
EE363 Prof. S. Boyd

Solving semidefinite programs using cvx

There are now many software packages that solve SDPs efficiently, once you’ve put the
problem into a standard format. But writing and debugging code that transforms your
problem to a standard format can be a long and painful task. Fortunately, there are other
codes that allow you to use a natural high level description of an SDP or LMI, and do the
conversion automatically.

You will use cvx, a Matlab-based package for convex optimization that in particular handles
SDPs and LMIs in a convenient way. You should get cvx from the URL

www.stanford.edu/~boyd/cvx/

and install it, after reading Appendix A of the user guide. You certainly don’t need to read
the entire user guide, but you might want to read the first few sections, or skim over it.

Once you have installed cvx, you can start using cvx by entering a cvx SDP specification

into a Matlab script or function, or directly from the command prompt. To delineate cvx

SDP specifications from surrounding Matlab code, they are preceded with the statement
cvx_begin sdp and followed with the statement cvx_end. An SDP specification generally
includes cvx-specific commands for declaring variables, specifying LMI constraints and linear
objective functions.

We’ll illustrate the process with some examples.

Let’s start with the following problem. We want to find a symmetric matrix P ∈ Rn×n that
satisfies the strict LMIs

AT P + PA < 0, P > 0,

where A is a given square matrix. Of course, you know that this can be done if and only if
ẋ = Ax is stable; moreover, when A is stable, you can find such a P by solving the Lyapunov
equation AT P +PA+I = 0. But we’ll solve it using cvx. cvx doesn’t have strict inequalities,
but we can get around that. The inequalities above are homogeneous in P , so we can replace
them with the nonstrict inequalities

AT P + PA ≤ −I, P ≥ I.

(Why?) Now we’re ready for cvx.

Using cvx, this problem can be specified as follows:

cvx_begin sdp

variable P(n,n) symmetric

1

A’*P + P*A <= -eye(n)

P >= eye(n)

cvx_end

We’re assuming here that the matrix A, and the constant n (the size of A) have already been
defined. When Matlab processes this code segment, it forms the SDP and uses a package
called SeDuMi to actually solve it. If a P is found, then P will be an ordinary numerical
matrix, that you can examine. You should check, for example, that it really does satisfy the
two LMIs. If there is no such P , then P’s entries will be set to NaN. You can check the status
of the LMI problem by examining the string cvx_status after the cvx_end command has
been processed.

You should try out this segment on a few examples with A stable, and a few with A not
stable, to see what happens.

You can add a (linear) objective to the problem if you like. For example, to minimize the
TrP over all P that satisfy the the two LMIs, you can use the cvx code

cvx_begin sdp

variable P(n,n) symmetric

minimize(trace(P))

A’*P + P*A <= -eye(n)

P >= eye(n)

cvx_end

Our next example is to find a diagonal matrix D satisfying the inequalities

AT D + DA ≤ −I, D ≥ I.

You can solve this with the cvx code

cvx_begin sdp

variable D(n,n) diagonal

A’*D + D*A <= -eye(n)

D >= eye(n)

cvx_end

After running the code, if cvx_status contains the string Solved, then the variable D is a
diagonal matrix satisfying the Lyapunov inequality. If no such matrix exists, cvx_status
will contain the string Infeasible.

Now suppose you want to find a symmetric matrix P that satisfies

AT

1
P + PA1 < 0, AT

2
P + PA2 < 0, P > 0,

2

where A1 ∈ Rn×n and A2 ∈ Rn×n are given. We first convert these to the nonstrict LMIs

AT

1
P + PA1 ≤ −I, AT

2
P + PA2 ≤ −I, P ≥ I,

and then solve these using the cvx code

cvx_begin sdp

variable P(n,n) symmetric

A1’*P + P*A1 <= -eye(n)

A2’*P + P*A2 <= -eye(n)

P >= eye(n)

cvx_end

Our next example is based on the bounded-real lemma: We seek a quadratic Lyapunov
function V (x) = xT Px that proves the RMS gain of the linear system ẋ = Ax+Bu, y = Cx,
is no more than γ. This reduces to checking whether there exists a P = P T that satisfies

P ≥ 0,

[

AT P + PA + CT C PB

BT P −γ2I

]

≤ 0.

This problem can be solved by the following cvx code:

cvx_begin sdp

variable P(n,n) symmetric

P >= 0

[A’*P + P*A + C’*C P*B; ...

B’*P -gamma^2*eye(m)] <= 0

cvx_end

Here we assume that A, B, C, n, m, and gamma are already defined. After this code segment
is processed, the string cvx_status will tell you whether or not the LMI above is feasible.
If it is, then P will contain a solution to the LMI.

As an extension on this problem, suppose we want to find the smallest possible value of γ,
i.e., the best upper bound on the RMS gain of the linear dynamical system. To do this, we
solve the SDP

minimize ρ

subject to P ≥ 0
[

AT P + PA + CT C PB

BT P −ρI

]

≤ 0,
(1)

with variables P = P T ∈ Rn×n and ρ ∈ R. (The actual gain is given by
√

ρ.)

To solve this SDP, we use the following cvx code:

3

cvx_begin sdp

variable rho

variable P(n,n) symmetric

minimize (rho)

P >= 0

[A’*P + P*A + C’*C P*B; ...

B’*P -rho*eye(m)] <= 0

cvx_end

gamma = sqrt(rho);

Notes:

• If running a cvx script returns an error message, you will need to run cvx_clear to
clear all active cvx data before running any cvx script again.

• In most cases, an LMI has many solutions (i.e., assignments of variable values that
satisfy the LMI). Any of these is a valid solution. If there is a solution, cvx will return
one of them. The particular one returned need not be the same on different platforms
(though it usually is), and can change if you change the problem specification, even in
a way that clearly gives an equivalent problem (for example, by changing the order of
the constraint statements). Of course, this is not an error.

It can also happen that the solution of an SDP is not unique, in which case the same
comments apply.

• If you get an error message that mentions the operator cvx.times, it’s very likely that
you have attempted to form an expression that is not affine in the variables. (For
example, you’ve multiplied two affine expressions.)

• Be careful with symmetry. Remember that LMIs should be in symmetric form.

4

