
Generic Programming�

David R� Mussery

Rensselaer Polytechnic Institute

Computer Science Department

Amos Eaton Hall

Troy� New York �����

Alexander A� Stepanov

Hewlett�Packard Laboratories

Software Technology Laboratory

Post O�ce Box ���	�

Palo Alto� California 	�
�
��	�	

Abstract

Generic programming centers around the idea of abstracting from concrete� ef�

�cient algorithms to obtain generic algorithms that can be combined with di�erent

data representations to produce a wide variety of useful software� For example� a

class of generic sorting algorithms can be de�ned which work with �nite sequences

but which can be instantiated in di�erent ways to produce algorithms working on

arrays or linked lists�

Four kinds of abstraction�data� algorithmic� structural� and representational�

are discussed� with examples of their use in building an Ada library of software

components� The main topic discussed is generic algorithms and an approach to

their formal speci�cation and veri�cation� with illustration in terms of a partitioning

algorithm such as is used in the quicksort algorithm� It is argued that generically

programmed software component libraries o�er important advantages for achieving

software productivity and reliability�

�This paper was presented at the First International Joint Conference of ISSAC��� and AAECC���
Rome� Italy� July ���� ����� �ISSAC stands for International Symposium on Symbolic and Algebraic
Computation and AAECC for Applied Algebra� Algebraic Algorithms� and Error Correcting Codes	� It
was published in Lecture Notes in Computer Science 
��� Springer�Verlag� ����� pp� �
����

yThe 
rst author�s work was sponsored in part through a subcontract from Computational Logic�
Inc�� which was sponsored in turn by the Defense Advanced Research Projects Agency� ARPA order
����� The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the o�cial policies� either expressed or implied� of the Defense Advanced
Research Projects Agency� the U�S� Government� or Computational Logic�� Inc�

i



ii CONTENTS

Contents

� Introduction �

� Classi�cation of Abstractions �

��� Data abstractions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Algorithmic abstractions � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Structural abstractions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Representational abstractions � � � � � � � � � � � � � � � � � � � � � � � � � �

� Algorithmic Abstractions �

� A Generic Partition Algorithm �

� Abstract Algorithm Speci�cation and Veri�cation �

��� Basic speci�cation of Partition � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Obtaining a sequence satisfying Test � � � � � � � � � � � � � � � � � � � � � ��
��� Correctness when Swap is an assignment operation � � � � � � � � � � � � � ��
��� Correctness of the body of Partition � � � � � � � � � � � � � � � � � � � � � � ��

� Conclusion ��



�

� Introduction

By generic programming� we mean the de�nition of algorithms and data structures at
an abstract or generic level� thereby accomplishing many related programming tasks si�
multaneously� The central notion is that of generic algorithms� which are parameterized
procedural schemata that are completely independent of the underlying data representa�
tion and are derived from concrete� e	cient algorithms� The purpose of this paper is to
convey the key ideas of generic programming� focusing mainly on establishing a method�
ological framework that includes appropriate notions of algorithm and data abstractions�
and what it means to formally specify and verify such abstractions�

We present the issues relating to generic algorithms mainly in terms of a single ex�
ample� a Partition algorithm such as is used in quicksort� but we will also allude to
a large collection of examples we have developed in Ada as part of an Ada Generic Li�
brary project 
��� 

�� The structure of the library is designed to achieve a much higher
degree of modularity than has been found in previous libraries� by completely separating
data representations from algorithmic and other data abstraction issues� Some of our
goals are in common with the �parameterized programming� approach advocated by J�
Goguen 
��� but the most fundamental di�erence is that Goguen mainly addresses meta�
issues�namely� how to manipulate theories�while our primary interest is in building
useful theories to manipulate�

The notion of generic algorithms is not new� but we are unaware of any similar attempt
to structure a software library founded on this idea� The Ada library developed by G�
Booch 
��� for example� makes only very limited use of generic algorithms� Booch has
developed an interesting taxonomy of data structures and has populated it with many
di�erent abstract data types� but the implementations of these data types are for the most
part built directly on Ada�s own data structure facilities rather than using other data
abstractions in the library� i�e�� there is very little layering of the implementations� �Some
use of generic algorithms and layering is described for list and tree structure algorithms�
but almost as an afterthought in a chapter on utilities��

In fact� most work on development of abstraction facilities for the past decade or
more has focused on data abstraction 
��� 
��� Algorithmic abstraction has received little
attention� even in the more recent work on object oriented programming� Most work on
procedural abstraction has been language� rather than algorithm�oriented� attempting to
�nd elegant and concise linguistic primitives� our goal is to �nd abstract representations
of e	cient algorithms�

As an example of algorithmic abstraction� consider the task of choosing and imple�
menting a sorting algorithm for linked list data structures� The merge sort algorithm



� � CLASSIFICATION OF ABSTRACTIONS

can be used and� if properly implemented� provides one of the most e	cient sorting al�
gorithms for linked lists� Ordinarily one might program this algorithm directly in terms
of whatever pointer and record �eld access operations are provided in the programming
language� Instead� however� one can abstract away a concrete representation and express
the algorithm in terms of the smallest possible number of generic operations� In this case�
we essentially need just four operations� Next and Set Next for accessing the next cell in
a list� Is End for detecting the end of a list� and Test� a binary predicate on �the data in�
cells� For a particular representation of linked lists� one then obtains the corresponding
version of a merge sorting algorithm by instantiating the generic access operations to be
subprograms that access that representation�

We believe it is better whenever possible to give programming examples in a real
language rather than using pseudo�language �as is so frequently done�� Although we do not
argue that Ada is perfect for expressing the programming abstractions we have found most
useful� it has been adequate in most cases and it supports our goal of e	ciency through
its compile time expansion of generics and provision for directing that subprograms be
compiled inline� For numerous examples of the use of generic programming techniques in
the Scheme language� and a brief discussion of the relative merits of Ada and Scheme for
this type of programming� see 
���

� Classi�cation of Abstractions

We discuss four classes of abstractions that we have found useful in generic programming�
as shown in Table �� which lists a few examples of packages in our Ada Generic library�
Each of these Ada packages has been written to provide generic algorithms and generic
data structures that fall into the corresponding abstraction class�

��� Data abstractions

Data abstractions are data types and sets of operations de�ned on them �the usual de�ni�
tion�� they are abstractions mainly in that they can be understood �and formally speci�ed
by such techniques as algebraic axioms� independently of their actual implementation� In
Ada� data abstractions can be written as packages which de�ne a new type and proce�
dures and functions on that type� Another degree of abstractness is achieved by using a
generic package in which the type of elements being stored is a generic formal parameter�
In our library� we program only a few such data abstractions directly�those necessary
to create some fundamental data representations and de�ne how they are implemented



��� Algorithmic abstractions �

Data Abstractions System Allocated Singly Linked
Data types with operations User Allocated Singly Linked
de�ned on them fInstantiations of representational abstractionsg
Algorithmic Abstractions Sequence Algorithms
Families of data abstractions Linked List Algorithms
with common algorithms Vector Algorithms
Structural Abstractions Singly Linked Lists
Intersections of Doubly Linked Lists
algorithmic abstractions Vectors
Representational Abstractions Double Ended Lists
Mappings from one structural Stacks
abstraction to another Output Restricted Deques

Table �� Classi�cation of Abstractions and Example Ada Packages

in terms of Ada types such as arrays� records and access types� Most other data abstrac�
tions are obtained by combining existing data abstraction packages with packages from
the structural or representational classes de�ned below�

��� Algorithmic abstractions

These are families of data abstractions that have a set of e	cient algorithms in common�
we refer to the algorithms themselves as generic algorithms� For example� in our Ada
library there is a package of generic algorithms for linked�lists and a more general package
of sequence algorithms whose members can be used on either linked�list or vector repre�
sentations of sequences� The linked�list generic algorithms package contains �� di�erent
algorithms such as� for example� generic merge and sort algorithms that are instantiated
in various ways to produce merge and sort subprograms in structural abstraction packages
such as singly�linked lists and doubly�linked lists� We stress that the algorithms at this
level are derived by abstraction from concrete� e	cient algorithms�

��� Structural abstractions

Structural abstractions �with respect to a given set of algorithmic abstractions� are also
families of data abstractions� a data abstraction A belongs to a structural abstraction



� � ALGORITHMIC ABSTRACTIONS

S if and only if S is an intersection of some of the algorithmic abstractions to which
A belongs� An example is singly�linked�lists� the intersection of sequence� � linked�list��
and singly�linked�list�algorithmic abstractions� It is a family of all data abstractions that
implement a singly�linked representation of sequences �it is this connection with more
detailed structure of representations that inspires the name �structural abstraction���

Note that� as an intersection of algorithmic abstractions� such a family of data ab�
stractions is smaller than the algorithm abstraction classes in which it is contained� but
a larger number of algorithms are possible� because the structure on which they operate
is more completely de�ned�

Programming of structural abstractions can be accomplished in Ada with the same
kind of generic package structure as for generic algorithms� The Singly Linked Lists

package contains �� subprograms� most of which are obtained by instantiating or calling
in various ways some member of the Sequence Algorithms package or one of the linked�
list algorithms packages� In Ada� to place one data abstraction in the singly�linked�lists
family� one instantiates the Singly Linked Lists package� using as actual parameters
a type and the set of operations on this type from a data abstraction package such as
System Allocated Singly Linked that de�nes an appropriate representation�

��� Representational abstractions

These are mappings from one structural abstraction to another� creating a new type
and implementing a set of operations on that type by means of the operations of the
domain structural abstraction� For example� stacks can easily be obtained as a structural
abstraction from singly�linked�lists� Note that what one obtains is really a family of stack
data abstractions� whereas the usual programming techniques give only a single data
abstraction�

The following sections give more detailed examples of algorithmic abstractions� Fur�
ther discussion and examples of data� structural� and representational abstraction may
be found in 
���

� Algorithmic Abstractions

As an example of generic algorithms� we consider the sequence algorithmic abstraction�
diverse data abstractions which can be sequentially traversed� These data abstractions
belong to numerous di�erent families� singly�linked lists� doubly�linked lists� vectors� trees�
and many others� There are many algorithms that make sense on all of them and require



�

only a few simple access operations for their implementation� �nd an element� accumulate
values together �by � or �� for example�� count elements satisfying some predicate� etc�

The solution that has been taken in Common Lisp 
�� is to index all kinds of sequences
by natural numbers� So the Common Lisp generic find function always returns a natural
number� which is not particularly useful on linked lists�

In the generic programming approach� we use generic indexing by a generic formal
type� Coordinate� Coordinate is instantiated to type Natural for vectors� for linked
lists� however� cells themselves can serve as Coordinate values� A generic Find can thus
return a Coordinate value that can be used to reference the located element directly�

The intended semantics for Coordinate is that there are functions

� Initial from Sequence to Coordinate�

� Next from Coordinate to Coordinate�

� Is End from Sequence � Coordinate to Boolean� and

� Ref from Sequence � Coordinate to a third type Element�

such that for any sequence S there are a natural number N �called the length of S� and
coordinates I�� I�� � � � � IN such that

� I� � Initial�S� and Ii � Next�Ii��� for i � �� � � �N �

� the elements of S are given by Ref�S� I��� Ref�S� I��� � � � � Ref�S� IN����

� Is End�S� Ii� is false for i � �� �� � � � � N � �� and true for i � N �

We further assume that each of the functions Initial� Next� Ref� and Is End is a constant
time operation� It is important that Ref provides constant time access� so that after Find
returns the coordinate it is possible to access the data without any additional traversal of
the sequence� Thus� for example� one could not use natural numbers as coordinates when
the sequences are linked lists�

In Ada we can write�

generic

type Sequence is private�

type Coordinate is private�

type Element is private�

with function Initial�S � Sequence� return Coordinate�



� � ALGORITHMIC ABSTRACTIONS

with function Next�C � Coordinate� return Coordinate�

with function Is�End�S � Sequence� C � Coordinate� return Boolean�

with function Ref�S � Sequence� C � Coordinate� return Element�

package Sequence�Algorithms is

�� definitions of sequence algorithms such as

�� Count� Find� Every� Notany� Some� Search� e�g��

generic

with function Test�S � Sequence� C � Coordinate� return Boolean�

procedure Find�S � Sequence�

Result � out Coordinate�

Is�Found � out Boolean��

end Sequence�Algorithms�

We have made Find a procedure instead of a function so that the case in which an
element satisfying Test is not found does not require some �extra� coordinate value to be
returned� such an extra value might not exist for some instances of the coordinate type�
Note also that Find is a generic procedure� in addition to forming an instance of the
Sequence Algorithms package� the programmer would also create particular instances
of Find in which some particular test� such as equality to a particular value� would be
substituted for Test�

The body of Find could be expressed as follows�

package body Sequence�Algorithms is

�� among other things

procedure Find�S � Sequence�

Result � out Coordinate�

Is�Found � out Boolean� is

Current � Coordinate�

Flag � Boolean�

begin

Current �� Initial�S��

while not Is�End�S� Current� loop

if Test�S� Current� then

Result �� Current� Is�Found �� True� return�

end if�

Current �� Next�Current��

end loop�

Result �� Current� Is�Found �� False�






end Find�

end Sequence�Algorithms�

It should be noted that not every possible data abstraction which contains a set of elements
can be a member of the sequence algorithmic abstraction� Some data abstractions do not
contain an explicit coordinate type �stacks� or queues� for example�� Intuitively speaking�
the intended data abstractions are those which can be iterated through without side�
e�ects� and where there is a coordinate type which can be used to represent the current
position in a manner allowing constant time access�

� A Generic Partition Algorithm

Another limitation of sequence algorithms as we have de�ned them in the previous section
is that they allow only for one�directional traversals of sequences� There are several
algorithms which require a bidirectional traversal of sequences by two variables of the
type Coordinate advancing towards each other� If we assume there is a Prev operation
such that Prev�Next�I�� � Next�Prev�I�� � I� and a Swap operation for exchanging
elements� then we can obtain generic implementations of such procedures as Reverse and
Partition �as in quicksort�� We examine the Partition algorithm in particular as a
more detailed example of the issues that arise with programming and reasoning about
algorithmic abstractions�

In Ada� we could provide such algorithms in a generic package�

generic

type Sequence is private�

type Coordinate is private�

with function Next�I � Coordinate� return Coordinate�

with function Prev�I � Coordinate� return Coordinate�

with procedure Swap�S � in out Sequence� I� J � Coordinate��

package Bidirectional�Sequence�Algorithms is

�� for example�

procedure Reverse�S � in out Sequence��

generic

with function Test�S � Sequence� C � Coordinate� return Boolean�

procedure Partition�S � in out Sequence�



� � ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATION

F� L � in Coordinate�

Middle � out Coordinate�

Middle�OK � out Boolean��

end Bidirectional�Sequence�Algorithms�

which could be used along with the Sequence Algorithmspackage to construct collections
of algorithms for di�erent kinds of linear lists� In this package we do not need to have
Element and Ref as generic parameters� since algorithms such as Reverse and Partition

do not directly refer to them�
To describe the Partition algorithm informally �a formal treatment follows in Sec�

tion ��� we speak of Next�I� giving a �larger� coordinate than I and Prev giving one
that is smaller� and we also speak of elements that satisfy Test as �good� and those that
don�t as �bad�� Provided Swap�S� I� J� exchanges the elements with coordinates I and
J and leaves all other elements of S unchanged� the Partition algorithm rearranges the
elements of S between those with coordinates F and L so that all of the good elements
come �rst� followed by all the bad elements� Middle � M is computed as a coordinate
between F and L �inclusive� such that all of the elements with smaller coordinates are
good and all elements with greater coordinates are bad� the M �th element is good if and
only if Middle OK is true�

Middle OK is needed because for N elements there are N � � possibilities for the
boundary between good and bad elements� but we are guaranteed of having only N

coordinate values� in general we cannot assume the existence of coordinate values outside
the range from F to L� This complication does not arise with the usual concrete partition
algorithm in which coordinates are integers� since one could use values F � � or L�� for
M � This is an example of the extra care that must be taken in expressing an algorithm
at a more abstract level�

The Partition algorithm can be expressed in Ada as shown in Figure �� A somewhat
shorter implementation could be achieved in which calls to Test with the same arguments
might be repeated� but since Test is a generic parameter we must be careful to avoid
such redundant calls� since one might instantiate the algorithm with a Test that is fairly
expensive to compute�

� Abstract Algorithm Speci�cation and Veri�cation

The main idea of our approach to speci�cation and veri�cation of a generic algorithm is
similar to classical program veri�cation techniques� e�g�� Dijkstra�s idea of weakest pre�



�

procedure Partition�S � in out Sequence�

F� L � in Coordinate�

Middle � out Coordinate�

Middle�OK � out Boolean� is

First � Coordinate �� F�

Last � Coordinate �� L�

begin

loop

loop

if First � Last then

Middle �� First�

Middle�OK �� Test�S� First��

return�

end if�

exit when not Test�S� First��

First �� Next�First��

end loop�

loop

exit when Test�S� Last��

Last �� Prev�Last��

if First � Last then

Middle �� First�

Middle�OK �� False�

return�

end if�

end loop�

Swap�S� First� Last��

First �� Next�First��

if First � Last then

Middle �� First�

Middle�OK �� False�

return�

end if�

Last �� Prev�Last��

end loop�

end Partition�

Figure �� Body of Partition Algorithm



�� � ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATION

conditions 
��� in which one attempts to obtain a strong statement about the result of a
computation while making as few assumptions as possible about its initial conditions� In
discussing preconditions of ordinary� nongeneric algorithms� the assumptions one makes
about the operations in terms of which the algorithm is expressed are �xed� since the
operations themselves are �xed� But for generic algorithms we want to make these op�
erations generic parameters and vary the assumptions about them� our goal is both to
consider a variety of possible postconditions and to maximize the number of di�erent
models �abstract data types� under which an an algorithm attains a given postcondition�
In terms of proof theory� we want to consider how to prove various postconditions under
a variety of assumptions about the generic parameters� so that later we can easily prove
correctness of a wide variety of instances�

It appears that the best approach is to build up the speci�cations and the veri�cation
lemmas in stages� just as we build up algorithmic capabilities in layers� In fact we will
�nd it advantageous to have even more layering in the speci�cations and proofs than in
the construction of the algorithms�

We introduce the main ideas in terms of the Partition algorithm given in the previous
section� What are the minimal assumptions we need to make about the generic parameters
in terms of which Partition is programmed� namely the Sequence and Coordinate

types and the Next� Prev� and Swap operations� If we want to use the algorithm only
for partitioning in the usual sense� and the only use of abstraction is in the use of the
Coordinate type rather than a more speci�c integer type �for an array version� or pointer
type �for a linked list version�� then we could carry out the speci�cation and proof in one
step in which we make strong assumptions about the generic parameters�

Instead� however� we begin with weaker assumptions about these generic parameters�
and obtain a lemma about the results of Partition that enables us to deal with less
conventional instances of partitioning� For example� suppose that we are only interested
in the part of the output consisting of elements that satisfy Test� i�e�� we do not need to
process the elements that don�t satisfy it� Then we can obtain a more e	cient partitioning
algorithm by using for Swap�S� I� J� an operation that just performs the assignment of
the element with the J �th coordinate to the I�th coordinate� If we had made a stronger
assumption about Swap� that it exchanges two elements in the sequence� then the theorem
about the generic algorithm would not be applicable to this instance�

Instead� we carry out the speci�cation and proofs in layers� one of which allows us
to �tap in� at the level we need to verify the second kind of Partition� while the �rst�
more usual� kind can be veri�ed when additional assumptions are made about Swap and
combined with the lemma stated at the �rst level�

First� we assume that associated with the Coordinate type there is a predicate �



��� Basic speci�cation of Partition ��

which is a well�founded partial ordering� on Coordinate� de�ned by

I � J � �N�N � � and J � NextN �I���

For coordinates F and L� where F � L� we de�ne

Coordinate Range�F�L� � fNexti�F � � � � i � Ng�

where N is the smallest integer such that NextN �F � � L� Note that

Previ�L� � NextN�i�F ��

��� Basic speci�cation of Partition

Initially we make only a weak assumption about Swap�

Swap Assumption � If I� J � Coordinate Range�F�L�� then Swap�S� I� J� com�
putes S� such that for all K � Coordinate Range�F�L�� fI� Jg�

Test�S��K� � Test�S�K��

The reason that we can get by with such a weak assumption is simply that we express the
result Partition computes as equivalent to that produced by a straight�line sequence of
calls of Swap� The speci�cation asserts the existence of two sequences of coordinate values
that serve as arguments to the Swap calls and constrains the relationship between these
values�

Syntactic Speci�cation

procedure Partition�S � in out Sequence�

F� L � in Coordinate�

Middle � out Coordinate�

Middle�OK � out Boolean��

Formal Semantics

Next and Prev are assumed to obey the relations discussed above and to have no
side e�ects� Swap is assumed to obey Swap Assumption �� With inputs S � S� F �
F� L � L� with F � L according to the partial ordering relation � de�ned above�
Partition outputs S � S�� Middle�M� Middle OK � B such that�

�Note that � is not generic parameter of the package because it is not used in expressing the algorithms
themselves� as it would be expensive to implement for� say� doubly�linked lists�



�� � ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATION

�� M � Coordinate Range�F�L��

�� There are two sets of coordinates

Accept �

�
Coordinate Range�F�M� if B is true
Coordinate Range�F�M�� fMg if B is false

Reject � Coordinate Range�F�L�� Accept

and a nonnegative integer n and two Coordinate sequences I�� � � � � In and
J�� � � � � Jn such that

�a� F � I� � � � � � In �M � Jn � � � � � J� � L

�b� For k � �� � � � � n� Test�S� Ik� is false while Test�S� Jk� is true�

�c� For P � Accept� fI�� � � � � Ing� Test�S� P � is true�

�d� For P � Reject� fJ�� � � � � Jng� Test�S� P � is false�

�e� S� is the �nal value of S computed by

Swap�S� I�� J��� ��� � Swap�S� In� Jn��

The fact that the coordinate type is abstract compels taking considerable care in this
speci�cation to avoid the mention of coordinate values that might not exist� e�g�� we write
Coordinate Range�F�M�� fMg instead of Coordinate Range�F� Prev�M���

Later we show how the above input�output speci�cation can be proved as a lemma� by
annotating the algorithm with assertions and using the inductive assertions method� For
now� we consider how to combine this speci�cation with additional assumptions about
Swap in order to draw stronger conclusions about the output of Partition� We add these
assumptions one at a time� thereby obtaining several useful lemmas that apply to di�erent
instances of Partition�

��� Obtaining a sequence satisfying Test

By making a second assumption about Swap� we can draw a stronger conclusion about
Partition�

Swap Assumption � If I� J � Coordinate Range�F�L�� then Swap�S� I� J� com�
putes S� such that

Test�S�� I� � Test�S� J��

This can be combined with the basic Partition speci�cation to deduce�



��� Obtaining a sequence satisfying Test ��

Partition Lemma � If Swap satis�es Swap Assumptions � and �� then the sequence S�
computed by Partition satis�es

Partition Property � For all K � Accept� Test�S��K� is true�

Similarly� we can introduce

Swap Assumption � If I� J � Coordinate Range�F�L�� then Swap�S� I� J� com�
putes S� such that

Test�S�� J� � Test�S� I��

and this can be combined with the basic Partition speci�cation to deduce�

Partition Lemma � If Swap satis�es Swap Assumptions � and �� then the sequence S�
computed by Partition satis�es

Partition Property � For all K � Reject� Test�S��K� is false�

Partition Lemma � If Swap satis�es Swap Assumptions �� � and �� then the sequence

S� computed by Partition satis�es Partition Properties � and ��

Note that we have not yet made any assumption about Swap actually exchanging
two elements of a sequence� we have only assumed that it does not a�ect elements other
than those with coordinates I and J insofar as can be determined by Test� and that it
changes the I�th element to have the same Test�value as the J �th� or vice�versa� Thus�
for example� if we have sequences of integers and Test just checks whether an element is
positive� a Swap operation that assigns � or �� to the I�th element according to whether
the J �th is nonpositive or positive would satisfy Swap Assumption � and ��

Thus to be able to conclude that the sequence S� computed by Partition is a per�
mutation of its input S� we need to assume that Swap satis�es

Swap Assumption � If I� J � Coordinate Range�F�L�� then Swap�S� I� J� com�
putes S� such that for all K � Coordinate Range�F�L�� fI� Jg�

Ref�S��K� � Ref�S�K��

Swap Assumption � If I� J � Coordinate Range�F�L�� then Swap�S� I� J� com�
putes S� such that Ref�S�� I� � Ref�S� J��



�� � ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATION

Swap Assumption � If I� J � Coordinate Range�F�L�� then Swap�S� I� J� com�
putes S� such that Ref�S�� J� � Ref�S� I��

From these assumptions we obtain

Partition Lemma � If Swap satis�es Swap Assumptions �� �� and �� then it also satis	

�es Swap Assumptions �� � and �� and Partition has Partition Properties � and �� as

well as

Partition Property � The output sequence S� is a permutation of the input sequence

S�

��� Correctness when Swap is an assignment operation

Now suppose� instead of performing an exchange of two elements� Swap just does an
assignment operation� so that it satis�es Swap Assumption � but not Swap Assumption ��
We can still conclude�

Partition Lemma � If Swap satis�es Swap Assumptions � and � � then it also satis�es

Swap Assumptions � and �� and Partition has Partition Property �� as well as

Partition Property � The sequence of elements of the output sequence S� with co	

ordinates in Accept is the subsequence of the elements of S with coordinates in

Coordinate Range�F�L� and satisfying Test�

This tells us that by instantiating Partition with Swap as an assignment operation� we
obtain a version that brings together all the elements that satisfy Test� It does not yield
all the elements that do not satisfy Test� but in some applications we would not need this
information�

The main bene�t of dividing the speci�cation of assumptions about Swap and con�
clusions about Partition into small pieces is that we can deal with the question of
correctness of di�erent instances merely by citing the appropriate lemmas �or we can
create and prove new lemmas with comparatively little e�ort�� The work of proof has
been factored into small steps that allow us the same bene�ts of reuse in proofs as generic
algorithms allow us in programming�



��� Correctness of the body of Partition ��

��� Correctness of the body of Partition

To prove partial correctness� we add three internal assertions to the body of Partition
�Figure ��� In these assertions note that S refers to the initial value of variable S� while
S� refers to the current value at the point of the assertion�

�� �At the beginning of the �rst inner loop�� There are a nonnegative integer n and
two Coordinate sequences I�� � � � � In and J�� � � � � Jn such that

�a� F � I� � � � � � In � First � Last � Jn � � � � � J� � L�

�b� For k � �� � � � � n� Test�S� Ik� is false while Test�S� Jk� is true�

�c� for P � Coordinate Range�F� First��fI�� � � � � In� Firstg� Test�S� P � is true�

�d� for P � Coordinate Range�Last� L�� fLast� J�� � � � � Jng� Test�S� P � is false�

�e� The current value S� of S is the value of S computed by

Swap�S� I�� J��� ���� Swap�S� In� Jn��

�� �At the beginning of the second inner loop�� Assertion �� First �� Last� and
Test�S� First� is false�

�� �Just before the Swap call�� Assertion � and Test�S� Last� is true�

These assertions along with entry and exit assertions obtained from the Formal Semantics
of the algorithm are su	cient for carrying out an inductive assertions proof of partial
correctness� any path from the beginning of the procedure to the exit is composed of a
�nite number of path segments between two assertions� and one can verify that for each
such path segment the assertion at the beginning combined with the semantics of the
statements along the path implies the assertion at the end� We omit these proofs�

To prove total correctness� we need to show also that the procedure always terminates�
Actually� the result we prove is conditional on the termination of Test and Swap� Note
that

�� it can be shown inductively that� at all times� First � Last�

�� every path segment �as de�ned in the partial correctness proof� that can be repeated
in any execution of the procedure contains an assignment that increases First or
decreases Last �on one path both are changed� but not without violating ���



�� REFERENCES

Therefore� any execution consists of only a �nite number of path segments� Since each
path segment contains only assignment statements� equality tests� or calls to Test and
Swap� we have

Partition Lemma � If the generic parameters Test and Swap always terminate� then

Partition always terminates�

� Conclusion

In this paper we have attempted to develop a framework su	cient to encompass the key
aspects of generic programming� with illustrations from our experience in building a li�
brary of generic software components in Ada� Although the documentation of the initial
library in 

� is informal� and we have not yet carried out formal speci�cation and veri��
cation of the library components� we believe that this task would be both mathematically
very interesting and practically very useful�

On the mathematical side� the correctness of generic algorithms o�ers greater chal�
lenges and less tedium than concrete algorithms� for often one must create the appropriate
abstract concepts in terms of which one can e�ectively express and reason about the be�
havior of an algorithm or collection of algorithms� The nature of the problem of verifying
generic algorithms should be attractive to researchers in computer science and mathemat�
ics� whereas the problem for concrete algorithms is often regarded as so tedious as to be
worth doing only if most of the work can be done with an automated reasoning system�

On the practical side� the considerable work of composing a formal speci�cation and
carrying out a detailed proof of correctness at a generic level is compensated by the ease
with which one is then able to deal with the correctness of many distinct instantiations�
While it is often di	cult to justify the amount of e�ort required for formal veri�cation
of concrete programs� except in the case of software used in life�critical systems� the
possibility of verifying components in generic software libraries may open the way for the
bene�ts of this technology to become much more widely available�

References


�� G� Booch� Software Components in Ada� Benjamin�Cummings� ���
�


�� O��J� Dahl� E� W� Dijkstra� and C� A� R� Hoare� Structured Programming� Academic
Press� ��
��



REFERENCES �



�� E� W� Dijkstra� A Discipline of Programming� Prentice�Hall� Englewood Cli�s� New
Jersey� ��
��


�� J� Goguen� �Parameterized Programming�� Transactions on Software Engineering�
SE��������������� September �����


�� A� Kershenbaum� D� R� Musser and A� A� Stepanov� �Higher Order Imperative Pro�
gramming�� Computer Science Dept� Rep� No� ������ Rensselaer Polytechnic Insti�
tute� Troy� New York� April �����


�� D� R� Musser and A� A� Stepanov� �A Library of Generic Algorithms in Ada�� Proc�
of ���	 ACM SIGAda International Conference� Boston� December� ���
�



� D� R� Musser and A� A� Stepanov� The Ada Generic Library
 Linear List Processing
Packages� Springer�Verlag� ����� �This book supercedes General Electric Corporate
Research and Development Reports ��CRD��� and ��CRD���� April ������


�� G� L� Steele� Common LISP
 The Language� Digital Press� �����


�� N� Wirth� Algorithms � Data Structures � Programs� Prentice�Hall� ��
��


