively, of
length 6 n. for each 1 6 r 6 n. We will denote by λ + µ the partition {λ1 +
µ1, · · · , λn + µn} of k + l. Let

g =

 $λ1

. . .

$λn

 , h =

 $µ1

. . .

$µn

 ,

where λ1 > · · · > λn and µ1 > · · · > µn. Suppose that (K◦gK◦)(K◦hK◦) contains a
double coset

K◦

 $ν1

. . .

$νn

K◦, ν1 > · · · > νn. (43)

Then ν is a partition of k + l, and ν 4 λ+ µ.

Proof Since g and h ∈ Matn(o), we have K◦gK◦hK◦ ⊂ Matn(o) and so the νi are
nonnegative integers. Comparing determinants, ν is a partition of k + l. To prove
that ν 4 λ+ µ, it is sufficient to check the inequalities

νn > λn + µn, (44)

νn−1 + νn > λn−1 + µn−1 + λn + µn, (45)

etc. since subtracting these inequalities from the equality

ν1 + . . .+ νn = k + l = λ1 + µ1 · · ·+ λn + µn
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will give ν 6 λ + µ. The matrix entries of an element of K◦gK◦ have greatest
common divisor equal to pλn , and the matrix entries of an element of K◦hK◦ have
greatest common divisor pµn ; it is evident that the matrix entries of an element of
(K◦gK◦)(K◦hK◦) lie in the ideal pλn+µn , and therefore we have (44). Repeating this
argument with ∧2g and ∧2h replacing g and h gives (45), and so forth. �

For 1 6 r 6 n, let θr be q−r(n−r)/2 times the characteristic function of the double
coset

K◦τrK
◦, τr =

(
$Ir

In−r

)
. (46)

Of these “Hecke operators” the last one, θn is invertible, having as its inverse the
characteristic function of the double coset K◦τ−1

r K◦. Also, if λ = {λ1, · · · , λn} is a
sequence of integers satisfying λ1 > . . . > λn, let θλ equal

q
1
2

((1−n)λ1+(3−n)λ2+...+(n−1)λn)

times the characteristic function of the double coset (42). By the p-adic Cartan
decomposition, these form a Z-basis of H◦.

Proposition 37 (Tamagawa, Satake) The ring H◦ is a polynomial ring over in
θ1, · · · , θn and θ−1

n :
H◦ ∼= C[θ1, · · · , θn−1, θn, θ

−1
n ].

This structure theorem is a special case of the Satake isomorphism describing the
structure of the spherical Hecke algebra of a reductive p-adic group.
Proof Let us show that θλ lies in the C-algebra generated by θ1, · · · , θn, θ−1

n , where
λ = {λ1, · · · , λn} is a sequence of integers satisfying λ1 > . . . > λn. Clearly θ−rn ∗θλ =
θλ′ , where

λ′ = {λ1 − r, · · · , λn − r},

and so we may assume that λn = 0. Then the λi > 0, and λ is a partition, so
(42) lies in Matn(o). With this assumption, we will prove that θλ is a polynomial in
θ1, · · · , θn. (θ−1

n is not needed if the λi > 0.)
If the λi are all equal zero, then θλ = 1 and there is nothing to prove, so assume

that λ1 > 0. Let 1 6 k 6 n− 1 be the largest integer such that λk 6= 0, and let

µ = {λ1 − 1, · · · , λk − 1, 0, · · · , 0}.

By induction, θµ lies in the C-algebra generated by θ1, · · · , θn. We ask which double
cosets occur in the support of θk ∗ θµ. Evidently the double coset of (42) occurs, and
every other double coset is of the form (43) with ν a partition of |λ|, which strictly
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preceeds λ in the partial order. By induction, the characteristic of each such double
coset is a polynomial in θ1, · · · , θn. We see that θk ∗θµ lies in the C-algebra generated
by θ1, · · · , θn, and it differs from a nonzero multiple of θλ by a sum of elements θν
which lie in this ring; hence θλ is a polynomial in θ1, · · · , θn.

We must also show that the θi are algebraically independent. We note that θi is
the characteristic function of a set supported on the matrices of determinant equal
to $i times a unit, so we may grade the ring H◦ by degree, θi having degree i.
Given relation of algebraic dependence, we may clearly separate out the part which
is homogeneous of given degree and obtain a homogeneous relation∑

|λ|=k

a(λ) θλ1−λ2
1 · · · θλn−1−λn

n−1 θλnn = 0. (47)

The point is that the homogeneous degree of the monomial

θλ1−λ2
1 · · · θλn−1−λn

n−1 θλnn (48)

is
(λ1 − λ2) + 2(λ2 − λ3) + · · ·+ nλn = λ1 + . . .+ λn = |λ|.

Now let us expand this out in terms of the θλ, which are a Z-basis of H◦. It is a
consequence of Proposition 36 that when (48) is expanded out, θλ will occur, together
with terms of the form θν , where ν runs through partitions of k strictly preceeding
λ in the partial order. Thus if λ is minimal in the partial ordering subject to the
condition that a(λ) 6= 0, it is clear that the coefficient of θλ in the expansion of
(47) is nonzero. Thus (47) does not vanish. This contradiction shows that the θi
are algebraically independent, and we have proved that H◦ is a polynomial ring
C[θ1, · · · , θn−1, θn, θ

−1
n ]. �

Proposition 38 (Iwasawa decomposition) Let B(F ) be the Borel subgroup of
upper triangular matrices in G = GL(n, F ), and let K◦ = GL(n, o). Then G =
B(F ) K◦.

Proof See Bump, Automorphic Forms and Representations , Proposition 4.5.2. �

Now let us construct representations of G = GL(n, F ) which have a K◦-fixed
vector. These are the spherical principal series representations. We recall that a
quasicharacter of a locally compact group is a continuous homomorphism into C×; a
quasicharacter of F× is called nonramified if it is trivial on o×.
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The modular quasicharacter a topological group H is the quasicharacter δH :
H → C such that if dLh and dRh denote left and right Haar measures, respectively,
on H, then dRh = δH(h) dLh. The the modular quasicharacter of B(F ) is

δ


y1 ∗ . . . ∗

y2 ∗
. . .

...
yn

 = |y1|n−1|y2|n−3 · · · |yn|1−n.

Fix quasicharacters χ1, · · · , χn of F×. Then we have a quasicharacter χ : B(F ) −→
C× given by

χ


y1 ∗ . . . ∗

y2 ∗
. . .

...
yn

 = χ1(y1) · · ·χn(yn).

Let V = V (χ1, · · · , χn) be the space of locally constant functions f : G → C such
that

f(bg) = χ(b) δ1/2(b) f(g). (49)

We define an action π = π(χ1, · · · , χn) of G on V by right translation:

(π(h)f) (g) = f(gh).

It is easily verified that π(h)f ∈ V with this definition, and since the functions f
are locally constant, the stabilizer of any particular f is open, so this is a smooth
representation. We may see that it is admissible as follows: If K is any open sub-
group, we want to show that V K is finite. This is a subspace of V K∩K◦ , so without
loss of generality K ⊂ K◦. The index of K in K◦ is finite, and if x1, · · · , xN are a
complete set of coset representatives, so K◦ =

⋃
xiK, then we claim that f ∈ V K

is completely determined by the values f(xi). Indeed, since f is right K-invariant,
knowledge of these values determines f on K◦ and by (49) and the Iwasawa decom-
position, f is therefore completely known. We see that V K is finite-dimensional, so
this representation is admissible.

Proposition 39 Assume that the quasicharacters χi are nonramified. The space of
K◦-fixed vectors in the representation π(χ1, · · · , χn) is one-dimensional.

Proof We will show that the space of K◦-fixed vectors is spanned by the function
f ◦ defined by

f ◦(bk) = χ(b) δ1/2(b), b ∈ B(F ), k ∈ K◦. (50)
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It is called the standard spherical vector . It is a consequence of the Iwasawa decom-
position that every element of G can be written as bk as in (50), so the definition (50)
makes sense provided the right-hand side is well-defined, independent of the decom-
position of g as bk. This is true on our assumption that χ1, · · · , χn are nonramified,
since if bk = b′k′ where b, b′ ∈ B(F ) and k, k′ ∈ K◦, then b−1b′ ∈ B(F ) ∩ K◦ is
upper triangular with units on the diagonal, and so χ(b−1b′) = δ(b−1b′) = 1. Thus
f ◦ is well defined. It is clear from the Iwasawa decomposition that a K◦-fixed vector
is a constant multiple of this f ◦, so V K◦ is exactly one-dimensional. �

Proposition 40 Assume that the quasicharacters χi are nonramified, and let f ◦ be
the K◦-fixed vector (50). Then

θrf
◦ = er(t1, · · · , tn) f ◦, (51)

where er is the r-th elementary symmetric polynomial, and ti = χi($).

Proof It is clear that θr ∗ f ∈ V K◦ for any f since θr is K◦-bi-invariant, and so
θr ∗ f ◦ = cf ◦ for some constant c. Evidently c = (θr ∗ f ◦)(1), so we must show that

(θr ∗ f ◦)(1) = er(t1, · · · , tn).

Since K◦τrK
◦ is the continuous image of K◦ ×K◦ under the map (k1, k2) 7→ k1τrk2,

it is compact; and since K◦ is open, there are a finite number of right cosets in
K◦τrK

◦/K◦. Let Λ be a complete set of coset representatives for these, so that

K◦τrK
◦ =

⋃
β∈Λ

βK◦, (52)

Since K◦τrK
◦ ⊂ Matn(o), the matrix entries in β are all integers. It follows from

the Iwasawa decomposition that we may chose the representatives β to be upper
triangular, and we have the freedom to change them by an element of K◦ ∩ B(F )
on the right. We may then arrange that the diagonal entries of β are all powers of
π. In order to lie in the same double coset as τr, it is necessary that gcd(∧kτr) and
gcd(∧kβ) agree. The implications of this are as follows: of the diagonal entries of β,
there are exactly r $’s and exactly n− r 1’s. Moreover, if S is the set (of cardinality
r) of 1 6 i 6 n such that βii = $, and if i, j are distinct elements of S, then βij must
lie in p. If these conditions are not satisfied, then β will not lie in the same double
coset as τr. Given that we have the freedom to change β on the right by an upper
triangular unipotent element of K, we may change each βij (i < j) by any multiple
of βii. If i, j ∈ S then p|βij while βii = $, and so we may assume that βij = 0. On
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the other hand if i /∈ S, then βii ∈ o× while βij ∈ o, and so again we may assume
that βij = 0. On the other hand, if i ∈ S and j /∈ S, then βij may be any element of
o modulo p.

With this in mind, let us fix S = {λ1, · · · , λr}, where λ1 < λ2 < · · · < λr. We
ask how many β there are in the decomposition (52) whose diagonal entries equal to
$ are βii with i ∈ S. We have just shown that if i < j with i ∈ S and j 6∈ S, then
βij can be chosen to be an arbitrary element of o/p; and all other entries above the
diagonal can be assumed to be zero. If i = λ1, there are n − r − λ1 + 1 values of j
such that j > i and j 6∈ S, so there are n− r−λ1 + 1 elements to be chosen inthe λ1

row, and similarly, there are n − r − λ2 + 2 entries to be chosen in the λ2 row, and
so forth; the total number of elements to be chosen is

r∑
i=1

(n− r − λi + i) = r

(
n− r − 1

2

)
−

r∑
i=1

λi,

and so the total number of β for this choice of S is

qr(n−r−
1
2)−

Pr
i=1 λi .

For such a β, we have

f ◦(β) = δ1/2(β) χ(β) = q−(n+1) r
2

+
P
λi tλ1 · · · tλr .

Recalling that θr is q−r(n−r)/2 times the characteristic function of the double coset
K◦τrK

◦, we see that (θrf
◦)(1) equals

q−
r(n−r)

2

∑
λ1<···<λr

qr(n−
r−1

2 )−
Pr
i=1 λi q−

(n+1)r
2

+
P
λi tλ1 · · · tλr

= er(t1, · · · , tr),

as required. �

10 The Affine Weyl Group

We may extend the Weyl group by a group of translations, and obtain the so-called
affine Weyl group.

Let Φ be a root system in the vector space V , and let W = W (Φ) be the Weyl
group. We give V a W -invariant inner product 〈 , 〉. If α ∈ Φ and k ∈ Z let Pα,k be
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the hyperplane Pα,k = {v ∈ V | 〈α, v〉 = k}. A connected component of

V −
⋃
α ∈ Φ
k ∈ Z

Pα,k

is called an open alcove. They are relatively compact open subsets of V . The closure
of an open alcove is called an alcove.

Let C+ be the positive Weyl chamber, so that

C+ = {v ∈ V | 〈αi, v〉 > 0 (1 6 i 6 r)}

where {α1, · · · , αr} are the simple roots. There is a unique alcove in C+ which
contains the origin. This is the fundamental alcove F. Our immediate goal is to
describe it more explicitly.

There is a partial order on V in which v > 0 if v =
∑
ciαi with ci > 0. We call

a root α highest if α′ > α for α′ ∈ Φ implies that α′ = α. We will see that if Φ is
irreducible, this implies more: that actually α > α′ for every root α′ ∈ Φ.

Exercise 9 Let α, β ∈ Φ be linearly independent. and let U be the two-dimensional space
spanned by α and β. Show that U ∩ Φ is a root system in U .

Exercise 10 Assume that Φ is reduced and that α, β are distinct elements of Φ. Show
that if 〈α, β〉 > 0 then α− β ∈ Φ. (One way: you may use the previous exercise to reduce
to the rank two case, and check this for the four rank two root systems A1 × A1, A2, B2

and G2.)

Proposition 41 Suppose that Φ is irreducible. Then there is a unique root −α0 that
is highest with respect to the partial order. If α is any positive root, then α 6 −α0

and 〈α,−α0〉 > 0. If α is any root then 〈α,−α0〉 6 〈α0, α0〉 with equality if and only
if α = −α0.

It is most useful to use the notation α0 for the negative of the highest root, since
then it will play a role exactly analogous to the simple roots {α1, · · · , αr} in certain
situations.
Proof Suppose that β is a highest root. Since β > −β, β is positive.

We claim that 〈β, αi〉 > 0. If not, then si(β) = β − 2〈αi,β〉
〈αi,αi〉αi > β, contradicting

the assumption that β is a highest root.
Write β =

∑
kiαi. Clearly any highest root is positive, so ki > 0. We will

show that ki > 0. Otherwise, let Σ = Σ1 ∪ Σ2, where Σ1 = {αi|ki > 0} and
Σ2 = {αi|ki = 0}. Because Φ is irreducible, the simple roots may not be partitioned

57



into two disjoint mutually orthogonal sets. Therefore there is αl ∈ Σ1 and αj ∈ Σ2

such that 〈αl, αj〉 < 0. Now

〈β, αj〉 =

〈∑
αi∈Σ1

kiαi, αj

〉
=
∑
αi∈Σ1

ki 〈αi, αj〉 .

All terms on the right are non-positive since kl > 0, and one term (i = l) is negative.
This contradicts the fact that 〈β, αi〉 > 0, proving that all ki > 0.

Now let γ be another highest weight. Consider 〈β, γ〉 =
∑
ki 〈αi, γ〉. We have

〈αi, γ〉 > 0 with strict inequality for some i, and ki > 0, so 〈β, γ〉 > 0. It follows from
Exercise 10 that β − γ is a root. Either β − γ ∈ Φ+, in which case β = γ + (β − γ),
contradicting the maximality of γ, or β − γ ∈ Φ−, in which case γ = β + (γ − β),
contradicting the maximality of β. This contradiction shows that the highest root is
unique. (We are therefore justified in naming it, and we call it −α0.)

Now suppose that α is any positive root. We can write α =
∑
niαi with ni > 0,

and 〈β, α〉 =
∑
ni 〈β, αi〉 > 0. By Exercise 10, β − α is a root. It cannot be a

negative root, since then α = β + (α − β) would contradict the maximality of β.
Since β − α is a positive root, we have β > α.

Next we show that if γ is any root then 〈γ, β〉 6 〈β, β〉 with equality only in the
case γ = β. We embed γ and β in a rank two root system Φ0 = Φ ∩ V0 where V0 is
the vector space they span. Then Φ0 is one of A1 × A1 or A2, B2 or G2. Except in
the first case β is the unique highest weight vector, and in every case, the assertion
may be checked by inspection. We leave the verification to the reader. �

Let α0 be the negative of the highest root. We see that

〈αi, αj〉 > 0 if αi, αj ∈ {α0, α1, · · · , αr}, i 6= j.

Indeed, this is part of Proposition 12 if αi, αj ∈ Σ and Proposition 41 if one of αi is
α0.

Proposition 42 The fundamental alcove F is defined by the inequalities

〈αi, v〉 > 0 (1 6 i 6 r), 〈α0, v〉 > −1. (53)

Proof It is clear that the fundamental alcove is determined by the inequalities
〈αi, v〉 > 0 and 〈α, v〉 6 1 as α runs through the positive roots. We have to show
that the inequalities 〈α, v〉 6 1 all follow from the inequality 〈−α0, v〉 6 1, which
is equivalent to the assumed inequality 〈α0, v〉 > −1. Indeed, if α is any positive
root, then α 6 −α0, so we may write α = −α0 −

∑
kiαi with ki > 0. Then
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〈α, v〉 = 〈−α0, v〉 −
∑
ki 〈αi, v〉. However if α is already assumed to satisfy he first

inequalities in (53), then 〈αi, v〉 > 0, so 〈α, v〉 6 〈−α0, v〉. Hence the inequality
〈−α0, v〉 6 1 is sufficient to imply 〈α, v〉 6 1 for all positive roots α, and thus the
fundamental alcove is indeed determined by the given inequalities. �

If α ∈ Φ and k ∈ Z we consider the reflection rα,k in the hyperplane Pα,k. This
is the map

rα,−k = v − 〈α∨, v〉α + kα∨ = v − 〈α, v〉α∨ + kα∨.

We have Pα,k = P−α,−k and r−α,−k = rα,k. Let si = rαi,0 (1 6 i 6 r) and s0 = rα0,−1.
These are the reflections in the hyperplanes bounding the fundamental alcove.

Proposition 43 The group Waff is generated by the si.

Proof Let w ∈ Waff . Then wF is an alcove. We consider a path p from an interior
vertex of F to an interior vertex of wF. Let F0 = F,F1, · · · ,Fk = wF be the series of
alcoves through which p passes. Each pair Fi,Fi+1 is separated by a Pα,k.

Since F1 is adjacent to F0 = F, by Proposition 42 we have F1 = si1F for some
0 6 i1 6 r. Now F2 is adjacent to F1, so s−1

i1
F2 is adjacent to s−1

i1
F1 = F. Thus

s−1
i1

F2 = si2F for some 0 6 i2 6 r, and so F2 = si1si2F. Continuing this way we
obtain a sequence i1, i2, · · · such that Fl = si1 · · · silF. Now wF = si1 · · · sikF implies
that w = si1 · · · sik , proving that Waff is generated by the si. �

Theorem 13 Waff is a Coxeter group with generators {s0, s1, · · · , sr}.

Proof Let us suppose that

si1 · · · sik = sj1 · · · sjl

are two words representing the same element w ∈ Waff . Let G be the group with
generators σ0, · · ·σr and relations σ2

i = 1 and (σiσj)
m(i,j) = 1, where m(i, j) is the

order of sisj. We want to show that σi1 · · ·σik = σj1 · · ·σjl .
If t = 1, 2, 3, · · · let St be the set of all affine subspaces M of V that are the

interesection of t or more hyperplanes Pα,k (α ∈ Φ, k ∈ Z) such that dim(M) =
dim(V )− t. Thus S1 consists of the set of hyperplanes Pα,k themselves. Observe that
Ω = V −

⋃
S3 is simply-connected since the removed sets consists of closed affine

spaces of codimenion 3 with no accumulation point.
The alcove si1F is adjacent to F, separated by a hyperplane. Also, si2F is adjacent

to F so si1si2F is adjacent to si1F. We therefore get a sequence of alcoves:

F, si1F, si1si2F, · · · , si1si2 · · · sikF = F0,F1, · · · ,Fk.
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We take a path p from a point u in the interior of F to a point v in the interior of
Fk = wF, passing through these alcoves in order. Similarly we have another path p′

from u to v passing through the alcoves F′0,F
′
1, · · · ,F′l, where F′t = sj1 · · · sjtF, with

F′0 = F0 and F′l = Fk = wF. The paths p and p′ both lie in the simply connected
space Ω.

We deform p into p′ and observe how the set of alcoves changes as we make this
deformation. We stay within Ω at every stage. We are allowed to cross elements of
S2 but not S3. We arrange so that we cross elements of S2 one at a time and observe
how the word si1 · · · sik representing w changes when we do. We will see that each
such change corresponds to a use of the braid relation.

Since we may never pass through a space M in S, the only types of transitions
that can occur have the path move across a subset M in S2. We may visualize this
by taking a cross section in a 2-dimensional affine space perpendicular to M , and
projecting the path onto that path. The homotopy thus moves p0 = p, one segment
of which might look like this:

Ft

Ft+1

Ft+2
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to an equivalent path p1, whose corresponding segment looks like this:

Ft

F′t+1

F′t+2

F′t+3

Ft+2

Now if we have Ft = si1 · · · sitF, Ft+1 = si1 · · · sit+1F, Ft+2 = si1 · · · sit+2F. On the
other hand (in this example)

F′t+1 = si1 · · · sitsit+2F,

F′t+2 = si1 · · · sitsit+2sit+1F,

F′t+3 = si1 · · · sitsit+2sit+1sit+2F,

F′t+3 = si1 · · · sitsit+2sit+1sit+2sit+1F = Ft+2.

So this homotopy replaces the word si1 · · · sik by

si1si1 · · · sitsit+2sit+1sit+2sit+1sit+3 · · · sik .

In this example, the order of sitsit+1 is 3, so (σitσit+1)3 = 1 and

σit+1σit = σit+1σitσit+1σit ,

Thus this homotopy crossing the affine subspaceM of codimension 2 replaces σi1 · · ·σit
by

σi1σi1 · · · σit−1σit+1σitσit+1σitσit+1 · · ·σik ,
but these are equal in the group G. Continuing in this way, we eventually get
σi1 · · ·σik = σj1 · · ·σjl .

We have done just one example of crossing an element M of S2 but clearly any
such crossing amounts to an application of a braid relation. We see thus that Waff

is a Coxeter group. �
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We wish to have analogs of the roots. These will be the affine roots , which in our
interpretation are affine-linear functions on V that vanish on the hyperplanes Pα,k.

Remark 1 Our definition of the affine roots is that given by Macdonald. However
in view of the work of Kac and of Moody on infinite-dimensional Lie algebras, the
affine roots of Macdonald should be supplemented by other “imaginary” roots. We
will ignore the imaginary roots since they play no role for us.

If α ∈ Φ let

α∨ =
2α

〈α, α〉
.

The α∨ are called coroots , and the set Φ̂ of coroots is called the dual root system. If
α ∈ Φ and k ∈ Z let Lα,k : V −→ R be the linear functional

Lα,k(v) = 〈α, v〉 − k.

Then Lα,k vanishes on Pα,k, as does L−α,−k = −Lα,k.
The Weyl group acts on the roots by wL(v) = L(w−1v).
We note that a root L never vanishes on an alcove. Let us say that an affine root

L is positive (resp. negative) if its values are positive (negative) on the fundamental
alcove F. Let Φ+

aff be the positive affine roots and Φ−aff be the negative ones. If
1 6 i 6 r let Li = Lαi,0 and Pi = Pαi,0. Let L0 = Lα0,−1 and P0 = Pα0,−1.

Proposition 44 Let 0 6 i 6 r and let L be a positive root. Then si(L) ∈ Φ− if and
only if L = Li.

Proof If L = Lα,k, then si(L) is a negative root if and only if L(siv) < 0, where
v ∈ F. Since L(v) > 0, v and si(v) must lie on opposite sides of the hyperplane
Lα,k. But the only hyperplane among the Pα,k that separates v and si(v) is Pi, and
so Pα,k = Pi. Since L is a positive root, L = Li. �

Let Q∨ be the lattice generated by the coroots. If λ ∈ Q∨ let τ(λ) : V −→ V be
the map τ(λ)v = v + λ. We may identify Q∨ with its image under τ as a group of
translations.

Proposition 45 The subgroup Q∨ is normal in Waff and Waff is the semidirect prod-
uct Q∨ oW .

Proof Translation by α∨i moves Pα,k to Pα,l where l = k + 〈α∨i , α〉 so l ∈ Z if
k ∈ Z. Thus translation by an element of the coroot lattice permutes the alcoves,
and corresponds to an element of Waff .
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The coroot lattice Q∨ is invariant under Waff , since the reflection in Pα,k moves
any vector v to v+ (k−〈α, v〉)α∨; it sends a coroot β∨ to β∨+ (k−〈α, β∨〉)α∨ which
is also in the coroot lattice. If G is any alcove, then G = wF for some w ∈ Waff ,
so G contains λ = w(0) which we see is an element of Q∨. Therefore τ(−λ)w is an
element of Waff that fixes 0, hence is an element of W . This shows that Waff = Q∨W .

�

We will prove results about the length function that are analogous to those for
the ordinary Weyl group in Section 4. As in that section, there are two definitions
that are eventually shown to be equivalent.

As with the ordinary Weyl group the first definition makes l : Waff −→ Z the
minimal length of a decomposition w = si1 · · · sik . The second definition, temporarily
denoted l′ until we prove that they are the same, is the number of L ∈ Φ+ such that
w(L) ∈ Φ−.

Lemma 8 l′(w) is the number of hyperplanes Pα,k that lie between F and w−1F.

Proof If L = Lα,k ∈ Φ+, then w(L) ∈ Φ− if and only if L(w−1v) < 0 for v ∈ F.
This means that Pα,k is a hyperplane between F and w−1F. �

From the Lemma, l′(w) <∞.

Proposition 46 Let w ∈ Waff and let s = si, L = Li for 0 6 i 6 r. Then

l′(ws) =

{
l′(w) + 1 if w(L) ∈ Φ+,
l′(w)− 1 if w(L) ∈ Φ−.

Proof We have l′(w) = |Φ+ ∩ w−1Φ−|. Therefore l′(ws) = |Φ+ ∩ s−1w−1Φ−|.
Applying s replaces this set with one of equal cardinality, so l′(ws) = |sΦ+∩w−1Φ−|.
Now by Proposition 44, sΦ+ is obtained from Φ+ by removing L = Li and replacing
it by its negative. From this it is clear that l′(ws) = l′(w) + 1 if L ∈ w−1Φ+, that is,
if wL ∈ Φ+, and l′(w)− 1 otherwise. �

Theorem 14 The Exchange property (Propositions 14 and 15) is true for the affine
Weyl group. The two definitions of the length function are the same: l = l′. Tits’
Theorem 23 remains true.

Tits’ Theorem, in this context, says the following. Let B be the braid group
with generators u0, u1, · · · , ur subject to the same braid relations satisfied by the
si. Then if w ∈ Waff has two reduced representations w = si1 · · · sik = sj1 · · · sjk as
products of simple reflections with k = l(w), then ui1 · · ·uik = uj1 · · ·ujk .
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Proof The proofs of Section 4 go through without much change. We leave the
details to the reader. (One also gets another proof that Waff is a Coxeter group.) �

Proposition 47 (Iwahori and Matsumoto) Let d ∈ Q∨ and w ∈ W . Let L = Li
where 1 6 i 6 r. Then

l(τ(d)wsi) =


l(τ(d)w) + 1 if w(αi) ∈ Φ+ and 〈w(αi), d〉 6 0,

or w(αi) ∈ Φ− and 〈w(αi), d〉 < 0.
l(τ(d)w)− 1 if w(αi) ∈ Φ+ and 〈w(αi), d〉 > 0,

or w(αi) ∈ Φ− and 〈w(αi), d〉 > 0.

Moreover

l(τ(d)ws0) =


l(τ(d)w) + 1 if w(α0) ∈ Φ+ and 〈w(α0), d〉 6 1,

or w(α0) ∈ Φ− and 〈w(α0), d〉 < 1,
l(τ(d)w)− 1 if w(α0) ∈ Φ+ and 〈w(α0), d〉 > 1,

or w(α0) ∈ Φ− and 〈w(α0), d〉 > 1.

Proof Let 1 6 i 6 r. By Proposition 46, a necessary and sufficient condition for
l(τ(d)wsi) = l(τ(d)w) + 1 is that τ(d)w(Li) ∈ Φ+. This means that for v ∈ F we
need 〈(τ(d)w)−1(v), αi〉 > 0, that is, 〈v − d, w(αi)〉 > 0. We may take v near the
origin. Then 〈v, w(αi)〉 will be small, while 〈−d, w(αi)〉 ∈ Z. If 〈w(αi), d〉 is nonzero,
then 〈v − d, w(αi)〉 > 0 depending on whether 〈w(αi), d〉 < 0 or > 0. On the other
hand, if 〈w(αi), d〉 = 0, then 〈v − d, w(αi)〉 > 0 or < 0 depending on whether w(αi)
is a positive or negative root, because v is in the positive Weyl chamber. This proves
the first case. We leave the second one (with i = 0) to the reader, but similar
considerations suffice. �

Let us say that w ∈ Waff is dominant if w(F) is contained in the positive Weyl
chamber. If d ∈ Q∨ then clearly d is dominant in this sense if and only if it is
dominant in the usual sense: 〈α, d〉 > 0 for all α ∈ Φ.

Proposition 48 Suppose d ∈ Q∨ and that d is dominant. Then

l(d) =
∑
α∈Φ+

〈α, d〉 = 〈2ρ, d〉 .

Here ρ = 1
2

∑
α∈Φ α is the Weyl vector.

Proof The length l(d) is equal to the number of hyperplanes Hα,k between F and
τ(d)F. The hyperplane Hα,k lies between F and τ(d)F if and only if 0 < k 6 〈α, d〉.
There are 〈α, d〉 of this, and summing over α, the statement follows. �
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11 Extended Dynkin Diagrams and Coxeter Groups

Beyond the Dynkin diagram, there is also an extended Dynkin diagram for each
Cartan type. These too are tabulated by Bourbaki. The weights have a partial order
in which λ > µ if λ − µ =

∑
kiαi where αi are the simple roots and ki > 0. There

is a unique highest root with respect to this order. Let α0 be the negative root such
that −α0 is this highest root. Then we adjoin α0 to the set {α1, · · · , αr} of simple
positive roots, and draw the extended Dynkin diagram by the same recipe as before
based on the angle between two (extended) roots: no edge between i and j if αi and
αj are orthogonal, double edge if they make an angle of 2π/3, and so forth. This
results in the extended Dynkin diagram.

α1 α2 α3 αr−2 αr−1
αr

α0

Type Ar

α1 α2 α3 αr−2 αr−1 αr

α0

Type Br

α0 α1 α2 α3 αr−2 αr−1 αr Type Cr

α1 α2 α3 αr−3 αr−2

αr−1

αr

α0

Type Dr

Table 3: Extended Dynkin diagrams of the classical Cartan types.
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α1 α2 α0 Type G2

α1 α2 α3 α4α0 Type F4

α1 α3 α4 α5 α6

α2

α0

Type E6

α1 α3 α4 α5 α6 α7

α2

α0
Type E7

α1 α3 α4 α5 α6 α7 α8

α2

α0 Type E8

Table 4: Extended Dynkin diagrams of the exceptional Cartan types.

Given the extended Dynkin diagram, we may make a Coxeter group using the
same recipe that we used for the ordinary Weyl group. That is, it has one generator
si for each node i in the diagram, with the braid relations:

sisj = sjsi if i and j are not joined by an edge,
sisjsi = sjsisi if i, j are joined by a single edge,
sisjsisj = sjsisjsi if i, j are joined by a double edge,
sisjsisjsisj = sjsisjsisjsi if i, j are joined by a triple edge.

We have already seen that this is the affine Weyl group, and it is denotedA
(1)
r , B

(1)
r , C

(1)
r , · · ·

in the notation of Kac, Infinite-dimensional Lie algebras .

66



12 Roots and Coroots

If G is a semisimple algebraic group, there are two root systems Φ and Φ̂ associated
with G, which are in duality: there is a bijection α −→ α̂ from the roots in Φ to the
coroots in Φ̂. The Weyl groups W are isomorphic, but long roots in Φ correspond to
short roots in Φ̂.

For many purposes it is useful to put the roots and coroots in the same vector
space V , so that we can write (as we have been writing)

α∨ =
2α

〈α, α〉
. (54)

However Φ and Φ̂ arise differently, and in this section we will describe them as living
in different vector spaces, V and its dual space V ∗. The reason we may put them
together is that the ambient space V of Φ has a W -invariant inner product, so we
may identify it with V ∗. But let us keep them separated for the moment.

Let T be a maximal torus of G, which we will assume to be defined and split over
F . Thus T ∼= Gr

m for some r, the rank of G. We will denote by X∗(T ) ∼= Zr the
group of one-parameter subgroups, that is, algebraic homomorphisms Gm −→ T , and
by X∗(T ) ∼= Zr the group of rational characters, that is, algebraic homomorphisms
T −→ Gm. There is a dual pairing between these groups, since given a one parameter
subgroup i : Gm −→ T and a character λ : T −→ Gm, the composition is an
endomorphism of Gm of the form x 7→ xk, so (i, λ) −→ k gives a pairing X∗(T ) ×
X∗(T ) −→ Z. We will denote this by 〈 , 〉.

Let V = R ⊗ X∗(T ) and V ∗ = R ⊗ X∗(T ). The roots Φ will live in V , and the
coroots Φ̂ will live in V ∗. The roots, as we have mentioned, are the nonzero elements
of X∗(T ) that occur in the adjoint representation Ad : G −→ End(g), where g is
the Lie algebra of G. The coroots are elements of the dual module of X∗(T ) that
implement the simple reflections. That is, we have for every root α a simple reflection
sα : X∗(T ) −→ X∗(T ), and there is a unique element α∨ of the dual module X∗(T )
of X∗(T ) such that for λ ⊂ X∗(T ) we have

sα(λ) = λ− 〈λ, α∨〉α.

Then α∨ is a coroot .
IfG andG′ are connected algebraic groups, an isogeny is a morphism f : G −→ G′

that is a finite covering map. The map f will be surjective in the sense of algebraic
groups. However the induced map G(F ) −→ G′(F ) may not be surjective if the
ground field F is not algebraically closed. For example if F is a finite field, G(F )
and G′(F ) will have the same number of elements. Given g′ ∈ G′(F ) there exists
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g ∈ G(F̄ ) such that f(g) = g′, but g may not be rational over F . For semisimple
algebraic groups, the kernel of an isogeny f will always be a subgroup of the finite
center.

The semisimple group G is simply-connected if there are no nontrivial isogenies
G′ −→ G. If the ground field is C, this is equivalent to G(C) being simply-connected
in the topological sense. We say G is adjoint-type if there are no nontrivial isogenies
G −→ G′. This means that the center of G is trivial.

Given a Cartan type, there is a unique simply connected group in the correspond-
ing isogeny class, which we will denote Gsc. It has a finite center, and we will denote
Gsc/Z(Gsc) as Gad, the adjoint form. The group π1(Gad) ∼= Z(Gsc) is a finite abelian
group. It may be shown that it is isomorphic to P/Q where Q is the root lattice
(spanned by the roots in V ) and P is the weight lattice (consisting of λ ∈ V such
that 〈λ, α∨〉 ∈ Z for all coroots α∨). It is given in the following table for the simple
Cartan types.

Cartan Type π1(Gad)
Ar Zr+1

Br Z2

Cr Z2

Dr

{
Z4 r odd
Z2 × Z2 r even

E6 Z3

E7 Z2

E8 1
F4 1
G2 1

(Zn = Z/nZ)

Table 5: Fundamental groups of simple groups of Lie type.

Let Tsc and Tad be split maximal tori in Gsc and Gad, arranged so the isogeny
Gsc −→ Gad maps Tsc −→ Tad. The fundamental group of Gad is the center of Gsc.
We have maps:

X∗(Tsc) X∗(Tsc)
↓ ↑

X∗(Tad) X∗(Tad)
(55)

They are of course all injective. It is useful to bear in mind that the roots span
X∗(Tad) and that the coroots span X∗(Tsc).
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It is useful to have embeddings SL2 −→ G which have good integrality properties.
One way to do this is to realize the Lie algebra gF = F⊗ZgZ where gZ is a Lie algebra
defined over Z. It was proved by Chevalley, Sur certains groupes simples, TÃhoku
Math. J. (2), 7:14–66, 1955, that every semisimple complex Lie algebra gC had such
a basis. By tensoring this with an arbitrary field F , one obtains a Lie algebra gF ,
and the Lie algebras of semisimple split reductive groups can all be obtained this
way.

To give a bit more detail, the semisimple Lie algebra g = gF decomposes via the
adjoint representation as

g = t⊕
⊕
α∈Φ

gα,

where t is the Lie algebra of T and gα is the root eigenspace. Chevalley showed that
we may choose elements Xα of gα such that [Xα, Xβ] = ±(p+1)Xα+β when α, β ∈ Φ
are such that α + β is a root, where p is the greatest integer such that β − pα ∈ Φ.
Moreover, if Hα = [Xα, X−α] then Hα ∈ t, and [Hα, Xβ] = 〈β, α∨〉Xβ. Thus the

Hα ∈ t themselves form a root system isomorphic to Φ̂, and sometimes the Hα are
called coroots, though we will use that term differently.

The group Gad may then be taken to be the group of inner automorphisms of g.
The group Gsc may be taken to be the universal covering group of Gad.

For every α ∈ Φ, the elements Xα, X−α and Hα satisfy

[Hα, Xα] = 2Xα, [Hα, X−α] = −2X−α, [Xα, X−α] = Hα.

These are the defining relations of the SL2 Lie algebra. Since SL2 is simply connected,
it follows that there is a homomorphism iα : SL2 −→ G such that the induced map
diα on Lie algebras that satisfies

diα

(
1
−1

)
= Hα, diα

(
0 1
0 0

)
= Xα, diα

(
0 0
1 0

)
= X−α.

As elements of X∗(T ), the coroots are the homomorphisms α∨ : Gm −→ T defined
by

t 7−→ iα

(
t
t−1

)
.

It would be correct but potentially confusing to write this as α∨(t) so we will write
instead

hα∨(t) = iα

(
t
t−1

)
. (56)
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We will also make use of homomorphism xα : F −→ G(F ) defined for α ∈ Φ by

xα(u) = iα

(
1 x

1

)
. (57)

Then

x−α(u) = iα

(
1
x 1

)
.

Proposition 49 If t, u ∈ F and t 6= 0 then for α, β ∈ Φ we have

hα∨(t)xβ(u)hα∨(t)−1 = xβ(t〈α
∨,β〉u). (58)

If w ∈ W then
whα∨(t)w−1 = hw(α)∨(±t). (59)

Proof Equation (58) is an exponentiated version of the formula

Ad(hα∨(t))Xβ = t〈α
∨,β〉Xβ,

which is what we will verify. Since Xβ spans a root eigenspace and iα

(
t
t−1

)
there is some integer k such that Ad

(
iα

(
t
t−1

))
Xβ = tkXβ. To determine k,

we remember how to pass from an action of the Lie group to the Lie algebra: we
differentiate and set t = 0. In other words, if ρ : G −→ GL(V ) is a representation
and X ∈ g, v ∈ V then

dρ(X)v =
d

dt
exp(tX)v|t=0.

If ρ = Ad then dρ = ad. Thus

ad (Hα)Xβ =
d

dt
Ad(tHα)Xβ|t=0 =

d

dt
Ad

(
iα

(
et

e−1

)
Xβ

)
|t=0 =

d

dt
ektXβ|t=0 = kXβ.

On the other hand, ad(Hα)Xβ = [Hα, Xβ] = 〈β, α∨〉Xβ. Therefore k = 〈β, α∨〉.
The action of W on T (F ) and hence on X∗(T (F )) is by conjugation, and so (59)

is also true. �

Let us consider an example. Let G = Sp4. This group is simply-connected. It is
the group of g ∈ SL4 such that

gJ tg = J, J =


−1

−1
1

1

 .
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Then g is the Lie algebra of matrices of trace 0 satisfying XJ + J tX = 0. Let T be
the diagonal torus

T =




t1
t2

t−1
2

t−1
1


 .

The simple roots α1 and α2 are the characters t1t
−1
2 and t22. The Chevalley generators

include

Xα1 =


0 1

0
0 −1

0

 , X−α1 =


0
1 0

0
−1 0

 , Hα1 =


1
−1

1
−1

 ,

Xα2 =


0

0 1
0

0

 , Xα2 =


0

0
1 0

0

 , Hα2 =


0

1
−1

0

 .

We have

iα1

(
a b
c d

)
=


a b
c d

a −b
−c d

 , iα2

(
a b
c d

)
=


1

a b
c d

1

 .

So the the coroots, as elements of X∗(T ), are the homomorphisms Gm −→ T given
by

hα∨1 (t) =


t
t−1

t
t−1

 , hα∨2 (t) =


1

t
t−1

1

 .

The differentials of these maps send the unit vector to Hα1 and Hα2 , respectively.
We have

xα1(u) =


1 u

1
1 −u

1

 , xα2(u) =


1

1 u
1

1

 ,
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xα1+α2(u) =


1 u

1 u
1

1

 , x2α1+α2(u) =


1 u

1
1

1

 .

The x−α(u) with α ∈ Φ+ are the transposes of these matrices.

Exercise 11 Check (58) for various α∨ and β.

To get started on the exercise, suppose α∨ = α∨1 and β = α1 + α2. To calculate
the inner product 〈α∨, β〉, we embed the root system in Euclidean space by the usual
type C embedding (Example 3). In this embedding

α1 = e1 − e2 = (1,−1), α2 = 2e2 = (0, 2).

Although we have been avoiding using (54) we use it now for the purpose of com-
puting inner products, and find that

α∨1 = (1,−1), α∨2 = (0, 1).

Therefore β = α1 + α2 = (1, 1) and 〈α∨1 , β〉 = 0. Indeed, hα∨1 (t) and xα1+α2(u)
commute, confirming (58).

13 The Affine Weyl group in a p-adic group

Let G be a split, simply-connected, semisimple affine algebraic group over a nonar-
chimedean local field F . Let other notations be as in the last section. We have
already seen that N(T (F ))/T (F ) is isomorphic to the ordinary Weyl group. In this
section we will show that N(T (F ))/T (o) is isomorphic to the affine Weyl group.

The Lie algebra g = gF is a finite-dimensional vector space over F . The Lie
subring go = o⊗gZ is a lattice, that is, a compact open o-submodule of this F -vector
space. The stabilizer of go in GL(g) is a compact open subgroup of GL(g), and so
the stabilizer of go in the adjoint representation of G(F ) on g is a compact open
subgroup of G(F ), which we will denote by G(o). It contains, and is generated by,
the groups xα(o) as α runs through the roots of G.

With xα as in (57), let

U(F ) =
〈
xα(F )|α ∈ Φ+

〉
, U−(F ) =

〈
xα(F )|α ∈ Φ−

〉
, B(F ) = T (F )U(F ).

We will denote by T (o) the intersection of G(o) and T (F ), and similarly for the
groups U , U− and B.
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Before we consider the general case let us consider the case G = SLr+1. In this
case, we recall the affine Dynkin diagram is as follows:

α1 α2 α3 αr−2 αr−1
αr

α0

So what we are claiming is that N(T (F ))/T (o) has generators s1, · · · , sr and s0

subject to the relations

s2
i = 1

sisi+1si = si+1sisi+1

sisj = sjsi if j ≡ ±i+ 1 mod r

where the indices are taken modulo r, so that in the second relation (i, i+ 1) can be
(0, 1) or (r, 0). Due to the cyclic symmetry of the diagram, there is an automorphism
τ such that τ(si) = si+1.

Representatives for the si may be taken as follows:

si =


Ii−1

0 1
−1 0

Ir−i

 , (1 6 i 6 r) (60)

and

s0 =

 $−1

Ir−1

(−1)r+1$

 , (61)

where $ is a prime element. It is understood that these are actually cosets of T (o)
in N(T (F ))/T (o). It is straightforward to see that these generators satisfy the given
relations.

Exercise 12 Check this.

To obtain an explicit isomorphism of N(T (F ))/T (o) with the group generated
by 〈s0, s1, s2〉 let us consider the action of G on F r+1 by matrix multiplication. This
induces a map of N(T (F )) on F r+1/or+1 ∼= Zr+1. It preserves the subgroup M0 of
v = (vi) such that

∑
vi = 0. We extend this to a vector space V = R⊗M0. Then si
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(1 6 i 6 r) acts by the usual Weyl group action. On the other hand s0 is the affine
transformation that sends

v =


v1

v2
...

vr+1

 −→


vr+1 + 1
v2
...

v1 − 1

 .

Since α0 = (−1, 0, · · · , 0, 1), this is the reflection in the hyperplane 〈α0, v〉 = −1, as
required.

Turning next to the general case, we have already explained how the coroot lattice
Q∨ is isomorphic to X∗(T ). In the case where F is an nonarchimedean local field, this
gives an isomorphism Q∨ ∼= T (F )/T (o). Indeed, if α ∈ Φ we map α∨ to hα∨($−1).
Since we are dividing by T (o) this does not depend on the choice of prime element
$. We extend this map to Q∨ −→ T (F )/T (o) by linearity, and denote the image of
d ∈ Q∨ by $−d.

Theorem 15 Assuming that G is semisimple, split and simply-connected, there ex-
ists an isomorphism Waff −→ N(T (F ))/T (o). In this isomorphism, the image of Q∨

is T (F )/T (o) More precisely, the translation τ(d) ∈ Waff for d ∈ Q∨ is mapped to
$−d, and the reflections si are mapped to elements with the representatives

si = iαi

(
1

−1

)
(i = 1, · · · , r), s0 = i−α0

(
$−1

−$

)
.

By abuse of notation we will use the same notation for these elements ofN(T (F ))/T (o)
as for the corresponding elements of the affine Weyl group.
Proof We must check that these embeddings are compatible, that is, that $−w(d) =
w$−dw−1 for d ∈ Q∨ and w ∈ W . This follows from (59). We conclude that the
advertised isomorphism exists.

Now we need to check that si corresponds to the right reflection in the affine
Weyl group. This is clear for s1, · · · , sr. As for s0, we write

i−α0

(
$−1

−$

)
= i−α0

(
$−1

$

)
i−α0

(
1

−1

)
= $α∨0 i−α0

(
1

−1

)
.

This corresponds to τ(−α∨0 )rα0 in Waff , which is the reflection in the hyperplane
〈α0, v〉 = −1, as required. (We are using the notation rα0 to denote the reflection
determined by rα0 in W .) �
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Proposition. If d ∈ Q∨ we have

$−dxα(u)$d = xα($−〈d,α〉u). (62)

Proof This follows from (58). �

Exercise 13 Suppose that G = SL2. Show that with this identification of N(T (F ))/T (o)
with the affine Weyl group, the length function is

l

(
pa

p−a

)
= |2a|, l

(
p−a

pa

)
= |2a− 1|.

This concludes our discussion of the case where G is semisimple and simply-
connected. Let us indicate what happens if these conditions are relaxed.

Without the assumption that G is semisimple and simply connected, we may
construct a homomorphism of Q∨ into T (F )/T (o) as above. However in general the
map is not surjective.

First consider the case where G = GLr+1. In this case, the affine Weyl group
must be enlarged. The generators s0, s1, · · · , sr defined by (60) and (61) must be
supplemented with another one:

t =


$−1

1
. . .

1

 .

Since the determinant is not in o×, the coset of t in N(T (F ))/T (o) has infinite order.
It may be checked that

tsit
−1 = si+1,

where the elements are taken to be periodic, i.e. sr+1 = s0. Therefore N(T (F ))/T (o)
is a semidirect product of the Coxeter group Waff generated by the si by an infinite
cyclic group: N(T (F ))/T (o) = Waff o Z.

If we are working over PGLr+1, which is semisimple, the story will be the same,
but tr+1 is a scalar matrix, and is in the center, so t has finite order r + 1. In this
case, N(T (F ))/T (o) ∼= Waff o Ω, where Ω is the cyclic group 〈t〉 of order r + 1.

This is typical of the general semisimple case. If G is a split semisimple group
that is not simply-connected, then the fundamental group π1(G) is a finite abelian
group which acts on the extended Dynkin diagram. It therefore has an action on the
affine Weyl group, and N(T (F ))/T (o) is the semidirect product Waff o π1(G).
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14 The Iwahori-Bruhat Decomposition

After the Bruhat decomposition was found in the 1950’s, it was extended in generality
by Chevalley and Borel. Tits gave a fully axiomatic approach (1962). A completely
unexpected instance of Bruhat’s axioms was found by Iwahori and Matsumoto, in
a p-adic group. The (noncompact) Borel subgroup B is replaced by the (compact)
Iwahori subgroup, and the (finite) Weyl group W is replaced by the (infinite) affine
Weyl group Waff .

Let G be a split, simply-connected semisimple affine algebraic group over the
nonarchimedean local field F . Notations will be as in the preceding section. The
Iwahori subgroup J , we have noted, consists of k ∈ G(o) such that the image of k
in G(Fq) lies in the Borel subgroup B(Fq). Let I0 = {s0, s1, · · · , sr} be the set of
simple reflections, together with the “affine” reflection s0.

Theorem 16 (Iwahori and Matsumoto) Let G be a split, simply-connected semisim-
ple affine algebraic group over the nonarchimedean local field F . The data (J,N(T (F ), I0)
are a Tits’ system. Therefore

G(F ) =
⋃

w∈Waff

JwJ (disjoint).

The proof will occupy the present section. The main thing to be verified is
Axiom TS3 (Section 7).

Let us consider how this will change if G is not simply-connected. In this case,
we have already explained, there is still a homomorphism from the coroot lattice Q∨

to T (F )/T (o), but this homomorphism is no longer surjective. It must be supple-
mented by another subgroup Ω of N(T (F )), as at the end of the last section. If G
is semisimple, then Ω is isomorphic to the fundamental group π1(G), which can be
viewed as a group of automorphisms of the extended Dynkin diagram.

The general case where G is reductive was considered by Bruhat and Tits.
For the rest of the section we will assume that G is split, semisimple and simply-

connected.
Let U be the unipotent algebraic subgroup generated by the xα(u) with α ∈ Φ+.

Let U− be the unipotent subgroup generated by the xα(u) with α ∈ Φ−. If a is any
fractional ideal let U(a) be the group generated by xα(u) with u ∈ Φ+ and α ∈ a,
and similarly for U−(a).

The following fact is very important.

Proposition 50 (Iwahori Factorization) We have

J = U−(p)U(o)T (o).
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That is, the multiplication map U−(p) × U(o) × T (o) −→ J is bijective. The three
factors can be written in any order.

Proof Rather than prove this in general we prove it for SL3 in order to make the
ideas clear. Let

g =

 t1 u1 u2

v1 t2 u3

v2 v3 t3

 ∈ J.
We will show that g ∈ U−(p)B(o). The ui ∈ o, vi ∈ p and since g is invertible, the
ti are units. Now we may multiply on the left by

x−α1−α2(−v2t
−1
1 ) =

 1
1

−v2

t1
1


which is in U−(p); this annihilates v2. For the purpose of showing that g ∈ U−(p)B(o),
we see that we may assume v2 = 0. Next we may multiply on the left by x−α1(−v1t

−1
1 )

and arrange that v1 = 0. Finally, we use x−α2(−v3t
−1
2 ) to arrange that v3 = 0.

Now we know that J = U−(p)B(o), we may use the fact that B(o) = T (o)U(o) =
U(o)T (o) to see that J = U−(p)T (o)U(o) = U−(p)U(o)T (o). We also have U−(p)T (o) =
T (o)U−(p), a semidirect product with U−(p) normal. This allows us to put the U−(p)
in the middle if we want. We see that the factors may be in any order.

This same proof works for general G, and we leave this to the reader. See
Lemma 11 for a similar situation. �

Lemma 9 If u ∈ U−(p) and w ∈ W then wuw−1 ∈ J . If t ∈ T (o) then wtw−1 ∈ J .

There is an abuse of notation here, since w is actually a coset of N(T (F ))/T (o).
The truth of wtw−1 ∈ J is independent of the choice of w.
Proof We may assume that u = xα(v) with v ∈ p. Then wuw−1 = xw(α)(εv) where
ε is a unit. If w(α) ∈ Φ+ then this is in U(o). If w(α) ∈ Φ− it is in U−(p). Either
way it is in J . Also wT (o)w−1 = T (o) since we chose the representatives w of W to
be in the normalizer of T (o) in G(o). �

Lemma 10 Suppose that α ∈ Φ, α 6= α0. Suppose that u = xα(v) where either
α ∈ Φ+ and v ∈ o or α ∈ Φ− and v ∈ p. Then s−1

0 us0 ∈ J .

Proof We write

s0 = $α∨0 i−α0

(
1

−1

)
= $α∨0 rα0 .
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Then
s−1

0 us0 = r−1
α0
xα($−〈α∨0 ,α〉v)rα0 = xrα0 (α)($

−〈α∨0 ,α〉v).

By abuse of notation we are using the notation rα0 to denote both the reflection rα0

in W and its representative i−α0

(
1

−1

)
in T (F )/T (o).

First assume that α ∈ Φ+ and v ∈ o. Since −α0 is the highest root, 〈α∨0 , α〉 6 0
by Proposition 41. If 〈α∨0 , α〉 < 0 then this is in J by Lemma 9. On the other
hand if 〈α∨0 , α〉 = 0 then r−1

α0
(α) = α since α0 and α are orthogonal roots, and so

s−1
0 us0 = u ∈ J .

Next assume that α ∈ Φ− and that α 6= α0. In this case we are also assuming
that v ∈ p. Then 〈α∨0 , α〉 > 0 by Proposition 41. Indeed, by Proposition 41 and our
assumption that α 6= α0 we have 〈α∨0 , α〉 < 〈α∨0 , α0〉 = 2. Since 〈α∨0 , α〉 is an integer,

〈α∨0 , α〉 6 1. if 〈α∨0 , α〉 6 0 then $−〈α∨0 ,α〉v ∈ p and s0us0 = xrα0 (α)($
−〈α∨0 ,α〉v) ∈ J

by Lemma 9. We are left with the case 〈α∨0 , α〉 = 1. In this case $−〈α∨0 ,α〉v ∈ o.
Moreover rα0(α) = α − 〈α∨0 , α〉α0 = α − α0. This cannot be a negative root since

−α0 is the highest root, and so xα0(α)($
−〈α∨0 ,α〉v) ∈ U(o) ⊂ J . �

Iwahori and Matsumoto showed that the Iwahori subgroup satisfies Bruhat’s
axioms, giving rise to a Bruhat decomposition based on the affine Weyl group. The
next result is a first step towards this goal.

Proposition 51 If w ∈ Waff and l(wsi) = l(w) + 1 then wJsi ⊆ JwsiJ .

Proof First assume that 1 6 i 6 r.
Using the Iwahori factorization, we may write an element of wJsi as wu+u−tsi

where u− ∈ U−(p), t ∈ T (o) and u+ ∈ U(o). By Lemma 9 u−tsi ∈ siJ , so we may
assume that the element is of the form wu+si. Now we write u+ as a product of
elements of the form xα(v) with v ∈ o. If α 6= αi we have s−1

i xα(v)si = xsi(α)(v) and
si(α) ∈ Φ+, so this is in J . Therefore we may handle all the xα(v) this way except
only one root α = αi. It is thus sufficient to show that wxαi(v)w−1 ∈ Jw.

We may write w = $−dw′ where w′ ∈ W and d ∈ Q∨. By (62) we have
wxαi(v)w−1 = $−dxw′(αi)(v)$d = xw′(αi)($

〈−d,w′(αi)〉v). By Proposition 47 we have
either 〈w′(αi), d〉 < 0 or 〈w′(αi), d〉 = 0 and w′(αi) ∈ Φ+. Assume first that
〈w(αi), d〉 < 0. Then $〈−d,w

′(αi)〉v ∈ p and xw′(αi)($
〈−d,w′(αi)〉v) ∈ J regardless of

whether w′(αi) is a positive or negative root. On the other hand if 〈w′(αi), d〉 = 0, we
are guaranteed that w′(α) ∈ Φ+. In the second case we also have xw′(αi)($

〈−d,w′(αi)〉v) =
xw′(αi)(v) ∈ J .

It remains for us to treat the case i = 0. We may use the Iwahori factorization
again to write an element of wJs0 as wu−u+ts0 where u− ∈ U−(p), t ∈ T (o) and
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u+ ∈ U+(o). We have, as before ts0 ∈ s0J , and we may write u− and u+ as products
of factors xα(v) where either α ∈ Φ+ and v ∈ o or α ∈ Φ− and v ∈ p. In every case
except α = α0 we have uαs0 ∈ s0J by Lemma 10.

We are therefore left to show that wxα0(v)w−1 ∈ J . We write w = $−dw′

where w′ ∈ W and d ∈ Q∨. By Proposition 47 we have either 〈w′(α0), d〉 < 1 or
〈w′(α0), d〉 = 1 and w(α0) ∈ Φ+. Now consider wxα0(v)w−1 = xw′(α0)($

〈−d,w′(α0)〉v).
Since v ∈ p if 〈w′(α0), d〉 6 0, then $〈−d,w

′(α0)〉v ∈ p and so wxα0(v)w−1 ∈ J by
Lemma 9. On the other hand if 〈w′(α0), d〉 = 1 and w′(α0) ∈ Φ+ then $〈−d,w

′(α0)〉v ∈
o, and in this case wxα0(v)w−1 ∈ U(o) ⊂ J . �

Proposition 52 If 0 6 si 6 r then siJsi ∈ J ∪ JsiJ .

Proof First assume that 1 6 i 6 r. We may write an arbitrary element of J as a
product of factors of the form t ∈ T and xα(v) where either v ∈ o and α ∈ Φ+ or
v ∈ p and α ∈ Φ−. Except in the case α = αi we have s−1

i xα(v)si = xsi(α)(v) ∈ J ,
because if α ∈ Φ+ and α 6= αi then si(α) ∈ Φ+, while if α ∈ Φ− then v ∈ p and
so s−1

i xα(v)si ∈ J by Lemma 9. Also s−1
i tsi ∈ T (o) ∈ J . In conclusion, every one

of the factors except one may be moved across si. We are left with showing that
sixαi(v)si ∈ J ∪JsiJ . We have v ∈ o. If v ∈ p then we may use Lemma 9. Therefore
we assume that v ∈ o×. We make use of the identity(

−1
1

)(
1 v

1

)(
1

−1

)
=

(
1
−v 1

)
=

(
1 −v−1

1

)(
1

−1

)(
v −1

v−1

)
.

Applying iαi , this leads to

s−1
αi
xαi(v)sαi = xαi(−v−1)sαiiαi

(
v −1

v−1

)
∈ JsαiJ.

This concludes the proof when 1 6 i 6 r.
Next assume that i = 0. We leave it to the reader to check that if α 6= α0 and

either v ∈ o and α ∈ Φ+ or v ∈ p and α ∈ Φ−, then s−1
0 xα(v)s0 ∈ J . This leaves us

to consider the case where α = α0 and v ∈ p. It may also be checked that if v ∈ p2

then s−1
0 xα0(v)s0 ∈ J . Therefore we may assume that v = $ε where ε is a unit. Now

we use the identity (
−$−1

$

)(
1
$ε 1

)(
$−1

−$

)
=(

1
−ε−1$ 1

)(
$−1

−$

)(
−ε−1

$ −ε

)
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Applying i−α0 shows that s−1
0 xα0($ε)s0 ∈ C(s0). �

Exercise 14 Verify the claim in the above proof that if i = 0 and α 6= α0 and either v ∈ o

and α ∈ Φ+ or v ∈ p and α ∈ Φ−, then s−1
0 xα(v)s0 ∈ J .

We will use the notation JwJ = C(w) as in Section 7. Then the content of Propo-
sition 51 may be written C(w)C(si) = C(wsi) if l(wsi) = l(w)+1, and Proposition 52
may be written C(si)C(si) ⊂ C(1) ∪ C(si).

Theorem 17 If w ∈ Waff and 0 6 i 6 r then

wJsi ⊆ JwsiJ ∪ JwJ.

Proof This may be written C(w)C(si) ⊆ C(wsi)∪C(w). If l(wsi) = l(w) + 1, this
follows from Proposition 51.

Therefore we assume that l(wsi) = l(w) − 1. Let w′ = wsi. Then l(w′si) =
l(w′)+1 and so by Proposition 51 we have C(w′)C(si) = C(w′si) = C(w). Therefore

C(w)C(si) = C(w′)C(si)C(si).

By Proposition 52 this is contained in

C(w′)C(si) ∪ C(w′)C(1) = C(w) ∪ C(w′) = C(w) ∪ C(wsi),

as required. �

This gives us Axiom TS3. The other axioms we leave to the reader.

Exercise 15 Verify the remaining axioms of a Tits System. Hint: For Axiom TS5, you
must show that G is generated by J and N(T (F )). Show that conjugates of U(o) by
elements of T (F ) contain all of U(F ), and so the group generated by J and N(T (F ))
contains B(F ).

This concludes the proof of Theorem 16.

Lemma 11 If u ∈ U−(F ) then u ∈ G(o)B(F ).

Proof We write
u =

∏
α∈Φ−

xα(uα), uα ∈ F.

We order the roots so that if β comes after α in the product, then either β − α is
not a root or β − α ∈ Φ+. We may accomplish this by taking the negative roots α
such that the inner products 〈−ρ, α〉 are in nonincreasing order.
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Now we modify u by left multiplications by elements of G(o) and right multipli-
cation by elements of B(F ) so that until all uα are 0. Let α be the first root such
that xα(uα) 6= 0. If uα ∈ o, we left multiply by xα(−uα). If uα ∈ o then we left

multiply by i−α

(
1

−1 uα

)
. We have

i−α

(
1

−1 uα

)
xα(u) = i−α

(
u 1

u−1

)
∈ B(F ).

Conjugating the remaining xβ(uβ) by this element of B(F ) produces commutators
that are in B(F ) by the way we have ordered the roots. In either case, we are able
to replace uα by 0. Continuing, eventually all uα are zero. �

Theorem 18 (Iwasawa Decomposition) We have G(F ) = G(o)B(F ) = B(F )G(o).

Proof Using the Iwahori-Bruhat decomposition, it is sufficient to show that JwJ ⊆
G(o)B(F ), where w ∈ Waff may be written w = w′t with w′ ∈ W and t ∈ T . Now
Jw′ ∈ G(o) so what we must show is that tJ ⊆ G(o)B(F ). Using the Iwahori
factorization, we write a typical element of J as u−b with u− ∈ U−(p) and b ∈ B(o).
Now tu−t

−1 ∈ G(o)B(F ) by the Lemma, so tu−b = (tu−t
−1)tb ∈ G(o)B(F ). �

The following decomposition is called the Cartan decomposition by analogy with
the corresponding decomposition in Lie groups. However in this p-adic context the
result is actually due to Bruhat.

We will say that an element of d ∈ Q∨ or its ambient vector space is dominant if
〈d, α〉 > 0 for all α ∈ Φ+. Then (because we are assuming G to be simply-connected)
the $d with d ∈ Q∨ dominant form a fundamental domain for the action of W on
T (F )/T (o).

Theorem 19 (Cartan Decomposition) We have

G(F ) =
⋃

d ∈ Q∨
d dominant

G(o)$dG(o) (disjoint).

Proof We have
G(F ) =

⋃
w∈Waff

JwJ =
⋃

d ∈ Q∨
w ∈W

Jw$dJ,

where $−d ∈ T (F ) and w ∈ G(o). This shows that G(F ) =
⋃
d∈Q∨ G(o)$dG(o).

Since G(o) contains representatives for W , we may conjugate $d by W and assume
that d is dominant.
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We will omit the proof that these double cosets are disjoint. For GLn, we proved
it in Proposition 35. For the general case, see Bruhat, Sur une classe du sous-groupes
compacts maximaux des groupes de Chevalley sur un corps p–adique. (French) Inst.
Hautes Ãtudes Sci. Publ. Math. No. 23 1964 45–74, ThÃorÃm 12.2. �

15 The Iwahori Hecke algebra

We continue to assume thatG is semisimple, split and simply connected and following
Iwahori and Matsumoto we consider the structure of the Iwahori Hecke algebra.

It will be convenient to normalize the Haar measure so that J has volume 1.
Then HJ is the ring of J-bi-invariant functions. The convolution is then normalized
thus:

(φ1 ∗ φ2)(g) =

∫
G

φ1(gh−1)φ2(h) dg.

Since we have a set of J double cosets in the affine, let φw be the characteristic
function of BwB for w ∈ Waff .

We have an augmentation map ε : H −→ C defined by

ε(φ) =

∫
G

φ(g) dg.

Lemma 12 We have ε(φ1 ∗ φ2) = ε(φ1)ε(φ2).

Proof Indeed ε(φ1 ∗ φ2) =
∫
G

∫
G
φ1(gh−1)φ2(h) dh dg. Interchanging the order of

integration and substituting g −→ gh, the integral factors as required. �

Lemma 13 Let G be a group, H a subgroup, and x ∈ G. Then the cardinality of
the coset space HxH/H is [H : H ∩ xHx−1].

Proof Now if K and H are arbitrary subgroups of G then the inclusion of K
into KH induces a bijection K/(H ∩ K) −→ KH/H. (The coset spaces here are
not groups since we are not assuming that H is normal.) Indeed, the composition
K −→ KH −→ KH/H is certainly surjective, and two cosets kH = k′H with
k, k′ ∈ K are equal if and only if k−1k′ ∈ H; since k−1k′ ∈ K, this is equivalent to k
and k′ having the same image in K/(H ∩K).

Left multiplication by x−1 commutes with right multiplication by elements of H,
hence induces a bijection HxH/H −→ x−1HxH/H = KH/K, where K = x−1Hx.
Therefore HxH/H is in bijection with x−1Hx/(H ∩ x−1Hx). Now conjugating by
x, this is equivalently in bijection with H/(xHx−1 ∩H). �
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Proposition 53 Let w ∈ W . Then

ε(φw) = |JwJ/J | = [J ∩ wJw−1].

Proof Since φw is the characteristic function of JwJ , it is clear that ε(φw) is the
volume of this double coset. This equals the number of right cosets in JwJ/J since
each of those cosets has volume 1. �

We will say that an element of d ∈ Q∨ or its ambient vector space is dominant
if 〈d, α〉 > 0 for all α ∈ Φ+, and antidominant if −d is dominant. More generally, if
w ∈ Waff , we say that w is dominant if wF is contained in the positive Weyl chamber
C, and antidominant if wF is contained in −C.

Lemma 14 Suppose that d ∈ Q∨ is dominant, and let w = $d. Then ε(φw) = ql(w).

Note that $d is antidominant, since the embedding of Theorem 15 sends τ(d) to
$−d. Thus w actually corresponds to −d.
Proof We note that wU(o)w−1 ⊆ U(o) while wU−(p)w−1 ⊇ U−(p). Indeed, by
(62) and our assumption that d is dominant, we have wxα(o)w−1 ⊆ xα(o) if α ∈ Φ+,
while wxα(p)w−1 ⊇ xα(p) if α ∈ Φ−.

Both groups J and wJw−1 have Iwahori factorizations, J = U−(p)T (o)U(o) and

wJw−1 = (wU−(p)w−1)T (o)(wU(o)w−1).

It follows that
J ∩ wJw−1 = U−(p)T (o)wU(o)w−1

Indeed, it is clear that the right-hand side is contained in the left-hand side. For
the other inclusion, if we have an element g of J and write it as g = u−tu with
u− ∈ U−(p), t ∈ T (o) and u ∈ U(o), and if it also equals u′−t

′u′ with u′− ∈ wU−(p)−1,
t′ ∈ T (o) and u′ ∈ wU(o)w−1, then u−1

− u
′
− = tu(t′u′)−1 ∈ U−(F ) ∩ B(F ). The

intersection of these two groups is trivial, so u− = u′−, and so g = u′−tu is in
U−(p)T (o)wU(o)w−1.

We see that [J : J ∩ wJw−1] = [U(o) : wU(o)w−1]. This index is, again by (62)∏
α∈Φ+

[xα(o) : wxα(o)w−1] =
∏
α∈Φ+

[xα(o) : wxα(p〈d,α〉)w−1] =
∏
α∈Φ+

q〈d,α〉.

By Proposition 48, this equals ql(d). �

Proposition 54 Let 0 6 i 6 r. Then ε(φsi) = q.
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Proof We leave it to the reader to check that if 1 6 i 6 r then siJs
−1
i =

U−(p)T (o)Ui(o) where

Ui(o) =
∏
α∈Φ+

{
xα(p) if α = αi,
xα(o) otherwise.

The index in J equals [U(o) : Ui(o)] = q. Similarly if i = 0 then siJs
−1
i =

U ′−(p)T (o)U(o) where

U ′−(p) =
∏
α∈Φ−

{
xα(p2) if α = α0,
xα(p) otherwise,

and again the index is q. �

Now let G be a group and H a subgroup. We will assume for all x ∈ G that
i(x) <∞, where i(x) = |HxH/H| = [H : H ∩ xHx−1].

Lemma 15 Let G be a group and H a subgroup. Define i(x) = H ∩ xHx−1 for
x ∈ G. Suppose that x, y ∈ G. Then i(xy) 6 i(x)i(y).

Proof We have i(y) = [H : H ∩ yHy−1] and conjugating by x, i(y) = [xHx−1 :
xHx−1 ∩ (xy)H(xy)−1]. Intersecting with H can only decrease the index, so

[H ∩ xHx−1 : H ∩ xHx−1 ∩ (xy)H(xy)−1] 6 i(y).

Now

i(xy) = [H : H ∩ (xy)H(xy)−1] 6

[H : H ∩ xHx−1 ∩ (xy)H(xy)−1] =

[H : H ∩ xHx−1][H ∩ xHx−1 : H ∩ xHx−1 ∩ (xy)H(xy)−1] 6 i(x)i(y).

�

Theorem 20 Let w ∈ Waff . Then ε(φw) = ql(w).

Iwahori and Matsumoto deduce this quickly from Proposition 54. It seems to me
that there is a gap in their proof, which I fill using Lemma 14.
Proof By Proposition 53 and Lemma 15 we have ε(φww′) 6 ε(φw)ε(φw′). Using
this fact and Proposition 54 it follows that ε(φw) 6 ql(w), after factoring w into a
product of simple reflections.
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We claim that for every w ∈ Waff there exists a w′ ∈ Waff such that l(w′w) =
l(w)+l(w′) and ε(φw′w) = ql(w)+l(w′). By Lemma 14 it is sufficient to find w′ such that
w′w ∈ Q∨, with w′w an antidominant element of Q∨. It is easy to see geometrically
that we may find a path from wF to the negative Weyl chamber that does not cross
any of the hyperplanes Hα,kbetween F and wF, and we may arrange that the path
ends in an alcove w′wF that is a Q∨-translate of F. Since the path does not recross
any hyperplane that it has already crossed, l(w′w) = l(w′) + l(w).

Now we have

ql(w)+l(w′) = ε(φw′w) 6 ε(φw′)ε(φw) 6 ql(w
′)ε(φw),

so ε(φw) > ql(w). We have proved both inequalities and the statement follows. �

Corollary 1 If l(ww′) = l(w) + l(w′) then φww′ = φw ∗ φw′.

Proof In the integral

(φw ∗ φw′)(g) =

∫
G

φw(gh−1)φw′(h) dg,

the integrand vanishes unless gh−1 ∈ JwJ and h ∈ Jw′J , which implies that g =
gh−1 ·h is in JwJ ′ ·Jw′J . But by Proposition 51 we have JwJ ·Jw′J = Jww′J . Thus
the convolution is supported on a single double coset and so φw ∗ φw′ = cφww′ for
some constant c. We apply ε and apply the Theorem to get ql(w)+l(w′) = cql(w)+l(w′),
so c = 1. �

Now we need to know the quadratic relations. We will leave some of the work to
the reader.

Exercise 16 Show that if 0 6 i 6 r then J ∪ JsiJ is a group. Hint: if i 6= 0 then this is

U i−(p) iαi(SL(2, o))U i(o)

where
U i−(p) =

∏
α ∈ Φ−

α 6= −αi

xα(p), U i(o) =
∏

α ∈ Φ+

α 6= αi

xα(o).

Show that this is closed under multiplication because iαi(SL(2, o)) normalizes the two
unipotent groups.

Proposition 55 Let 0 6 i 6 r. Then

φ2
si

= (q − 1)φsi + q.
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Proof Since the support of φi is contained in J ∪ JsiJ , which is a group, φ2
si

is a
linear combination of φ1 (the identity element in HJ) and φsi . Thus φ2

si
= aφsi + bφ1

for some a and b. To compute b, evaluate at the identity. We have φ1(1) = 1 and
φsi(1) = 0, while

(φsi ∗ φsi)(1) =

∫
G

φsi(h)φsi(h
−1) dh =

∫
JsiJ

1 dh = |JsiJ/J | = q

by Proposition 54. Therefore b = q. We apply the homomorphism ε : HJ −→ C such
that ε(φsi) = 1 and obtain the relation q2 = aq+ b and since b = q we get a = q− 1.

�

Taking W to be the Coxeter group Waff , we have an Iwahori Hecke algebra
Hq(Waff), with generators Ti in bijection with the si, subject to the quadratic rela-
tions and the braid relations. Using Tits’ Theorem (see Theorem 14) we may define
elements Tw for w ∈ Waff by Tw = Ti1 · · ·Tik where si1 · · · sik = w is a reduced de-
composition for any w ∈ Waff with l(w) = k. It is easy to see that the Tw span
Hq(Waff).

Theorem 21 We have an isomorphism HJ −→ Hq(Waff) in which φsi 7−→ Ti.

Proof We have checked that the φi satisfy the quadratic relations in Proposition 55.
The braid relations follow from Corollary 1. For example, suppose that the order
n(i, j) of sisj is 3; then sisjsi = sjsisj. Let w denote sisjsi. Then l(w) = l(si) +
l(sj) + l(si) and so φw = φsi ∗ φsj ∗ φsi . Similarly φw = φsj ∗ φsi ∗ φsj , and so the
braid relation is satisfied. Hence there is a homomorphismHq(Waff) −→ HJ in which
Ti −→ φsi .

Since the Tw span Hq(Waff), and their images φw are a basis of HJ , it follows that
this homomorphism is a vector space isomorphism. �

16 Bernstein-Zelevinsky Presentation

An important presentation was described by Bernstein in lectures but never published
by him. He proved it in collaboration with Zelevinsky, but they did not publish the
proof. The first proof was published in

• Lusztig, Affine Hecke algebras and their graded version. J. Amer. Math. Soc.
2 (1989), no. 3, 599–635.

Another proof, for GLn only, is found in:
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• Howe, Affine-like Hecke algebras and p-adic representation theory. Iwahori-
Hecke algebras and their representation theory (Martina-Franca, 1999), 27–69,
Lecture Notes in Math., 1804, Springer, Berlin, 2002.

Another proof is found in:

• Thomas J. Haines, Robert E. Kottwitz, and Amritanshu Prasad. Iwahori-
Hecke algebras. http://arxiv.org/abs/math/0309168, 2003.

The latter proof is less difficult than Lusztig’s but starts with different premises since
it does not begin with the abstract Hecke algebra given by the Iwahori-Matsumoto
presentation.

We start with a root system Φ in a vector space V . Assume that Φ spans V . We
recall that Q∨ is the coweight lattice, and P∨ be the coweight lattice. This is the set
of λ∨ ∈ V ∨ = R⊗Q∨ such that 〈λ∨, α〉 ∈ Z for all α ∈ Φ.

We recall that the affine Weyl group Waff is the group generated by the simple
reflections {s0, s1, · · · , sr} in the walls of the fundamental alcove F. If d ∈ Q∨ we
denote by τ(d) the translation v 7−→ v + d. If we identify Q∨ with its image under
τ , then Waff is the semidirect product Waff nQ∨.

It is easy to see that translations by elements of P∨ also permute the alcoves,
though these are generally not contained in Waff . The extended affine Weyl group
W̃aff is group generated by τ(P∨) and Waff . The whole group W̃aff then acts on V ∨,
permuting the alcoves, extending the action of Waff in which Q∨ acts by translations.

Remark 2 The extended affine Weyl group arises as follows. As we have seen, if
G is a split semisimple group over a local field F that is simply connected then
N(T (F ))/T (o) ∼= Waff . If G is not simply-connected the group N(T (F ))/T (o) is
larger thanWaff . In the extreme case whereG is of adjoint type, thenN(T (F ))/T (o) ∼=
W̃aff .

There is a difference between the actions of Q∨ and P∨ on the alcoves. If λ∨ ∈ P∨
but λ∨ /∈ Q∨, the translate F+λ∨ is an alcove, so it agrees with wF for some w ∈ Waff .
However since λ∨ /∈ Q∨, τ(λ∨) /∈ Waff . Thus the transformations v 7−→ v + λ∨ and
v 7−→ wv are not the same. Both transformations take F to the same alcove, but in
a different spatial orientation. This leads to the following Proposition.

Proposition 56 The finite abelian group P∨/Q∨ is isomorphic to the finite group
Ω of affine linear maps in W̃aff that stabilize F. Since {s0, · · · , sr} are the reflections
in the walls of F, this means that if t ∈ Ω then si 7−→ tsit

−1 is a permutation of
{s0, · · · , sr}. The group W̃aff is the semidirect product Waff n (P∨/Q∨) by this finite
group of automorphisms.
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Any automorphism of the Coxeter group Waff that permutes the generators must
preserve the braid relations, which are encoded in the extended Dynkin diagram.
The group P∨/Q∨ can therefore be interpreted as a subgroup of the group of auto-
morphisms of the extended Dynkin diagram.
Proof Conjugation by an element of the subgroup Ω of W̃aff that stabilizes F

permutes the reflections {s0, · · · , sr} in the walls of F, and so it normalizes the group
Waff that they generate. If λ∨ ∈ P∨ then τ(λ∨)F = F + λ∨ is an alcove, so there
exists a unique w ∈ Waff such that wτ(λ∨)F = F. Now wτ(λ∨) ∈ Ω. Hence Waff · Ω
contains Waff and P∨ with Waff as a normal subgroup, and since these generate W̃aff ,
we have W̃aff = Waff o Ω. �

We extend the length function on Waff by writing l(wt) = l(w) when t ∈ Ω.
Therefore elements of Ω have length zero.

Proposition 57 If w ∈ W̃aff then l(w) is the number of hyperplanes Hα,k between F

and wF.

Proof If w ∈ Waff then this follows from Lemma 8 and Theorem 14. For general
w ∈ W̃aff , there is w′ ∈ Waff and t ∈ Ω such that w = w′t. Now wF = w′F and
l(w) = l(w′), and the statement follows. �

We say that λ∨ ∈ P∨ is dominant if 〈αi, λ∨〉 > 0 for i = 1, · · · , r.

Proposition 58 Let λ∨ is a dominant element of P∨. Then with 1 6 i 6 r we have

l(τ(λ∨)si) =

{
l(τ(λ∨)) + 1 if 〈αi, λ∨〉 = 0,
l(τ(λ∨))− 1 if 〈αi, λ∨〉 > 0.

Proof Let w = τ(λ∨)si. Suppose that 〈αi, λ∨〉 = 0. Then every hyperplane Hα,k

that separates F from F + λ∨ also separates F from siF + λ∨, and there is one more
that lies between F and siF + λ∨, namely the hyperplane Hαi,0, which is a wall of
the positive Weyl chamber. Thus l(τ(λ∨)si) = l(τ(λ∨)) + 1.

On the other hand, suppose that 〈αi, λ∨〉 > 0. Let us count the hyperplanes
between F and siF as follows. Let v ∈ F be very close to the wall Li = Hαi,0.
Then siv + λ∨ lies in siF + λ∨ and is close to v and we follow a straight line from
an interior point of F to the two points v and siv + λ∨. These intersect the same
hyperplanes except that the path to siF+λ∨ does not intersect Hαi,0 +λ∨. Therefore
l(τ(λ∨)si) = l(τ(λ∨))− 1. �

Let Hq(Waff) be an Iwahori Hecke algebra associated with Waff . That is, it
has generators T0, T1, · · · , Tr with the usual relations, determined by the extended
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Dynkin diagram of an irreducible root system Φ. The parameter q can be an in-
determinate, for the ring is described in terms of generators and relations. We will
eventually need both q and

√
q to be in the ground field.

The relations satisfied by the Ti are the braid relations, and the quadratic relations
T 2
i = (q−1)Ti+q. The ringHq(Waff) has a basis consisting of elements Tw (w ∈ Waff)

where Tw = Ti1 · · ·Tik when w = si1 · · · sik is a reduced decomposition of w into a
product of simple reflections. This is well-defined by Tits’ theorem (Theorem 14).

Let Hq(W̃aff) be the algebra with basis Tw where w ∈ W̃aff , with the following
description. It has generators Ti with i ∈ {0, 1, · · · , r} subject to the braid and
quadratic relations, with additional generators Tt (t ∈ Ω), subject to the conditions
that TtTu = Ttu when t, u ∈ Ω, and the additional relations TtTw = Ttwt−1Tt when
t ∈ Ω and w ∈ Waff .

Proposition 59 If w,w′ ∈ W̃aff and l(ww′) = l(w) + l(w′) then TwTw′ = Tww′.

Proof First consider the case where w,w′ ∈ Waff . Let w = si1 · · · sik and w′ =
sj1 · · · sjl be reduced decompositions, so k = l(w) and l = l(w′). Then ww′ =
si1 · · · siksj1 · · · sjl is a reduced decomposition, and Tww′ = Ti1 · · ·TikTj1 · · ·Tjl =
TwTw′ .

Now we turn to the general case. Write w = w1t and w′ = w′1t
′ where t, t′ ∈ Ω.

Let w′2 = tw′1t
−1 ∈ Waff . It has the same length as w′1, since conjugation by t simply

permutes the generators. Now ww′ = w1w
′
2tt
′ and l(w1w

′
2) = l(w1) + l(w′2). Thus

Tw1w′2
= Tw1Tw′2 . We have

Tw = Tw1Tt, Tw′ = Tw′1Tt′ ,

so
Tww′ = Tw1w′2tt

′ = Tw1w′2
Ttt′ = Tw1Tw′2TtTt′ = Tw1TtTw′1Tt′ = TwTw′ .

�

Lemma 16 Tw is invertible. Indeed, if w = si1 · · · sik then

T−1
w = T−1

sik
· · ·T−1

si1
, T−1

i = q−1Ti + (1− q−1). (63)

Proof It follows from the quadratic relation T 2
i + (q − 1)Ti + q = 0 that q−1Ti +

(1− q−1) is an inverse to Ti. The rest is immediate. �

The Bernstein-Zelevinsky presentation is related to the realization of the affine
Weyl group as a semidirect product W̃aff = W nP∨. It realizes the algebra Hq(Waff)
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as the amalgamation of two subalgebras, namely Hq(W ) and an abelian subalgebra
isomorphic to the group algebra of P∨.

We have a map P∨ → Hq(W̃aff)× defined by d 7→ Td. But this map is not a
homomorphism. Indeed, by Proposition 59 TwTw′ = Tww′ if l(ww′) = l(w) + l(w′)
though not generally otherwise. Therefore

However we may obtain a proper homomorphism P∨ −→ Hq(Waff)× as follows.
Let P∨dom be the set of dominant weights in the coroot lattice. Thus d ∈ P∨dom if
d ∈ P∨ and 〈d, α〉 > 0 for every root α.

Lemma 17 If d, d′ ∈ P∨dom then l(dd′) = l(d) + l(d′) and so Tdd′ = TdTd′.

Proof We use the characterization that l(d) is the number of hyperplanes Hα,k that
lie between the fundamental alcove F and F + d. Let H1, · · · , Hk be the hyperplanes
between F and F + d, and H ′1, · · · , H ′l be the hyperplanes between F and F + d′. The
k+ l hyperplanes H1, · · · , Hk, H

′
1 +d, · · · , H ′l +d lie between F and F+d+d′. Indeed,

Each of the hyperplanes Hi is perpendicular to α for some positive root α. Since
〈d, α〉 > 0, we may take a straight-line path from v ∈ F to v + d, and follow that by
a straight-line path from v + d to v + d + d′ and it will cross each of the advertised
hyperplanes exactly once.

The last statement follows by Proposition 59. �

Now we have a monoid homomorphism θ : P∨dom → Hq(W̃aff)× defined by θ(d) =
q−l(d)/2Td. The group P∨ is the Grothendieck group of this monoid. That is, it is
universal for homomorphisms of the monoid P∨dom into groups. Therefore we obtain a
homomorphism θ : P∨ → H×q (W̃aff) such that θ(d) = q−l(d)/2Td when d is dominant.
In general, if we have d ∈ P∨ we may write d = d1 − d2 with d1 and d2 dominant,
and θ(d) = q(l(d2)−l(d1))/2Td1T

−1
d2

.

The group homomorphism θ : P∨ −→ H×q (W̃aff)∨ extends to a ring homomor-

phism from the group algebra C[P∨] −→ H×(W̃aff). The image Θ of this map is
the vector space spanned by the elements θ(d) with d ∈ P∨. This is an abelian
subalgebra Θ isomorphic to the group algebra of P∨. We wish to consider Hq(W̃aff)
as an amalgam of this commutative ring Θ and Hq(W ).

Let ω∨1 , · · · , ω∨k be the fundamental coweights, defined by the formula〈
αi, ω

∨
j

〉
= δij, (i = 1, · · · , r). (64)

Lemma 18 Let λ∨ ∈ P∨dom. Then l(τ(λ∨)) = 〈2ρ, λ∨〉 where

ρ =
1

2

∑
α∈Φ+

α.
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Proof The proof of Proposition 48 goes through without much change. Let w ∈ Waff

such that wF = τ(λ∨)F. Then τ(λ∨) = wt for some t ∈ Ω, so l(τ(λ∨)) = l(w). This
is the number of hyperplanes Hα,k between F and F + λ∨, and the number of these
is counted as in Proposition 48. �

Lemma 19 We have

ω∨k + sk(ω
∨
k ) =

∑
j 6=k

(−〈αj, α∨k 〉)ω∨j .

This is an element of P∨dom. Moreover∑
j 6=k

(−〈αj, α∨k 〉)l(τ(ω∨j )) = l

(
τ

(∑
j 6=k

(−〈αj, α∨k 〉)ω∨j

)
sk

)
−1 = 2l(τ(ω∨k ))−2. (65)

Proof We have
sk(ω

∨
k ) = ω∨k − 〈αk, ω∨k 〉α∨k = ω∨k − α∨k .

Now expanding α∨k =
∑
cjε
∨
j , using (64) we have cj = 〈αj, α∨k 〉.

ω∨k + sk(ω
∨
k ) = 2ω∨k − α∨k = 2ω∨k −

r∑
j=1

〈αj, α∨k 〉ω∨j = −
∑
j 6=k

〈αj, α∨k 〉ω∨j , (66)

since 〈αk, α∨k 〉 = 2. The coefficients −〈αj, α∨k 〉 are all nonnegative, so this is in P∨dom.
By Lemma 17 ∑

j 6=k

(−〈αj, α∨k 〉)l(τ(ω∨j )) = l

(∑
j 6=k

−〈αj, α∨k 〉 τ(ω∨j )

)
.

Now αk is orthogonal to ω∨j when k 6= j, and it follows from Proposition 58 that

l

(
τ

(∑
j 6=k

(−〈αj, α∨k 〉)ω∨j

)
sk

)
= l

(∑
j 6=k

−〈αj, α∨k 〉 τ(ω∨j )

)
+ 1.

It is well-known that ρ is the sum of the fundamental weights ωi defined by 〈α∨i , ωj〉 =
δij, so 〈ρ, α∨k 〉 = 1. (Bump, Lie Groups , Proposition 21.16.) Using Lemma 18,(∑

j 6=k

−〈αj, α∨k 〉 τ(ω∨j )

)
= 〈2ρ, ω∨k + sk(ω

∨
k )〉 = 〈2ρ, 2ω∨k − αk〉 =

2 〈2ρ, ω∨k 〉 − 2 〈ρ, α∨k 〉 = 2l(τ(ω∨k ))− 2.

�

91



Lemma 20 If λ∨ ∈ P∨ is orthogonal to αk, then Tk and Tτ(λ∨) commute.

Proof We may write λ∨ as the difference of two dominant coweights that are orthog-
onal to αk and hence reduce to the case where λ∨ is dominant. By Proposition 58
we have l(τ(λ∨)sk) = l(τ(λ∨)) + 1. Since sk(λ

∨) = λ∨ − 〈α, λ∨〉α∨k = λ∨ we have

skτ(λ∨)s−1
k = τ(sk(λ

∨)) = τ(λ∨)

so τ(λ∨)sk = skτ(λ∨), and l(skτ(λ∨)) = l(τ(λ∨)sk) = λ(τ(λ∨)) + 1 also. Therefore
by Proposition 59 we have

TkTτ(λ∨) = TskTτ(λ∨) = Tskτ(λ∨) = Tτ(λ∨)Tsk = Tτ(λ∨)Tk.

�

Lemma 21 We have

Tτ(ω∨k )skTτ(ω∨k ) = Tk

(∏
j 6=k

T
−〈αj ,α∨k 〉
τ(ω∨j )

)
. (67)

Proof By Lemma 19

τ(ω∨k )skτ(ω∨k )s−1
k = τ(ω∨k )τ(sk(ω

∨
k )) = τ

(∑
j 6=k

(−〈αj, α∨k 〉)ω∨j

)
so

τ(ω∨k )skτ(ω∨k ) = τ

(∑
j 6=k

(−〈αj, α∨k 〉)ω∨j

)
sk. (68)

By Lemma 19

l

(
τ

(∑
j 6=k

(−〈αj, α∨k 〉)ω∨j

)
sk

)
= 2l(τ(ω∨k ))− 1. (69)

Furthermore by Proposition 59 we have

Tτ(
P
j 6=k(−〈αj ,α∨k 〉)ω∨j )sk = Tτ(

P
j 6=k(−〈αj ,α∨k 〉)ω∨j )Tsk = Tk

(∏
j 6=k

T
−〈αj ,α∨k 〉
τ(ω∨j )

)
.

We have used the fact that Tτ(ω∨j )Tk = TkTτ(ω∨j ) when j 6= k by Lemma 20 to move
the Tk across the product.
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On the other hand by Proposition 58 we have

l(τ(ω∨k )sk) = l(τ(ωk))− 1.

By (69) the length of (68) is 2l(τ(ωk))− 1, so Proposition 59 implies that

Tτ(ω∨k )skτ(ω∨k ) = Tτ(ωk)skTτ(ω∨k ).

Invoking (68) one more time gives (67). �

Theorem 22 Let d ∈ P∨ and let 1 6 k 6 r. Then θ(d) − θ(skd) is divisible by
1− θ(−α∨k ) in the ring Θ and

θ(d)Tk − Tkθ(sk(d)) = Tkθ(d)− θ(sk(d))Tk = (q − 1)
θ(d)− θ(sk(d))

1− θ(−α∨k )
. (70)

Proof It is enough to show

θ(d)Tk − Tkθ(sk(d)) = (q − 1)
θ(d)− θ(sk(d))

1− θ(−α∨k )
. (71)

Indeed, if this is known, then replacing d by sk(d) and multiplying both sides by −1
gives another expression for the right-hand side, namely Tkθ(d)− θ(sk(d))Tk.

First suppose that (71) is true for d and d′. Then since θ is a homomorphism
from P∨ to H(W̃aff)× we have

θ(d+ d′)Tk − Tkθ(sk(d+ d′)) =

θ(d)[θ(d′)Tk − Tkθ(sk(d′)] + [θ(d)Tk − Tkθ(sk(d))]θ(sk(d
′)).

Substituting (71) and simplifying we see that it is true for θ(d + d′). A similar
argument shows that (71) for d implies the same formula for −d. Therefore we are
reduced to the case where d is chosen from a basis of P∨.

We have

skω
∨
i = ω∨i − 〈αk, ω∨i 〉α∨k =

{
ω∨k − α∨k if i = k,
0 if i 6= k.

Therefore
θ(ω∨i )− θ(skω∨i )

1− θ(−α∨k )
=

{
θ(ω∨k ) if i = k,
0 if i 6= k.

We must therefore show that

θ(ω∨i )Tk − Tkθ(sk(ω∨i )) =

{
θ(ω∨k ) if i = k,
0 if i 6= k.

(72)
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Let us first consider the case where i 6= k. In this case sk(ω
∨
i ) = ω∨i , by Lemma 20

Tk and θ(ω∨i ) commute, so (72) is satisfied.
Next let us consider the case where i = k. We will prove

Tkθ(sk(ω
∨
k )) = q1−l(ω∨k )/2Tτ(ω∨k )sk . (73)

By Lemma 19 sk(ω
∨
k ) =

(
−
∑

j 6=k 〈αj, α∨k 〉ω∨k
)
− ω∨k is expressed as a difference

between two dominant elements of P∨. Therefore

θ(sk(ω
∨
k )) =

∏
j 6=k

(
q−l(ω

∨
j )/2Tτ(ω∨j )

)−〈αj ,α∨k 〉
ql(ωk)/2T−1

τ(ω∨k ).

The factors on the right-hand side commute with each other since the image of τ(P∨)
is commutative. (See Lemma 17.) Using Lemma 19 we may rewrite this

θ(sk(ω
∨
k )) = q1−l(ω∨k )/2

∏
j 6=k

T
−〈αj ,α∨k 〉
τ(ω∨j ) T−1

τ(ω∨k ).

Using (67) we obtain (73).
Now by Proposition 58 we have l(τ(ω∨k )sk) = l(τ(ω∨k ))−1 and so by Proposition 59

we have Tω∨k skTk = Tω∨k . Therefore (using

Tkθ(sk(ω
∨
k )) = q1−l(ω∨k )/2Tτ(ω∨k )T

−1
k = q1−l(ω∨k )/2Tτ(ω∨k )(q

−1Tk + (1− q−1)).

Thus
Tkθ(sk(ω

∨
k ))− θ(ω∨k )Tk = (q − 1)θ(ω∨k ),

proving (72) when i = k. �

Now we may describe the Bernstein-Zelevinsky presentation as follows: it is gen-
erated by the finite Hecke algebra Hq(W ), which is a |W |-dimensional algebra over
C, and by an algebra Θ which is isomorphic to the group algebra of P∨ under a
homomorphism θ : P∨ −→ Θ. These two algebras are subject to the relation (70).

This is a very convenient presentation of Hq(W̃aff). Of course it gives rise to
a presentation of Hq(Waff) in which we restrict ourselves to the subalgebra of Θ
generated by the image of Q∨.

17 The Center of HJ

The Bruhat order is an order on a Coxeter group. We will explain it for the Weyl
group W with simple reflections {s1, · · · , sr}. We recall that if α ∈ Φ+ is a positive
root then there is a reflection rα in the hyperplane perpendicular to α.
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Lemma 22 Let v = si1 · · · sik be a reduced decomposition of v ∈ W , so k = l(v).
Then there exists a j such that

u = si1 · · · ŝij · · · sik (74)

if and only if there exists α ∈ Φ+ such that v(α) ∈ Φ− and u = v.rα.

The “hat” denotes the omission of the factor sij . We note that (74) may not be
a reduced decomposition.
Proof The α ∈ Φ+ such that v(α) ∈ Φ− are listed in Proposition 22. Such a α is
one of siksik−1

· · · sij+1
(αij). Then rα = siksik−1

· · · sij+1
sij(siksik−1

· · · sij+1
)−1 and so

(74) is valid. �

Lemma 23 Suppose that v = si1 · · · sik is a reduced decomposition of v ∈ W , so
k = l(v). Suppose there exists a subsequence {j1, · · · , jl} of {i1, · · · , ik} such that

u = si1 · · · ŝj1 · · · ŝj2 · · · · · · sik .

Then there exists another subsequence {j′1, j′2, · · · } such that

u = si1 · · · ŝj′1 · · · ŝj′2 · · · · · · sik ,

and such that the latter decomposition is reduced.

Proof Using repeated applications of Proposition 15 we may further discard pairs
of elements of the sequence of simple reflections until we obtain a reduced word. �

Let us say that u 6 v in the Bruhat partial order if the following condition is
satisfied. There must be a sequence r1, · · · , rl of reflections such that

l(v) > l(vr1) > l(vr1r2) > · · · > l(vr1 · · · rl)

and u = vr1 · · · rl.

Proposition 60 Let u, v ∈ W and let v = si1 · · · sik be a reduced decomposition.
Then u 6 v if and only if there exists a subsequence {j1, · · · , jl} of {i1, · · · , ik} such
that

u = si1 · · · ŝj1 · · · ŝj2 · · · · · · sik .

If so, we may assume that this decomposition is reduced.
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It is a remarkable fact that this criterion does not depend on the choice of a
reduced decomposition of v.
Proof This follows Lemmas 22 and 23. �

Using affine roots, the Bruhat order may defined for affine Weyl groups, and
Proposition 60 remains valid.

If w ∈ W and

Lemma 24 Let w ∈ W and let d ∈ P∨. Then θ(d)Tw − Twθ(w
−1(d)) lies in the

Θ-submodule of Hq(W̃aff) spanned by u ∈ W with u < w in the Bruhat order.

Proof Write w = si1 · · · sik , a reduced decomposition. Then writing wl = si1 · · · sil
we may write

θ(d)Tw − Twθ(w−1d) =
k∑
l=1

Twl−1
θ(w−1

l−1d)Til · · ·Tik − Twl−1
θ(Tilwl−1d)Til+1

· · ·Tik .

Using the Bernstein relation (70) the l-th term is in

Ti1 · · ·Til−1
ΘTil+1

· · ·Tik .

This is contained in the Θ-submodule of Hq(W̃aff) spanned by u ∈ W with u < w.
�

Theorem 23 The center Z of Hq(W̃aff) equals ΘW , the space of elements of Θ that
are invariant under conjugation by W .

Proof First let us show that the center Z is contained in Θ. Let us write an element
as ∑

w ∈W
d ∈ P∨

c(w, d)wθ(d).

Let w be maximal with respect to the Bruhat order such that some coefficient
c(w, d) 6= 0. If λ∨ ∈ P∨ then

θ(λ∨)wθ(d)θ(λ∨)−1 ≡ wθ(d− w−1(λ∨) + λ∨)

module the Θ-submodule of Hq(W̃aff) spanned by u ∈ W with u < w. Since λ∨

is arbitrary, d − w−1(λ∨) + λ∨ can take on an infinite number of values, which is a
contradiction since only finitely many c(w, d) can be nonzero.
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Therefore Z ⊆ Θ. We must show that an elemen

ζ =
∑
d∈P∨

c(d)θ(d)

of Θ is central if and only if c(d) is constant on W -orbits. We have

Tk

(∑
d∈P∨

c(d)θ(d)

)
−

(∑
d∈P∨

c(sk(d))θ(d)

)
Tk =

q − 1

1− θ(−α∨k )

∑
[c(d)− c(skd)]θ(d).

From this, it is clear that if c(d) is constant on W -orbits then ζ is central. Conversely,
suppose that ζ is central. Then with η =

∑
d∈P∨ [c(d)− c(sk(d))] θ(d) we have

Tkη =
q − 1

1− θ(−α∨k )
η.

Since Θ∩TkΘ = 0 we get η = 0. Therefore ζ is invariant under sk. Since this is true
for every simple reflection, ζ ∈ ΘW . �

18 Principal Series Representations: Finite Field

Let G be a split reductive group over F = Fq. Let B be a Borel subgroup. Write
B = TU where T is a split maximal torus, and U its unipotent radical.

We have functors:

Representations
of T (F )

−→
←−

Representations
of G(F )

These are parabolic induction and its adjoint, the Jacquet functor . Since F is finite,
we may restrict ourselves to finite-dimensional representations of these finite groups.

To define parabolic induction, begin with a module V of T (F ). Extend it to a
character of B(F ) by letting U(F ) be in the kernel, and induce this module to G(F ).
We will denote this induced module IndGB(V )

Let W be a module of G(F ). The Jacquet module in this case may be defined to
beWU(F ), the space of U(F )-invariants. Since T normalizes U , this is a U -submodule.
We will denote the Jacquet module by J(T ).

The Jacquet module will have to be defined differently when F is a local. We
could alternatively have defined it to be the quotient W/WU where WU is the vector
subspace of V generated by elements of the form v−π(u)v with v ∈ V and u ∈ U(F ).
This definition is correct for local fields F . But if F is finite, then W splits as a direct
sum WU ⊕WU(F ), so the two definitions are equivalent.
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Proposition 61 Let W be a G(F )-module and V a T (F )-module. Then

HomG(F )(W, IndGB(V )) ∼= HomT (F )(J(W ), V ).

Proof By ordinary Frobenius reciprocity, we have

HomG(F )(W, IndGB(V )) ∼= HomB(F )(W,V ).

Since U(F ) acts trivially on W , any B(F )-equivariant map W −→ V annihilates an
element of the form v−π(u)v, hence factors through the canonical map W → J(W ).

�

Since T (F ) is abelian, its irreducible modules are one-dimensional. Let χ be a
character of T (F ). An important question is when IndGB(χ) is irreducible. They Weyl
group W = N(T (F ))/T (F ) acts on T (F ) and hence on its characters by conjugation.
Let us say that χ is regular if its stabilizer in W is trivial.

For example, if G = GLn then T may be taken to be the diagonal torus, and
there exist characters χ1, · · · , χn such that

χ

 t1
. . .

tn

 =
n∏
i=1

χi(ti).

Then χ is regular if the χi are distinct.

Proposition 62 Let χ and θ be characters of T (F ). Then the dimension of

HomG(F )(IndGB(χ), IndGB(θ))

is the number of w ∈ W such that θ = wχ.

Proof By Mackey theory, the dimension is the dimension of the space of ∆ such
that

∆(bgb′) = θ(b)∆(g)χ(b′), b, b′ ∈ B(F ).

Such a function is determined on its values on the B(F )-double cosets, which have
representatives in N(F ), one for each Weyl group element w ∈ W . Chosing a
representative ω in N(T (F )) of W , we must have

∆(ω) = ∆(tω(ω−1tω)−1) = θ(t) ·∆(ω) · wχ(t)−1, t ∈ T (F ).

Thus we must have θ = wχ, or else ∆ vanishes identically on the double coset.
Conversely if this is true, then it is easy to see that the double coset B(F )ωB(F )
does support such a function ∆. �
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Theorem 24 A necessary and sufficient condition for IndGB(χ) to be irreducible is
that χ be regular.

This is not correct if F is a local field. For G = GLn, if F is local, the condition
that IndGB(χ) be irreducible is that no χi(t) = χj(t)|t|±1. This is a major difference
between the finite and nonarchimedean local cases.
Proof A necessary and sufficient condition is that EndG(F )(IndGB(χ)) is one-dimensional,
and by Proposition 62 this is true if and only if χ has trivial stabilizer in W , that is,
is regular. �

Theorem 25 If χ is regular, then IndGB(χ) is isomorphic to IndGB(wχ) for any w ∈
W .

Proof This follows from the existence of an intertwining operator, a consequence
of Proposition 62. �

We may construct an explicit intertwining operatorM(w) : IndGB(χ) −→ IndGB(wχ)
as follows. Interpret IndGB(χ) as the space of functions G(F ) −→ C such that

f(bg) = χ(b)f(g).

Let
M(w)f(g) =

∑
u∈U(F )∩wU−(F )w−1

f(w−1ug). (75)

Theorem 26 If f ∈ IndGB(χ) then M(w)f ∈ IndGB(wχ). The map M(w) commutes
with the action of G(F ).

Proof To check that M(w)f ∈ IndGB(wχ), note that if t ∈ T (F ) then since t
normalizes U ∩ wU−w−1 we have

M(w)f(tg) =
∑

u∈U∩wU−w−1

f(w−1tw · w−1ug) = wχ(t)M(w)f(g).

We need to check that M(w)f(ug) = M(w)f(g) for u ∈ U(F ). To this end, we note
that U(F ) = (U(F )∩wU−(F )w)(U(F )∩wU(F )w−1) by Proposition 30. The value of
f(w−1ug) is unchanged if we alter u on the left by an element of U(F )∩wU(F )w−1.
Thus we could also write

M(w)f(g) =
∑

u∈(U(F )∩wU(F )w−1)\U(F )

f(w−1ug). (76)

From this it is clear that M(w)f is left U(F )-invariant. �
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Lemma 25 Assume l(w1w2) = l(w1) + l(w2). We have{
α ∈ Φ+|(w1w2)−1α ∈ Φ−} =

{
α ∈ Φ+|w−1

1 α ∈ Φ−} ∪
{
w1(α) ∈ Φ+|w−1

2 α ∈ Φ−
}
.

The union is disjoint. Multiplication induces a bijection

w1(U ∩ w2U−w
−1
2 )w−1

1 × (U ∩ w1U−w
−1
1 ) −→ U ∩ (w1w2)U−(w1w2)−1.

Proof The first part we leave to the reader. The first assertion in (ii) follows from
(i) since

U ∩ wU−w−1 =
∏

{α∈Φ+|w−1(α)∈Φ−}

xα(F ).

That is, the multiplication map from the Cartesian product on the right to U ∩
wU−w

−1 is bijection, and the product may be taken in any fixed order.

Mw1w2f(g) =
∑

u∈U∩(w1w2)U−(w1w2)−1

f((w1w2)−1ug) =

∑
u1∈U∩w1U−w

−1
1

∑
u2∈w1(U∩w2U−w

−1
2 )w−1

1

f(w−1
2 w−1

1 u2u1g) =

∑
u1∈U∩w1U−w

−1
1

∑
u2∈U∩w2U−w

−1
2

f(w−1
2 w−1

1 w1u2w
−1
1 u1g) =

∑
u1∈U∩w1U−w

−1
1

∑
u2∈U∩w2U−w

−1
2

f(w−1
2 u2w

−1
1 u1g) = Mw1 ◦Mw2f(g).

�

Theorem 27 If l(ww′) = l(w) + l(w′) then M(w1) ◦M(w2) = M(w1w2).

Proof Using the Lemma,

Mw1w2f(g) =
∑

u∈U∩(w1w2)U−(w1w2)−1

f((w1w2)−1ug) =

∑
u1∈U∩w1U−w

−1
1

∑
u2∈w1(U∩w2U−w

−1
2 )w−1

1

f(w−1
2 w−1

1 u2u1g) =

∑
u1∈U∩w1U−w

−1
1

∑
u2∈U∩w2U−w

−1
2

f(w−1
2 w−1

1 w1u2w
−1
1 u1g) =

∑
u1∈U∩w1U−w

−1
1

∑
u2∈U∩w2U−w

−1
2

f(w−1
2 u2w

−1
1 u1g) = Mw1 ◦Mw2f(g).

�
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Exercise 17 Suppose that χ is regular. Show that

J(IndGB(χ)) =
⊕
w∈W

wχ.

19 The L-group

References for the notion of the L-group:

• Langlands, Problems in the theory of automorphic forms and related papers,
available at http://publications.ias.edu/rpl/series.php?series=51

• Borel, A. Automorphic L-functions. Automorphic forms, representations and
L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore.,
1977), Part 2, pp. 27–61, Proc. Sympos. Pure Math., XXXIII, Amer. Math.
Soc., Providence, R.I., 1979.

References for root data and reductive groups:

• Springer, T. A. Reductive groups. Automorphic forms, representations and
L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore.,
1977), Part 1, pp. 3–27, Proc. Sympos. Pure Math., XXXIII, Amer. Math.
Soc., Providence, R.I., 1979.

• Demazure, Groupes Réductifs : Déploiements, Sous-Groupes, Groupes-Quotients,
Springer Lecture Notes in Mathematics vol. 153 (1970).

• Borel, and Tits, Groupes rÃductifs. Inst. Hautes Ãtudes Sci. Publ. Math.
No. 27 1965 55–150.

What data are needed to describe a reductive group?
Let us first ignore rationality issues and consider a reductive group G over an

algebraically closed field. Then if T is a maximal torus, the root system Φ lives in
L = X∗(T ), which is a lattice in the vector space V = R⊗X∗(T ).

Discarding the lattice and just considering the root system in V loses some infor-
mation. For example, if G is semisimple, then knowledge of Φ in L determines the
fundamental group, which is isomorphic to P/L, where P is the weight lattice, and
the center of G, which is isomorphic to L/Q, where Q is the root lattice. If we simply
regard Φ as living in the ambient Euclidean space V = R ⊗ L, this information is
lost.
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These considerations lead to the following definition of root data, due to Demazure
and Grothendieck. Let L be a lattice, that is, a free Z-module of finite rank, and let
L∨ be its dual module, defined by a dual pairing 〈 , 〉 : L× L∨ −→ Z that identifies
L∨ with Hom(L,Z). Let there be given in L and L∨ finite sets Φ and Φ∨ of vectors
with a bijection α → α∨ of Φ to Φ∨ subject to conditions that we now describe. If
α ∈ Φ then sα : L∨ −→ L∨ is the reflection sα(v) = v− 〈α, v〉α∨ and sα : L −→ L is
defined by sα(v) = v−〈v, α∨〉α. It is assumed that 〈α, β∨〉 ∈ Z and that 〈α, α∨〉 = 2.

If these conditions are satisfied, then (L,Φ, L∨,Φ∨) are called root data. For
example, taking L = X∗(T ) and L = X∗(T ) the roots and coroots give root data,
and this is exactly the information needed to reconstruct the group G. More data
would be needed to construct G over a field F that is not algebraically closed, but
since we are restricting ourselves to split groups, this is sufficient.

The definition of root data is symmetric, so (L∨,Φ∨, L,Φ) are also root data, and
correspond to a reductive group Ĝ.

If the ground field is not algebraically closed, then further data is needed to
describe G. Since the scope of this course is only split groups, we will ignore these
issues. The group Ĝ(C) is only the connected component of the identity in the
L-group LG, but when G is F -split, it is sufficient for many purposes.

If G is F -split, the group Ĝ(C) is defined as above, and it controls the representa-
tion theory of G(F ). The strongest statement in this direction is the local Langlands
correspondence, and this is outside the scope of this notes. An important special
case is that the spherical representations of G(F ) are parametrized by the semisim-
ple conjugacy classes of Ĝ(C), a statement closely related to the Satake isomorphism
computing the structure of the spherical Hecke algebra. We will come to this later.
At the moment, we will content ourselves with showing that the unramified qua-
sicharacters of T (F ) are parametrized by elements of T̂ (C).

If T is a group, a quasicharacter of T is a homomorphism χ : T −→ C×. If χ is
unitary, then χ is called a character . If T is an abelian locally compact group, it has
a unique maximal compact subgroup K, and it is normal. If T is furthermore totally
disconnected, then K is open. In this case we will call χ unramified if it is trivial on
that subgroup. Thus an unramified quasicharacter of F× is a character that factors
through F×/o× ∼= Z.

Given a torus T over a nonarchimedean local field F , there is a torus T̂ over C
such that the unramified characters of T (F ) are parametrized by the elements or
T̂ (C). For example if

T =


 t1

. . .

tr+1



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is the diagonal torus in GLr+1, then we may take T̂ also to be the diagonal torus
in GLr+1. If t ∈ T and z ∈ T̂ we may write t = (t1, · · · , tn) and z = (z1, · · · , zn)
instead of

t =

 t1
. . .

tn

 , z =

 z1

. . .

zn

 ,

for notational convenience. If z ∈ T̂ then we have a quasicharacter χz of T (F )

defined by χz(t) =
∏
z

ord(ti)
i . Every unramified quasicharacter is of this sort.

In general, let X∗(T ) be the group of rational characters of T , and X∗(T ) the
group of one-parameter subgroups. As we explained in Section 12, both groups are
isomorphic to Zr and come equipped with a dual pairing X∗(T )×X∗(T ) −→ Z that
makes V = R⊗X∗(T ) and V ∗ = R⊗X∗(T ) into dual spaces.

The exercises below will show that the torus T̂ may be chosen so that X∗(T̂ ) ∼=
X∗(T ) and X∗(T̂ ) ∼= X∗(T ). Let Xnr(T (F )) denote the group of unramified charac-
ters of T (F ).

Exercise 18 Show that there is a natural isomorphism Hom(X∗(T ),C×) ∼= Xnr(T (F )).
Indeed, given χ ∈ Xnr(T (F )) associate with χ the homomorphism X∗(T ) −→ C× be the
map that sends the one-parameter subgroup i : Gm −→ T to χ(i($)) for prime element $.

Exercise 19 Show that there is a natural isomorphism Hom(X∗(T̂ ),C×) ∼= T̂ (C). Indeed,
give z ∈ T̂ (C), associate with z the homomorphism X∗(T̂ ) −→ C× be the map that sends
the rational character η ∈ X∗(T̂ ) to η(z) ∈ C×.

Since X∗(T ) and X∗(T̂ ) are identified, it is clear that the unramified characters
of T (F ) are parametrized by the elements of T̂ (C).

20 Intertwining integrals: nonarchimedean fields

The intertwining integrals appear very naturally in the theory of Eisenstein series.
They were introduced into the theory of induced representations of Lie and p-adic
groups by Bruhat around 1956.

Some results, particularly on analytic continuation of the integrals will be stated
without proof. References:

• Casselman, Introduction to Admissible Representations of p-adic Groups , linked
from the class web page. Section 6.4 contains the fundamental results about
the intertwining operators.
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• Casselman, The unramified principal series of p-adic groups. I. The spherical
function. Compositio Mathematica, 40 no. 3 (1980), p. 387-406.

• Bump, Automorphic Forms and Representations only treats GL2 completely,
but many of the important ideas can be understood from that special case.

Let F be a nonarchimedean local field. Let G be a F -split reductive group. Let T be
a maximal F -split torus, and let B be a Borel subgroup containing T . The derived
group G′ is semisimple, and we may let xα : Gm −→ G′ be as in Section 16. We will
denote by K◦ = G′(o) the group generated by the xα(o). It is a maximal compact
subgroup of G(F ). We have the Iwasawa decomposition

G(F ) = B(F )G(o).

We still have functors of parabolic induction and the Jacquet module. However
parabolic induction requires a “shift” by δ1/2, where δ is the modular quasicharacter
of B(F ). Thus δ : B(F ) −→ C is defined so that if dµL(b) is a left Haar-measure
then δ(b) dµL(b) is a right Haar-measure. We have

δ(tu) =
∏
α∈Φ+

|tα|, t ∈ T (F ), u ∈ U(F ).

For example, for G = GL(3),

δ

 t1 ∗ ∗
t2 ∗

t3

 = |tα1| · |tα2| · |tα1+α2| =
∣∣∣∣t1t2
∣∣∣∣ ∣∣∣∣t2t3

∣∣∣∣ ∣∣∣∣t1t3
∣∣∣∣ = |t21t−2

3 |.

Now let χ be an unramified quasicharacter of T (F ). We define V (χ) to be the space
of smooth (locally constant) functions f : G(F ) −→ C that satisfy

f(bg) = (δ1/2χ)(b)f(g), b ∈ B(F ). (77)

The group G acts on V (χ) by right translation:

π(g)f(x) = f(xg). (78)

The condition that f is smooth is equivalent to assuming that π(k)f = f for k in
some open subgroup of G(F ). Thus

V (χ) =
⋃
K

V (χ)K
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as K runs through the open subgroups of G(F ). We recall that V (χ)K is a HK-
module, where HK is the convolution ring of K-biinvariant functions.

In view of (3) and (78), if φ ∈ HJ and f ∈ V (χ)K then

(φ · f)(x) = π(φ)f(x) =

∫
G

φ(g)f(xg) dg. (79)

We will be particularly interested in V (χ)J where J is the Iwahori subgroup.
One reason for including the factor δ1/2 in the definition of the induced repre-

sentation is that if χ is unitary, then π(χ) is a unitary representation. Indeed if

Ind
G(F )
B(F )(δ) is the space of functions that satisfy

f(bg) = δ(b)f(g)

then by Lemma 2.6.1 of Bump, Automorphic Forms and Representations we may
define a linear functional I on Ind

G(F )
B(F )(δ) that is invariant under right-translation by

I(f) =

∫
K◦
f(k) dk.

Thus if f1, f2 ∈ V (χ), and if χ is unitary, then f1f2 is in the space Ind
G(F )
B(F )(δ) and so

〈f1, f2〉 =

∫
K◦
f1(k)f2(k) dk

is an inner product, making the representation V (χ) unitary. It is possible for V (χ)
to be unitary even if χ is not, owing to the existence of complementary series.

Another reason for the normalization factor is so that the intertwining integrals
map V (χ) −→ V (wχ). The intertwining integrals may be defined by the analogs of
either (75) or (76). That is:

M(w)f(g) =

∫
U(F )∩wU−(F )w−1

f(w−1ug) du =∫
(U(F )∩wU(F )w−1)\U(F )

f(w−1ug) du. (80)

The two formulas are equivalent due to the fact that

U(F ) = (U(F ) ∩ wU−(F )w)(U(F ) ∩ wU(F )w−1)

by Proposition 30.
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Proposition 63 The integral (80) is convergent if∣∣∣∣χ(iα( $
$−1

))∣∣∣∣ < 1 (81)

for all positive roots α such that w−1α ∈ Φ−. If l(ww′) = l(w)+l(w′) then M(ww′) =
M(w) ◦M(w′).

Proof The statement that l(ww′) = l(w) + l(w′) then M(ww′) = M(w) ◦M(w′)
is formally similar to the finite field case: one simply replaces the summations by
integrations. Using this, the convergence statement reduces to the case where w = sα
for a simple root α. In that case, U(F ) ∩ wU(F )w−1 = iα(F ), and the integral is∫

F

f

(
sαiα

(
1 v

1

)
g

)
dv, sα = iα

(
−1

1

)
If v 6= 0, then(

−1
1

)(
1 v

1

)
=

(
1 −v−1

1

)(
v−1

v

)(
1
v−1 1

)
.

Thus the integral equals∫
F

f

(
iα

(
1 −v−1

1

)
iα

(
v−1

v

)
iα

(
1
v−1 1

)
g

)
dv =∫

F

|v|−1χ

(
iα

(
v−1

v

))
f

(
iα

(
1
v−1 1

)
g

)
dv.

The factor |v|−1 is from δ1/2. If v is sufficiently large, the value of f is constant since
f is locally constant. Therefore absolute convergence depends on the convergence of∫

|v|>C
|v|−1

∣∣∣∣χ(iα( v−1

v

))∣∣∣∣ dv,
where C is a nonzero constant. The absolute value of χ is constant on the sets
$−ko×, which have volume qk(1 − q−1). The factor |v|−1 = q−k on this set, so we
need the convergence of ∑

|qk|>C

∣∣∣∣χ(iα( $k

$−k

))∣∣∣∣k.
The convergence of this geometric series follows from (81). �

106



Lemma 26 If t ∈ T (F ) and w ∈ W then the Jacobian of the transformation

u 7→ tut−1

of U(F ) ∩ wU−(F )w−1 is
δ1/2(t)

δ1/2(w−1tw)
.

Proof We have

U(F ) ∩ wU−(F )w−1 =
∏

α ∈ Φ+

w−1(α) ∈ Φ−

xα(F ).

We have txα(v)t−1 = xα(tαv), so the Jacobian in question is∏
α ∈ Φ+

w−1(α) ∈ Φ−

|tα|. (82)

Now

δ1/2(w−1tw) =
∏
α∈Φ+

|(w−1tw)α| =
∏
α∈Φ+

|tw(α)| =
∏

α ∈ Φ+

w−1α ∈ Φ+

|tα|
∏

α ∈ Φ−

w−1α ∈ Φ+

|tα|.

Thus

δ1/2(w−1tw) =

√√√√√√
∏

α ∈ Φ+

w−1α ∈ Φ+

|tα|∏
α ∈ Φ+

w−1α ∈ Φ−
|tα|

,

while δ1/2(t) =

√√√√[∏
α ∈ Φ+

w−1α ∈ Φ+

|tα|

]
·

[∏
α ∈ Φ+

w−1α ∈ Φ−
|tα|

]
and it follows that δ1/2(t)

δ1/2(w−1tw)

equals (82). �

Proposition 64 If M(w)f is convergent, then M(w)f ∈ V (wχ).

Proof In order to show that one proceeds as follows. If t ∈ T (F ) we can write

M(w)f(tg) =

∫
U(F )∩wU−(F )w−1

f(w−1utg) du =∫
U(F )∩wU−(F )w−1

f(w−1tw · w−1(t−1ut)g) du =

δ1/2(w−1tw) · wχ(t)

∫
U(F )∩wU−(F )w−1

f(w−1(t−1ut)g) du.
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We make a variable change u 7→ tut−1 and by the Lemma the Jacobian of this map
is δ1/2(t)/δ1/2(w−1tw). Therefore we obtain (δ1/2 · wχ)(t)M(w)f(g), as required. �

Although the intertwining integrals are not convergent for all χ, even when they
are not convergent we may make sense of the integrals more generally as follows.
Let us organize the quasicharacters of T (F ) into a complex analytic manifold X

as follows. First, the unramified characters, we have seen, are, by Exercise 18,
Xnr(T (F )) ∼= Hom(X∗(T ),C×) which is a product of copies of C×. This is thus a
connected complex manifold Xur. If we fix a (not necessarily unramified) character
χ0, then we may consider χχ0 with χ ∈ Xnr(T (F )) to vary though a copy of Xur.
Thus X is a union (over cosets of the unramified characters) of copies of Xur, and is
therefore a complex analytic manifold.

Let Xreg be the set of regular characters in X. It is an open set, the regular set .
The complement Xsing is the singular set .

Now we may consider the disjoint union

V =
⋃
χ∈X

V (χ).

By a section we mean a function X −→ V, to be denoted χ 7→ fχ such that if χ ∈ X

then fχ ∈ V (χ). We would like to define the notion of an analytic section. First, let
us say that the section is flat if fχ|K◦ is constant on each connected component of
X. The flat sections are analytic. Moreover since X is a complex analytic manifold,
we have a notion of analytic and meromorphic functions on X. We say that a section
is analytic (resp. meromorphic) if it is a linear combination of flat sections with
analytic coefficients.

The intertwining operators do not necessarily take flat sections to flat sections,
but they do take analytic sections to meromorphic sections. The poles in the com-
plement of the regular set: that is, if fχ is an analytic section, then M(w)fχ is
meromorphic, and analytic on Xreg.

We now come to a major difference between the finite field case and the local
field case. Whereas in the finite field case, the reducible places of the principal series
were when χ was not regular, regularity in the local field case happens at shifts of
the singular set. Nevertheless something interesting does happen where regularity
fails.

Let us see this at work when G = GL2. Let

χ

(
y1

y2

)
= χ1(y1)χ2(y2)
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and consider the intertwining integral M(w0) : V (χ) −→ V (wχ), where w0 =(
1

−1

)
is the long Weyl group element. If χ1 = χ2, then M(w0) has a pole.

In this case, V (χ) = V (wχ), and this module is irreducible. There is only one in-
tertwining operator V (χ) −→ V (wχ) = V (χ), and this is M(1). If both M(w0) and
M(1) were analytic, there would be two, and one is “not needed” so it has a pole.

However the Jacquet module at this special value shows some interesting behav-
ior. The Jacquet module J(V ) of a smooth G(F )-module V is

J(V ) = V/VU , VU = 〈v − π(u)v|v ∈ V, u ∈ U(F )〉 .

It is an T (F )-module, and if V = V (χ) where χ is regular, then

J(V (χ)) =
⊕
w∈W

δ1/2 · wχ.

The Jacquet module is an exact functor and is an important tool in the representation
theory of p-adic groups. We refer to the references of Casselman and Bump for further
information.

In the GL2 case, if χ is regular, the last formula reduces to

J(V (χ)) = δ1/2χ⊕ δ1/2 · w0χ.

When χ = w0χ, the Jacquet module V (χ) becomes indecomposable. It has two
isomorphic composition factors, both δ1/2χ, and sits in a short exact sequence:

0 −→ δ1/2χ −→ J(V (χ)) −→ δ1/2χ −→ 0.

However the irreducible submodule is not a direct summand, and this exact sequence
does not split.

The reducibility of the principal series is when χ1χ
−1
2 (t) = |t| or χ1χ

−1
2 (t) = |t|−1.

In the general case, V (χ) will be reducible if χ(hα∨($)) = q±1 for some coroot
α∨, and will be maximally reducible if χ is in the W -orbit of δ1/2.

21 The Formula of Gindikin and Karpelevich

The original formula of Gindikin and Karpelevich was for the archimedean case. The
nonarchimedean case (which is our concern here) is actually due to Langlands. A
convenient reference is the paper of Casselman cited below.
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• S. Gindikin and F. Karpelevich, Plancherel measure for symmetric Riemannian
spaces of non-positive curvature. (Russian) Dokl. Akad. Nauk SSSR 145 1962
252–255.

• R. Langlands, Euler products. A James K. Whittemore Lecture in Mathemat-
ics given at Yale University, 1967. Yale University (1971).

• Casselman, The unramified principal series of p-adic groups. I. The spherical
function. Compositio Math. 40 (1980), no. 3, 387–406.

With notations as in the previous section, we assume that χ is an unramified regular
character of T (F ). Let z ∈ T̂ (C) such that χ = χz.

Let φ◦ = χφ◦ be the standard spherical vector in V (χ). Thus

φ◦(bk) = (δ1/2χ)(bk), b ∈ B(F ), k ∈ G(o).

Theorem 28 We have
M(w)χφ◦ = cw(χ)

wχφ◦

where

cw(χ) =
∏

α ∈ Φ+

w(α) ∈ Φ−

1− q−1zα

1− zα
.

Proof (Sketch) We know that M(w)φ◦ is a spherical vector in V (wχ). It is thus
a constant multiple of

wχφ◦. To determine the constant it is sufficient to evaluate at
the identity. Therefore it is sufficient to prove

M(w)χφ◦(1) = cw(χ).

Using the fact that M(w)M(w′) = M(ww′) when l(ww′) = l(w) + l(w′), we reduce
to the case where w = sα is a simple reflection. Thus we must show∫

F

φ◦
(
iα

(
−1

1

)
iα

(
1 x

1

))
dx =

1− q−1zα

1− zα

when α is a simple reflection. This computation takes place entirely in the subgroup
iα SL2(F ), and so we reduce to the rank one case.

If x ∈ o then iα

(
−1

1

)
iα

(
1 x

1

)
∈ G(o) and the integrand equals 1. Thus

we have a contribution of 1.
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If x 6∈ o let x ∈ $−ko×. Then(
−1

1

)(
1 x

1

)(
1
−x−1 1

)
=

(
x−1 −1

x

)
.

Since iα

(
1
−x−1 1

)
∈ G(o) we have

φ◦
(
iα

(
−1

1

)
iα

(
1 x

1

))
= φ◦

(
x−1 −1

x

)
= |x|−1z−kα = q−kz−kα

Thus we obtain a contribution of

∞∑
k=1

q−kz−kα vol($−ko×) = (1− q−1)
∞∑
k=1

zkα = (1− q−1)
zα

1− zα
.

Hence the integral is

1 + (1− q−1)
zα

1− zα
=

1− q−1zα

1− zα
.

�

22 Casselman’s proof of the Macdonald formula

Two fundamental papers are

• Casselman, The unramified principal series of p-adic groups. I. The spherical
function. Compositio Math. 40 (1980), no. 3, 387–406.

• Casselman and Shalika, The unramified principal series of p-adic groups. II.
The Whittaker function. Compositio Math. 41 (1980), no. 2, 207–231.

These make use of the intertwining operators and Iwahori fixed vectors to prove two
fundamental formulas in the representation theory of p-adic groups: the Macdonald
formula for the spherical function, and the Shintani-Casselman-Shalika formula for
the spherical Whittaker function.

We will sketch the proof of the Macdonald formula. Some statements such as
the linear independence of the linear functionals built from the intertwining integrals
will not be verified. For these, see Casselman’s original paper.
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We let G be as in the last section. In this section we will denote by K◦ the
maximal compact subgroup G(o).

Suppose that (π, V ) is an irreducible admissible representation that has aK◦-fixed
vector. Using the Bruhat-Cartan decomposition (Theorem 19) and an involution
based on the Chevalley basis, the argument in Theorem 12 may be generalized to
show that the spherical Hecke HK◦ is commutative. Alternatively, this may be
deduced from the structure of the Iwahori-Hecke algebra HJ . The commutativity of
HK◦ implies that that V ◦ = V K◦ is at most one-dimensional. If this is true, then we
say that V is spherical .

Proposition 65 If (π, V ) is spherical so is (π̂, V̂ ).

Proof If V K◦ is one-dimensional, then so is V̂ ◦ = V̂ K◦ , since we may construct a
K◦-invariant linear functional on V by taking a linear functional that is nonzero on
V K◦ but which vanishes on every other K◦-isotypic part. (See Proposition 9.) �

If (π, V ) is any irreducible admissible representation, and if v ∈ V , v̂ ∈ V̂ then
the function σ(g) = 〈π(g)v, v̂〉 is called a matrix coefficient . If v◦ and v̂◦ are spherical
vectors (that is, elements of V ◦ and V̂ ◦) then

Γπ(g) = 〈π(g)v◦, v̂◦〉

is called the spherical function. It is determined up to constant multiple, and we
want to normalize it so that Γπ(1) = 1.

It may be shown that every spherical representation is a subquotient of V (χ) for
some unramfied quasicharacter χ of T (F ). If V (χ) is irreducible, then it is spherical,
for it contains the vector

φ◦(bk) = (δ1/2χ)(b), b ∈ B(F ), k ∈ K◦.

Proposition 66 Suppose that π = V (χ) where χ is unramified, and that V (χ) is
irreducible. Then

Γπ(g) =
1

vol(K◦)

∫
K◦
φ◦(kg) dk. (83)

With this normalization, Γπ(1) = 1.
Proof Define a linear functional on V (χ) by

L(φ) =
1

vol(K◦)

∫
K◦
φ(k) dk.

This functional is clearly K◦-invariant, and L(π(g)φ◦) is the described function. �
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For the rest of this section, we will assume that χ is unramified and regular, and
that V (χ) is irreducible.

We call t ∈ T (F ) dominant if for every positive root α we have tα ∈ p. It is
sufficient to check this when α is a simple root. For example, suppose that G = GLn
and that

t =


t1

t2
. . .

tn

 .

Then the condition is that ti/ti+1 ∈ o.
The dimension of V (χ)J is |W |. We may exhibit a basis as follows.

Lemma 27 Choose a set of representatives for w for W = N(T (F ))/T (F ) that are
in K◦. Then

G(F ) =
⋃
w

B(F )wJ (disjoint).

Proof We have K◦ =
⋃
JwJ (disjoint). Using the Iwahori factorization U =

B(o)U−(p). The statement follows since B(o) ⊆ B(F ) while U−(p)w ⊆ wJ . �

Proposition 67 The dimension of V (χ)J is |W |. A basis consists of the functions

φw(bk) =

{
δ1/2χ(w) if k ∈ Jw−1J
0 otherwise,

when b ∈ B(F ), k ∈ K◦.

Proof This is clear from the previous Lemma. �

If w ∈ W , define a linear functional on V (χ)J by Λw(φ) = M(w)φ(1).

Proposition 68 (Casselman) The linear functionals Λw are linearly independent.

Proof We will not prove this, but refer to the first of Casselman’s papers cited
above (discussion before Proposition 3.7). �

By the last two propositions we may find a basis fw of V (χ) indexed by w ∈ W
such that Λwfw′ = δw,w′ (Kronecker δ). This is the Casselman basis . The Casselman
basis is generally difficult to compute; that is, if we write fw as a linear combination
of the φw, the transition matrix will be upper triangular in the Bruhat order, and but
some of the coefficients will be very complicated. However Casselman observed that
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one element of the basis is computable, and remarkably, this gives enough information
for applications.

We will denote by w0 the long element of W .

Lemma 28 (Casselman) We have fw0 = φw0.

Proof Using the Iwahori factorization, the support B(F )w0J of φw0 is contained in
the big Bruhat cell B(F )w0B(F ). If v ∈ W then

Λvφw0 =

∫
U(F )∩vU−(F )v−1

φw0(v−1u) du.

If v 6= w0 then v−1u ∈ B(F )v−1B(F ) is never in the big cell B(F )w0B(F ). Therefore
Λvφw0 = 0. On the other hand if u = w0, then v−1u = w0u ∈ B(F )w0J if and only
if u ∈ U(o). We are normalizing the Haar measure on U(F ) so that the volume of
U(o) is 1, and therefore Λw0φw0 = 1. We see that Λvφw0 = δv,w0 and so φw0 = fw0 . �

Proposition 69 Let t be dominant, and define

Ft(g) =

∫
U(o)

φ◦(gut) du.

Then Ft ∈ V (χ)J .

Proof Since the function g 7−→ φ◦(gut) is in V (χ) for every u, t it is sufficient to
show that this function is fixed by J . We show that

Ft(g) =

∫
J

φ◦(gkt) dk. (84)

Indeed, we may use the Iwahori factorization and write∫
J

φ◦(gkt) dk =

∫
U(o)

∫
T (o)

∫
U−(p)

φ◦(guu−at) du− da du.

Since t is dominant, if a ∈ T (o) and u− ∈ U−(p) we have t−1au−t ∈ T (o)U−(p) ⊆ K◦

and so we may discard the integrals over u−(p) and T (o). This proves (84), and the
statement follows. �

Proposition 70 We have

Ft =
∑
w∈W

cw(t) (δ1/2 · wχ)(t)fw. (85)
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Proof Since Ft is an Iwahori-fixed vector, there exist constants R(w, t) such that

Ft =
∑
w

R(w, t) fw.

By definition of the fw we may compute R(w, t) by applying M(w) and evaluating
at 1. Thus

R(w, t) = M(w)Ft(1) =

∫
U(F )∩w−1U−(F )w

∫
U(o)

φ◦(w−1uu1t) du1 du.

Interchanging the order of integration and making a variable change, we may elimi-
nate the u1 integration and we find that

R(w, t) =

∫
U(F )∩w−1U−(F )w

φ◦(w−1ut) du = M(w)φ◦(t) = cw(t) (δ1/2 · wχ)(t)

by the formula of Gindikin and Karpelevich. �

Theorem 29 (Macdonald) Let Q =
∑

w∈W q−l(w), and let π = V (χ). If t ∈ T (F )
is dominant, we have

Γπ(t) =
1

Q

∑
w∈W

w

( ∏
α∈Φ+

1− q−1zα

1− zα
(δ1/2 · w0χ)(t)

)
. (86)

Proof We have ∫
K◦
Ft(k) dk =

∫
K◦

∫
U(o)

φ◦(kut) du dk.

Interchanging he order of integration and making a variable change eliminates the u
integration, so by (83) we have

Γπ(t) =

∫
K◦
Ft(k) dk =

∑
w∈W

aw(χ) (δ1/2 · wχ)(t) (87)

where the constants

aw(χ) =
cw(χ)

vol(K◦)

∫
K◦
fw(k) dk.

In general these are not directly computable due to the complexity of fw, but if
w = w0 then fw0 = φw0 by Lemma 28

aw0(χ) =
cw0(χ)

vol(K◦)

∫
K◦
φw0(k) dk =

( ∏
α∈Φ+

1− q−1zα

1− zα

)
vol(Jw0J)

vol(K◦)
.
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We recall that the volume of JwJ is ql(w). Since K◦ is the disjoint union of the
JwJ , we have

vol(Jw0J) = ql(w0), vol(K◦) =
∑
w∈W

ql(w),
vol(K◦)

vol(Jw0J)
=
∑
w∈W

ql(w)−l(w0).

If w′ = w0w
−1 then l(w)− l(w0) = −l(w′), so vol(K◦)

vol(Jw0J)
= Q. We have proved that

aw(χ) =
1

Q

∏
α∈Φ+

1− q−1zα

1− zα
.

In order to conclude the proof, we note that as a rational function in z, Γw(t)
must be invariant under the action of W . This is because if z is in general position,
then π = V (χ) is irreducible and isomorphic to π′ = V (wχ). Therefore π and π′ have
the same spherical function.

This means that aw(χ)(δ1/2 · wχ)(t) is invariant under the action of W , and since
we know one of these factors, we know them all. Now (86) follows. �

23 Intertwining Operators and Hq(W̃aff)

We consider now the case where G is semisimple and F -split. Let χ denote an
unramified quasicharacter of T (F ), and let other notations be as in the last section.
We will always assume that χ is regular, so that M(w) is defined on V (χ).

If w ∈ W , we will also denote by w an element of N(T (F )) ∩ G(o) representing
the coset of w in W = N(T (F ))/T (F ), and by abuse of notation, we will also denote
that representative as w.

Because we will be working with V (χ) where the character χ of T (F ) is unrami-
fied, none of our formulas will depend on the choice of representative. This is because
the representative is determined by an element of T (o), where χ is trivial. We will
denote by B(o), U(o), T (o), etc. the intersections of B(F ), U(o), T (o) with G(o).

Proposition 71 The dimension V (χ)J is equal to |W |. It has a basis consisting of
the vectors φw defined by

φw(bk) =

{
(δ1/2χ)(b) if k ∈ B(F )w−1J ,
0 otherwise

(88)

for w ∈ W , when k ∈ G(o) and b ∈ B(F ).
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Proof An element of V (χ)J is an element of V (χ) that is right invariant by J . By
(77) an element of V (χ)J is determined by its restriction to a set of representatives
for B(F )\G(F )/J . Using the Iwasawa decomposition, the representatives may be
chosen G(o), so we want representatives for B(o)\G(o)/J . We recall that a set of
representatives for J\G(o)/J may be chosen from W , that is, from T (o)\(N(T (F ))∩
G(o)); this fact follows by pulling the Bruhat decomposition for G(Fq) back to G(o)
under the canonical map G(o) −→ G(Fq).

Let w−1 be such a representative. Using the Iwahori factorization, J = B(o)U−(p),
and by Lemma 9 we have wU−(p)w−1 ∈ J , so

Jw−1J = B(o)w−1J.

There is therefore a unique element of V (χ)J supported on B(F )w−1J . �

It was shown in

• J. D. Rogawski. On modules over the Hecke algebra of a p-adic group. Invent.
Math., 79(3):443–465, 1985.

that one may use the Iwahori Hecke algebra to work with the intertwining integrals.
From Rogawski’s remarks, I believe this idea is due to Bernstein. As we will see, the
Bernstein presentation is particularly useful for this. The same idea is used elsewhere
in the literature, for example:

• Mark Reeder. On certain Iwahori invariants in the unramified principal series.
Pacific J. Math., 153(2):313–342, 1992.

• Thomas J. Haines, Robert E. Kottwitz, and Amritanshu Prasad. Iwahori-
Hecke algebras. http://arxiv.org/abs/math/0309168, 2003.

• Bump and Nakasuji, Casselman’s Basis of Iwahori Vectors and the Bruhat
Order, http://arxiv.org/abs/1002.2996, 2010.

If G is simply-connected, we have seen that N(T (F ))/T (o) ∼= Waff . In general,
N(T (F ))/T (o) may be slightly larger. If G is of adjoint type, it is W̃aff . In general,
there is a lattice L such that Q∨ ⊆ L ⊆ P∨ and N(T (F ))/T (o) is the semidirect
product of L by W . Then L/Q∨ is the fundamental group π1(G). We will write WL

aff

for N(T (F ))/T (o). We will denote by ΘL the image of L in W̃aff

The algebra HJ is the convolution ring of compactly supported J-biinvariant
functions. Then V (χ)J is a module for HJ . We will denote by H(W ) the subring of
functions with support in G(o). These are supported on the double cosets JwJ with
w ∈ W , so this may be identified with the finite-field Hecke algebra with generators
{s1, · · · , sr}.
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Proposition 72 Let α : V (χ)J −→ H(W ) be the map that sends f ∈ V (χ)J to the
function α(f) ∈ H(W ) where

α(f)(g) =

{
F (g−1) if g ∈ G(o),
0 otherwise.

Then α is an isomorphism of left H(W )-modules.

Proof By Proposition 71 the map α is a vector space isomorphism. The action of
H(W ) on itself is by left multiplication (convolution). The action on V (χ)J is by
(79). We have, for f ∈ V (χ)J and φ ∈ H(W )

α(φ · f)(g) = (φ · f)(g−1) =

∫
G

φ(h)f(g−1h) dh =

∫
G

φ(gh)f(h) dh

if g ∈ G(o). Since g ∈ G(o) and φ is supported on G(o) we may restrict the domain
of integration to G(o) and make the variable change h 7→ h−1. The integral is∫

K

φ(gh−1)f(h−1) dg =

∫
K

φ(gh−1)α(f)(h) dh =

∫
G

φ(gh−1)α(f)(h) dh

using the fact that α(f) is supported on G(o). This is φ ·α(f)(g) where now the · is
left convolution. Thus α(φ · f) and φ · α(f) agree on G(o). It is easy to check that
both vanish off G(o). �

Now let w ∈ W and define a map Mw =Mw,z : H(W ) −→ H(W ) by requiring
the diagram:

V (χ)J
M(w)−−−→ V (wχ)Jyα(χ)

yα(wχ)

H(W )
M(w)−−−→ H(W )

to be commutative.
If w ∈ W let us define µ(χ,w) = Mw(1HJ ) ∈ H(W ), where 1HJ is the unit

element in HJ , that is, the characteristic function of J . We note that under the map
α, 1HJ corresponds to the

Proposition 73 We have
Mw(h) = h · µ(χ,w)

for all h ∈ H(W ).
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Proof Mw is a homomorphism of left H(W )-modules. Therefore

Mw(h) =Mw(h · 1) = hMw(1) = h · µ(χ,w).

�

Lemma 29 If l(w1w2) = l(w1) + l(w2) then

µ(χ,w1w2) = µ(χ,w2)µ(w2χ,w1).

Proof By Proposition 63 we have M(w1w2) = M(w1) ◦ M(w2). Therefore this
follows from the commutativity of the diagram:

V (χ)J
M(w2)−−−−→ V (w2χ)J

M(w1)−−−−→ V (w1w2χ)Jyα(χ)

yα(w2χ)

yα(w1w2χ)

H(W ) −−−→
Mw2

H(W ) −−−→
Mw1

H(W )

�

Lemma 30 If w = sk is a simple reflection, then µ(χ,w) = 1
q
Tk + (1 − 1

q
) zαi

1−zαi
,

where z ∈ T̂ (C) corresponds to χ as in Section 19.

Proof Since 1HW and Tk ∈ H(W ) correspond to φ1 and φsk defined by (88) under
the map α, this is equivalent to the formula

M(sk)φ1 =
1

q
φsk +

(
1− 1

q

)
zαk

1− zαk
φ1,

which we will prove. It is sufficient to compare the values of both sides at w ∈ W ,
so what we need to prove is that

(M(sk)φ1)(w) =


(

1− 1
q

)
zαk

1−zαk
if w = 1

1
q

if w = sk
0 otherwise.

We may assume that (81) is satisfied so that the integral is convergent; otherwise,
the result is still true by analytic continuation. Therefore |zαk | < 1. Note that

M(sk)φ1(w) =

∫
F

φ1

(
iαk

(
−1

1 x

)
w

)
dx. (89)
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First suppose that w = 1. If x ∈ o then(
−1

1 x

)
=

(
−1

1

)(
1 x

1

)
,

(
1 x

1

)
∈ J

and φ1

(
isk

(
−1

1 x

))
= 0 by definition. If x 6∈ o then

(
−1

1 x

)
=

(
x−1 −1

x

)(
1
x−1 1

)
,

(
1
x−1 1

)
∈ J

and the integrand equals |x|−1χ

(
iα

(
x−1

x

))
= |x|−1z

ord |x|−1

αk . Therefore

M(sk)φ1(1) =

∫
F−o

|x|−1zord |x|−1

αk
dx.

The contribution for x ∈ o×$−k is |q|−kzkαk times the volume qk(1− q−1) of o×$−k.
Thus

M(sk)φ1(1) = (1− q−1)
∞∑
k=1

zkαi =

(
1− 1

q

)
zαk

1− zαk
.

Next consider the case where w = sk. In that case, the integral is∫
F

φ1

(
iαk

(
1
−x 1

))
dx.

The integrand is in B(F )J if and only if x ∈ p, in which case the value is 1; thus the
integral has value q−1.

It may be checked that there are no other cases where (89) is nonzero. �
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