Examples of DIVISION — RELATIONAL ALGEBRA and SQL

r + s is used when we wish to express queries with “all”:

Ex. “Which persons have a loyal customer's card at ALL the clothing boutiques in town X?”
“Which persons have a bank account at ALL the banks in the country?”
“Which students are registered on ALL the courses given by Soini?”
“Which students are registered on ALL the courses that are taught in period 1?”
“Which boys are registered on those courses that are taken by ALL the girls?”
“Which girls are registered on ALL the courses taken by student nr. 40101?”

In all these queries the description after ALL defines a set with a number of elements. The
result is composed of those data units (persons, students etc.) who satisfy these
requirements. The logic these sentences express is that of implication: for which persons is it
true that

“IF there is a clothing boutique in town X THEN the person has a loyal customer's card there”,
“IF Soini gives a course THEN the student is registered on it” or
“IF 40101 is registered on a course THEN the girl is registered on the same course”.

We shall study the last example in detail here. On the one hand we have a list (a relation)
with girls and the courses they are registered on: this will be called the relation r. On the other
hand we have a list (a relation) of ALL the courses taken by 40101. This will be the relation s.
Now we wish to know which of the girls take ALL these courses. Suppose that 40101 takes
the following three courses: G555, 456306 and 456302. To be a part of the answer the girl in
question must be registered on ALL of these three. (In addition to that she may be registered
on other courses not taken by 40101, these will not affect the result.)

In relational algebra the query will be expressed as follows (the example database

“kursdatabas” is found on the home page of this course. matr = student number, namn =
name, kurskod = course code, kén = sex, kursanmélan = course registration):

M matr, namn, kurskod (O ken =« (Student) x| kursanmalan) = M yekod (O matr = 20101 (kursanmalan))

The result will be a relation with the attributes namn and matr. The attribute kurskod that we
are dividing by will “disappear” in the division.

v

NOTE! “Which persons have passed ALL the courses they have registered on?” has the same
surface form, but a different logic: the set of courses that is tested will vary from one person to
another, depending on which courses the current person has registered on. There is no
common set of courses that should be tested for each person. The formulation in SQL will
often be easier than that using division; to express the example query it is enough to create

the set of persons registered on courses and then subtract those who have NULL as the value
of some course mark (vitsord, one of the attributes in kursanmalan in the sql-code of the

example database).

Which female students take ALL the courses that 40101 is taking?

[T matr, namn, kurskod (O ken =k (Student) |x| kursanmalan)

matr namn

40112 Brita
40112 Brita
40113 Ann-Helen
40113 Ann-Helen
40113 Ann-Helen
40128 Siru
40128 Siru
40128 Siru
40240 Sara
40240 Sara
40240 Sara

|_| matr, namn, kurskod (0- kén ='K

matr namn

40112 Brita
40112 Brita
40113 Ann-Helen
40113 Ann-Helen
40113 Ann-Helen
40128 Siru
40128 Siru
40128 Siru
40240 Sara
40240 Sara
40240 Sara

AARXRARAARAARNRARARARARARARARAN

- (student) |x| kursanmélan) =+

AARXRARNAAAARARARARAR

kurskod

456306
456302
456304
456306
456302
G555

456306
456302
456304
456306
456302

kurskod

456306
456302
456304
456306
456302
G555

456306
456302
456304
456306
456302

M rskod (O matr = a0101 (KUrsanmalan))

matr kurskod

40101 G555
40101 456306
40101 456302

M kurskod (0 matr = 40101 (Kursanmalan))

matr kurskod

40101 G555
40101 456306
40101 456302

We can see that only 40128, Siru has all the required courses.

r + s is defined as Mqs(r) = Mas((Mas(r) x 8) = Mass(r))

r <---T1 matr, namn, kurskod (U kén = 'K' (StUdent) |X| kursanmélan)
S <--- M wurskod (O matr = 40101 (kursanméﬂan))

Mg-s(r) is here Mmatr. namn () (NO duplicate elements in sets!)

MR-s.s(r) is here M matr, namn, kurskod (), iN this case = r. The projection will guarantee that the

attributes come in the right order for the subtraction.

Mg-s(r) x s is here Mmatr, namn () X {G555, 456306, 456302}, i. e. all the possible combinations
of a girl registered on some course and the courses taken by 40101. From this set
we shall subtract those tuples that represent real elements (actual course
registrations). From what is left (the combinations representing “false”,
unactualized information, we shall project the student number (matr) and the name
(namn), the attributes represented by (IMg.s). Finally these will be subtracted from

Mmatr. namn (). The answer is what is left.

40128 Siru

The “false”
candidates

have been stricken
through.

Mgs(r) x s (tdnkbara)

40112 Brita G555
40H2Brita—4563066
40112 Brita— 456302
40113 Ann-Helen G555
40H3—-Anr-Heler—4563066
4011 3—-AnnHelenr—456362
40128—Sitt———G555-
40428—Sirtt—4563066
40428—Sirtt——456302
40240 Sara G555
40240—Sara —4563066
40240—Sara- —456362

The tuples representing
true information have
been stricken through.

40112 Brita 456306
40112 Brita 456302
40113 Ann-Helen 456304
40113 Ann-Helen 456306
40113 Ann-Helen 456302

40128 Siru G555

40128 Siru 456306
40128 Siru 456302
40240 Sara 456304
40240 Sara 456306
40240 Sara 456302

(Tuples that are not marked with
green represent real
information about other courses
than the relevant ones.)

How to translate this in MySQL?

Problem: There is neither division (=) nor set difference (-) i MySQL, so you are obliged to
find other ways around this problem. There are (at least) three ways to express these queries:

1) Not exists (-3) combined with not in (): (“There may not be a course that 40101 takes
that is not among the courses taken by the girl in question”)

select distinct matr, namn
from student as R
where kon = 'K' and
not exists (select kurskod
from kursanmalan
where matr = 40101 and
kurskod not in (select
from kursanmalan as R2
where R.matr = R2.matr));

S S +
| matr | namn |
S S —— S S +
| 40128 | Siru |
o o +

1 row in set (0.00 sec)

The outmost selection will decide which columns (matr, namn) we shall see in the result. The
outmost select — from — where will create a table including all the female students and
their course registrations. These students will now be tested one by one: for the female
student to be part of the result, the not exists-clause for this student must be true (the list
after the not exists must remain empty).

What does this list consist of? First we put there all the courses that the student 40101 is
registered on (3 items: G555, 456306 and 456302). These are represented by kurskod. Then
these courses are tested one by one against the courses the current female student is
registered on: a set of her courses is created in the innermost select. These are
represented by . This set is thus composed of all the courses that the female student
is registered on. As soon as we find a kurskod among 40101's courses that is not among the
of the current girl, this kurskod will part of the select list in the middle, which
accordingly will no longer be empty. This in turn leads to the not exists becoming false, and
that means that the female student in question does not satisfy the requirements (she does
not have all the courses required) and she will not be part of the result. On the other hand, if
all the course codes in the select in the middle are found in the set of the
taken by the current female student, this select will stay empty and the not exists will
accordingly be true. Now this student will be part of the result.

The example query:

40101's courses:

Brita's (40112) courses: “

Ann-Helen's (40113) courseH

“® Shows which course(s) are lacking in the girls' selections. These courses will be part of
the selection in the middle and make not exists false. If all the courses taken by 40101 can be
found among the courses chosen by the girl, she will be part of the result.

Siru's (40128) courses:

Sara's (40240) courses:

2) Two times not exists: (“There may not be a course that 40101 takes that is not taken by
the current girl”)

select distinct matr, namn
from student as R
where kon = 'K' and
not exists (select kurskod
from kursanmalan as S
where matr = 40101 and
not exists (select
from kursanmalan as R2
where R.matr = R2.matr and
S.kurskod =));

S SO S SO +
| matr | namn |
S S R —— +
| 40128 | Siru |
Fomm oo S T +

1 row in set (0.01 sec)

This solution is very similar to the last one, but now the test with set membership is replaced
by another not exists. The outer not exists will choose the courses taken by 40101. The inner
not exists will control these courses one by one; will we find the same course for the girl in
question? If there is a (among the courses taken by the girl) equal to the kurskod (of
40101's courses) that we are testing at the moment, this will be the result of the
innermost select. In this case this selection will not be empty, and the inner not exists will
thus be false. Now the kurskod we just tested will not be a part of the selection in the middle.

Each kurskod for 40101 will be tested like this. If we can find them all among the courses
taken by the girl, none of them will be selected in the middle and the outer not exists will thus
be true. This means that the girl in question had all the specified courses and that she will
accordingly be part of the result. On the other hand, if there are one or several course codes
that will not find their counterpart in the innermost selection, this selection will be empty for
them, making the inner not exists true. These course codes will be a part of the select in the
middle, making the outer not exists false, the girl in question (who did not have these
courses) will not be a part of the result.

See the figure on next page!

40101's courses Brita's (40112) courses

W56306
456306ﬂﬂﬂﬂHHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ¥456302
456302

Ann-Helen's (40113) courses

MR 2 e found —chosen by the midde solcton 456305
456306 456304

456302 456302

Siru's (40128) courses

G555 G555
456306 456306
- 456302 456302

Sara's (40240) courses

- Can't be found — chosen by the middle selecti 56306
456306 456304

456302 456302

Next page!

3) “Count and compare”

The idea behind this method is to count how many different values there are in the divisor (i.
e. all the values that one should have to be a part of the result). When this is applied to our
example we first count how many courses 40101 takes. Then we count how many of these
courses our female students take. If we get the same result, the girl in question has all the
courses necessary and will appear in the result.

mysqgl> select matr, namn
from kursanmalan natural join student
where kon = 'K' and
kurskod in (select kurskod
from kursanmalan
where matr = 40101)
group by matr
having count (kurskod)

(select count(*)
from (select kurskod
from kursanmalan
where matr = 40101) as tab);

S S — S +
| matr | namn |
S S — S S +
| 40128 | Siru |
Fomm S S +

1 row in set (0.00 sec)

Here is the result of kursanmalan natural join student where kon = 'K' and
kurskod in (select kurskod from kursanmalan where matr = 40101):
R e e e Fom Fom———— +

| matr | kurskod | vitsord | namn | up | kon |

Fom e R T Fom Fom +

| 40112 | 456302 | NULL | Brita | DT | K |

| 40112 | 456306 | NULL | Brita | oT | K |

| 40113 | 456302 | NULL | Ann-Helen | DT | K |

| 40113 | 456306 | NULL | Ann-Helen | DT | K |

| 40128 | 456302 | NULL | Siru | oT | K |

| 40128 | 456306 | NULL | Siru | T | K |

| 40128 | G555 | NULL | Siru | oT | K |

| 40240 | 456302 | NULL | Sara | Is | K |

| 40240 | 456306 | NULL | Sara | Is | K |

R e e e Fom Fom———— +

9 rows in set (0.00 sec) Nextpage!

These tuples are now grouped according to the student number:

- S I S e Fmm—_—_ +
| matr | kurskod | vitsord | namn | up | kon |
- +—— - +— - - +
| 40112 | 456302 | NULL | Brita | oT | K |
| 40112 | 456306 | NULL | Brita | oT | K |
| 40113 | 456302 | NULL | Ann-Helen | DT | K |
| 40113 | 456306 | NULL | Ann-Helen | DT | K |
| 40128 | 456302 | NULL | Siru | DT | K |
| 40128 | 456306 | NULL | Siru | oT | K |
| 40128 | G555 | NULL | Siru | oT | K |
| 40240 | 456302 | NULL | Sara | Is | K |
| 40240 | 456306 | NULL | Sara | s | |
- S I S e Fmm—_—_ +

having count (kurskod) counts the number of course codes/group, i. e. the number of
courses each of these girls has registered on (note that in this selection we are only
concerned with those courses that 40101 takes; it is quite possible that the girls are also
registered on other courses in addition to these).

having count (kurskod) = (select count(*)
from (select kurskod
from kursanmalan
where matr = 40101) as tab);

compares the number of courses/group (the number of the relevant courses taken by the girl
in question) with the number of courses taken by 40101 (3 courses). If we get the same
number, we know that we have the same courses, and then the girl will appear in the result.
This happens in the selection in the beginning of the query:

mysqgl> select matr, namn
from kursanmalan natural join student
where kon = 'K' and
kurskod in (select kurskod
from kursanmalan
where matr = 40101)
group by matr
having count(kurskod) = (select count(*)
from (select kurskod
from kursanmalan
where matr = 40101) as tab);

OBS! Here we can only have one registration/course. In other cases we might need to use
count distinct to eliminate duplicates.

OBS! It would be a natural solution to use a temporary table to represent the courses taken by

40101. Unfortunately, the same temporary table may not be opened twice in MySQL 5.1, so
that solution will only give you error messages.

