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In complex environments, individuals are not fully able to analyze the situation

and calculate their optimal strategy.1 Instead they can be expected to adapt their strategy

over time based upon what has been effective and what has not.  One useful analogy to

the adaptation process is biological evolution.  In evolution, strategies that have been

relatively effective in a population become more widespread, and strategies that have been

less effective become less common in the population.

Biological evolution has been highly successful has discovering complex and

effective methods of adapting to very rich environmental situations.  This is accomplished

by differential reproduction of the more successful individuals.  The evolutionary process

also requires that successful characteristics be inherited through a genetic mechanism that

allows some chance for new strategies to be discovered.  One genetic mechanism allowing

new strategies to be discovered is mutation.  Another mechanism is crossover, whereby

sexual reproduction takes some genetic material from one parent and some from the other.

The mechanisms that have allowed biological evolution to be so good at adaptation

have been employed in the field of artificial intelligence.  The artificial intelligence

technique is called the "genetic algorithm" (Holland, 1975).  While other methods of
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representing strategies in games as finite automata have been used (Rubinstein 1986,

Megiddo and Wigderson 1986, Miller 1989, Binmore and Samuelson 1990, Lomborg

1991), the genetic algorithm itself has not previously been used in game theoretic settings.

This paper will first demonstrate the genetic algorithm in the context of a rich

social setting, the environment formed by the strategies submitted to a Prisoner's

Dilemma computer tournament.  The results show that the genetic algorithm is

surprisingly successful at discovering complex and effective strategies that are well

adapted to this complex environment.  Next the paper shows how the results of this

simulation experiment can be used to illuminate important issues in the evolutionary

approach to adaptation, such as the relative advantage of developing new strategies based

upon one or two parent strategies, the role of early commitments in the shaping of

evolutionary paths, and the extent to which evolutionary processes are optimal or

arbitrary.

The simulation method involves the following steps:

1. the specification of an environment in which the evolutionary process can

operate,

2. the specification of the genetics, including the way in which information on the

simulated chromosome is translated into a strategy for the simulated individual,

3. the design of an experiment to study the effects of alternative realities (such as

repeating the experiment under identical conditions to see if random mutations lead to

convergent or divergent evolutionary outcomes), and

4. the running of the experiment for a specified number of generations on a

computer, and the statistical analysis of the results.

The Simulated Environment
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An interesting set of environmental challenges are provided by the fact that many

of the benefits sought by living things such as people are disproportionately available to

cooperating groups.  The problem is that while an individual can benefit from mutual

cooperation, each one can also do even better by exploiting the cooperative efforts of

others.  Over a period of time, the same individuals may interact again, allowing for

complex patterns of strategic interactions (Axelrod and Hamilton, 1981).

The Prisoner's Dilemma is an elegant embodiment of the problem of achieving

mutual cooperation, and therefore provides the basis for the analysis.  In the Prisoner's

Dilemma, two individuals can each either cooperate or defect.  The payoff to a player

affects its reproductive success.  No matter what the other does, the selfish choice of

defection yields a higher payoff than cooperation.  But if both defect, both do worse than

if both had cooperated.  Table 1-1 shows the payoff matrix of the Prisoner's Dilemma

used in this study.

               ------------------

                    Table 1-1 here.

               ------------------

In many settings, the same two individuals may meet more than once.  If an

individual can recognize a previous interactant and remember some aspects of the prior

outcomes, then the strategic situation becomes an iterated Prisoner's Dilemma.  A strategy

would take the form of a decision rule which specified the probability of cooperation or

defection as a function of the history of the interaction so far.

To see what type of strategy can thrive in a variegated environment of more or

less sophisticated strategies, I conducted a computer tournament for the Prisoner's

Dilemma.  The strategies were submitted by game theorists in economics sociology,

political science, and mathematics (Axelrod, 1980a).  The 14 entries and a totally random

strategy were paired with each other in a round robin tournament.  Some of the strategies

were quite intricate.  An example is one which on each move models the behavior of the
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other player as a Markov process, and then uses Bayesian inference to select what seems

the best choice for the long run.  However, the result of the tournament was that the

highest average score was attained by the simples of all strategies, TIT FOR TAT.  This

strategy is simply one of cooperating on the first move and then doing whatever the other

player did on the preceding move.  Thus TIT FOR TAT is a strategy of cooperation

based upon reciprocity.

The results of the first round were circulated and entries for a second round were

solicited.  This time there were 62 entries from six countries (Axelrod, 1980b).  Most of

the contestants were computer hobbyists, but there were also professors of evolutionary

biology, physics, and computer science, as well as the five disciplines represented in the

first round.  TIT FOR TAT was against submitted by the winner of the first round,

Anatol Rapoport.  It won again.

The second round of the computer tournament provides an rich environment in

which to test the evolution of behavior.  It turns out that just eight of the entries can be

used to account for how well a given rule did with the entire set.  These eight rules can be

thought of as representatives of the full set in the sense that the scores a given rule gets

with them can be used to predict the average score the rule gets over the full set.  In fact,

98% of the variance in the tournament scores is explained by knowing a rule's

performance with these eight representatives.  So these representative strategies can be

used as a complex environment in which to evaluate an evolutionary simulation.  What is

needed next is a way of representing the genetic material of a population so that the

evolutionary process can be studied in detail.

The Genetic Algorithm

The inspiration for how to conduct simulation experiments of genetics and

evolution comes from an artificial intelligence procedure developed by computer scientist
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John Holland and called the genetic algorithm (Holland 1975, l980; Goldberg, 1989).  For

an excellent introduction to the genetic algorithm see Holland (1992) and Riolo (1992).

The idea is based on the way in which a chromosome serves a dual purpose: it provides a

representation of what the organism will become, and it also provides the actual material

which can be transformed to yield new genetic material for the next generation.

Before going into details, it may help to give a brief overview of how the genetic

algorithm works.  The first step is to specify a way of representing each allowable

strategy as a string of genes on a chromosome which can undergo genetic transformations,

such as mutation.  Then the initial population is constructed from the allowable set

(perhaps by simply picking at random).  In each generation, the effectiveness of each

individual in the population is determined by running the individual in the current

strategic environment.  Finally, the relatively successful strategies are used to produce

offspring which resemble the parents.  Pairs of successful offspring are selected to mate

and produce the offspring for the next generation.  Each offspring draws part of its genetic

material from one parent and part from another.  Moreover, completely new material is

occasionally introduced through mutation.  After many generations of selection for

relatively successful strategies, the result might well be a population that is substantially

more successful in the given strategic environment than the original population.

To explain how the genetic algorithm can work in a game context, consider the

strategies available for playing the iterated Prisoner's Dilemma.  To be more specific,

consider the set of strategies that are deterministic and use the outcomes of the three

previous moves to make a choice in the current move.  Since there are four possible

outcomes for each move, there are 4x4x4 = 64 different histories of the three previous

moves.  Therefore to determine its choice of cooperation or defection, a strategy would

only need to determine what to do in each of the situations which could arise.  This could

be specified by a list of sixty-four C's and D's (C for cooperation and D for defection).

For example, one of these sixty-four genes indicates whether the individual cooperates or
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defects when in a rut of three mutual defections.  Other parts of the chromosome would

cover all the other situations that could arise.

To get the strategy started at the beginning of the game, it is also necessary to

specify its initial premises about the three hypothetical moves which preceded the start

of the game.  To do this requires six more genes, making a total of seventy loci on the

chromosome.2 This string of seventy C's and D's would specify what the individual

would do in every possible circumstance and would therefore completely define a

particular strategy.  The string of 70  genes would also serve as the individual's

chromosome for use in reproduction and mutation.

There is a huge number of strategies which can be represented in this way.  In fact,

the number is 2 to the 70th power, which is about 10 to the 21st power.3  An exhaustive

search for good strategies in this huge collection of strategies is clearly out of the question.

If a computer had examined these strategies at the rate of 100 per second since the

beginning of the universe, less than one percent would have been checked by now.

To find effective strategies in such a huge set, a very powerful technique is

needed.  This is where Holland's "genetic algorithm" comes in.  It was originally inspired

by biological genetics, but was adapted as a general problem solving technique.  In the

present context, it can be regarded as a model of a "minimal genetics" which can be used to

explore theoretical aspects of evolution in rich environments.  The outline of the

simulation program works in five stages.  See Table 1-2.

--------------------

Table 1-2 here.

--------------------

l. An initial population is chosen.  In the present context the initial individuals can

be represented by random strings of seventy C's and D's.

2. Each individual is run in the current environment to determine its effectiveness.

In the present context this means that each individual player uses the strategy defined by
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its chromosome to play an iterated Prisoner's Dilemma with other strategies, and the

individual's score is its average over all the games it plays.4  

3. The relatively successful individuals are selected to have more offspring.  The

method used is to give an average individual one mating, and to give two matings to an

individual who is one standard deviation more effective than the average.  An individual

who is one standard deviation below the population average would then get no matings.

4. The successful individuals are then randomly paired off to produce two

offspring per mating.  For convenience, a constant population size is maintained.  The

strategy of an offspring is determined from the strategies of the two parents.  This is done

by using two genetic operators: crossover and mutation.

a. Crossover is a way of constructing the chromosomes of the two

offspring from the chromosomes of two parents.  It can be illustrated by an example of

two parents, one of whom has seventy C's in its chromosome (indicating that it will

cooperate in each possible situation that can arise), and the other of whom has seventy

D's in its chromosome (indicating that it will always defect).  Crossover selects one or

more places to break the parents' chromosomes in order to construct two offspring each

of whom has some genetic material from both parents.  In the example, if a single break

occurs after the third gene, then one offspring will have three C's followed by sixty-seven

D's, while the other offspring will have three D's followed by sixty-seven D's.

b. Mutation in the offspring occurs by randomly changing a very small

proportion of the C's to D's or visa versa.

5. This gives a new population.  This new population will display patterns of

behavior that are more like those of the successful individuals of the previous generation,

and less like those of the unsuccessful ones.  With each new generation, the individuals

with relatively high scores will be more likely to pass on parts of their strategies, while

the relatively unsuccessful individuals will be less likely to have any parts of their

strategies passed on.
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Simulation Results

The computer simulations were done using a population size of twenty

individuals per generation.  Levels of crossover and mutation were chosen averaging one

crossover and one-half mutation per chromosome per generation.  Each game consisted of

151 moves, the average game length used in the tournament.  With each of the twenty

individuals meeting eight representatives, this made for about 24,000 moves per

generation.  A run consisted of 50 generations.  Forty runs were conducted under identical

conditions to allow an assessment of the variability of the results.

The results are quite remarkable: from a strictly random start, the genetic

algorithm evolved populations whose median member was just as successful as the best

rule in the tournament, TIT FOR TAT.  Most of the strategies that evolved in the

simulation actually resemble TIT FOR TAT, having many of the properties that make

TIT FOR TAT so successful.  For example, five behavioral alleles in the chromosomes

evolved in the vast majority of the individuals to give them behavioral patterns that were

adaptive in this environment and mirrored what TIT FOR TAT would do in similar

circumstances.  These patterns are:

1. Don't rock the boat: continue to cooperate after three mutual cooperations

(which can be abbreviated as C after RRR).

2. Be provocable: defect when the other player defects out of the blue (D after

receiving RRS).

3. Accept an apology: continue to cooperate after cooperation has been restored

(C after TSR).

4. Forget: cooperate when mutual cooperation has been restored after an

exploitation (C after SRR).

5. Accept a rut:  defect after three mutual defections (D after PPP).
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The evolved rules behave with specific representatives in much the same way as

TIT FOR TAT does.  They did about as well as TIT FOR TAT did with each of the

eight representatives.  Just as TIT FOR TAT did, most of the evolved rules did well by

achieving almost complete mutual cooperation with seven of the eight representatives.

Like TIT FOR TAT, most of the evolved rules do poorly only with one representative,

called ADJUSTER, that adjusts its rate of defection to try to exploit the other player.  In

all, 95% of the time the evolved rules make the same choice as TIT FOR TAT would

make in the same situation.

While most of the runs evolve populations whose rules are very similar to TIT

FOR TAT, in eleven of the forty runs, the median rule actually does substantially better

than TIT FOR TAT.5  In these eleven runs, the populations evolved strategies that

manage to exploit one of the eight representatives at the cost of achieving somewhat less

cooperation with two others.  But the net effect is a gain in effectiveness.

This is a remarkable achievement because to be able to get this added

effectiveness, a rule must be able to do three things.  First, it must be able to discriminate

between one representative and another based upon only the behavior the other player

shows spontaneously or is provoked into showing.  Second, it must be able to adjust its

own behavior to exploit a representative that is identified as an exploitable player.  Third,

and perhaps most difficult, it must be able to achieve this discrimination and exploitation

without getting into too much trouble with the other representatives.  This is something

that none of the rules originally submitted to the tournament were able to do.

These very effective rules evolved by breaking the most important device

developed in the computer tournament, namely to be "nice", that is never to be the first to

defect.  These highly effective rules always defect on the very first move, and sometimes

on the second move as well, and use the choices of the other player to discriminate what

should be done next.  The highly effective rules then had responses that allowed them to

"apologize" and get to mutual cooperation with most of the unexploitable representatives,
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and they had different responses which allowed them to exploit a representative that was

exploitable.

While these rules are highly effective, it would not accurate to say that they are

better than TIT FOR TAT.  While they are better in the particular environment

consisting of fixed proportions of the eight representatives of the second round of the

computer tournament, they are probably not very robust in other environments.

Moreover,  in an ecological simulation these rules would be destroying the basis of their

own success as the exploited representative would become a smaller and smaller part of

the environment (Axelrod 1984, pp.  49-52 and 203-5).  While the genetic algorithm was

sometimes able to evolve rules that are more effective than any entry in the tournament,

the algorithm was only able to do so by trying many individuals in many generations

against a fixed environment.  In sum, the genetic algorithm is very good at what actual

evolution does so well: developing highly specialized adaptations to specific

environmental settings.

In the evolution of these highly effective strategies, the computer simulation

employed sexual reproduction, where two parents contributed genetic material to each

offspring.  To see what would happen with asexual reproduction, forty additional runs

were conducted in which only one parent contributed genetic material to each offspring.

In these runs, the populations still evolved toward rules that did about as well as TIT

FOR TAT in most cases.  However, the asexual runs were only half as likely to evolve

populations in which the median member was substantially more effective than TIT FOR

TAT.6

So far, the simulation experiments have dealt with populations evolving in the

context of a constant environment.  What would happen if the environment is also

changing?  To examine this situation, another simulation experiment with sexual

reproduction was conducted in which the environment consisted of the evolving

population itself.  In this experiment each individual plays the iterated Prisoner's
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Dilemma with each other member of the population rather than play with the eight

representatives.  At any given time, the environment can be quite complex.  For an

individual to do well requires that its strategy achieves a high average effectiveness with

the nineteen other strategies that are also present in the population.  Thus as the more

effective rules have more offspring, the environment itself changes.  In this case,

adaptation must be done in the face of a moving target.  Moreover, the selection process

is frequency dependent, meaning that the effectiveness of a strategy depends upon what

strategies are being used by the other members of the population.

The results of the ten runs conducted in this manner display a very interesting

pattern.  For a typical run, see Figure 1-1.  From a random start, the population evolves

away from whatever cooperation was initially displayed.  The less cooperative rules do

better than the more cooperative rules because at first there are few other players who are

responsive - and when the other player is unresponsive the most effective thing for an

individual to do is simply defect.  This decreased cooperation in turn causes everyone to

get lower scores as mutual defection becomes more and more common.  However, after

about ten or twenty generations the trend starts to reverse.  Some players evolve a

pattern of reciprocating what cooperation they find, and these reciprocating players tend

to do well because they can do very well with others who reciprocate without being

exploited for very long by those who just defect.  The average scores of the population

then start to increase as cooperation based upon reciprocity becomes better and better

established.  So the evolving social environment led to a pattern of decreased cooperation

and decreased effectiveness, followed by a complete reversal based upon an evolved

ability to discriminate between those who will reciprocate cooperation and those who

won't.  As the reciprocators do well, they spread in the population resulting in more and

more cooperation and greater and greater effectiveness.

    ------------------

                             Figure 1-1 here.
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               ------------------

Conclusions

1. The genetic algorithm is a highly effective method of searching for effective

strategies in a huge space of possibilities.  Following Quincy Wright (1977, pp. 452-454),

the problem for evolution can be conceptualized as a search for relatively high points in a

multidimensional field of gene combinations, where height corresponds to fitness.  When

the field has many local optima, the search becomes quite difficult.  When the number of

dimensions in the field becomes great, the search is even more difficult.  What the

computer simulations demonstrate is that minimal system of the genetic algorithm is a

highly efficient method for searching such a complex multidimensional space.  The first

experiment shows that even with a seventy dimensional field of genes, quite effective

strategies can be found within fifty generations.  Sometimes the genetic algorithm found

combinations of genes that violate the previously accepted mode of operation (not being

the first to defect) to achieve even greater effectiveness than had been thought possible.

2. Sexual reproduction does indeed help the search process.  This was

demonstrated by the much increased chance of achieving highly effective populations in

the sexual experiment compared to the asexual experiment.7  

3. Some aspects of evolution are arbitrary.  In natural settings, one might observe

that a population has little variability in a specific gene.  In other words one of the alleles

for that gene has become fixed throughout the population.  One might be tempted to

assume from this that the allele is more adaptive than any alternative allele.  However,

this may not be the case.  The simulation of evolution allows an exploration of this

possibility by allowing repetitions of the same conditions to see just how much

variability there is in the outcomes.  In fact, the simulations show two reasons why

convergence in a population may actually be arbitrary.
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a. Genes that do not have much effect on the fitness of the individual may

become fixed in a population because they "hitch-hike" on other genes that do (Maynard

Smith and Haigh, 1974).  For example, in the simulations some sequences of three moves

may very rarely occur, so what the corresponding genes dictate in these situations may

not matter very much.  However, if the entire population are descendants of just a few

individuals, then these irrelevant genes may be fixed to the values that their ancestors

happened to share.  Repeated runs of a simulation allow one to notice that some genes

become fixed in one population but not another, or that they become fixed in different

ways in different populations.

b. In some cases, some parts of the chromosome are arbitrary in content,

but what is not arbitrary is that they be held constant.  By being fixed, other parts of the

chromosome can adapt to them.  For example, the simulations of the individual

chromosomes had six genes devoted to coding for the premises about the three moves that

preceded the first move in the game.  When the environment was the eight

representatives, the populations in different runs of the simulation developed different

premises.  Within each run, however, the populations were usually very consistent about

the premises: the six premise genes had become fixed.  Moreover, within each population

these genes usually became fixed quite early.  It is interesting that different populations

evolved quite different premises.  What was important for the evolutionary process was

to fix the premise about which history is assumed at the start so that the other parts of

the chromosome could adapt on the basis of a given premise.

4. There is a tradeoff between the gains to be made from flexibility and the gains to

be made from commitment and specialization (March, 1991).  Flexibility might help in the

long run, but in an evolutionary system, the individuals also have to survive in the short

run if they are to reproduce.  This feature of evolution arises at several levels.

a. As the simulations have shown, the premises became fixed quite early.

This meant a commitment to which parts of the chromosome would be consulted in the
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first few moves, and this in turn meant giving up flexibility as more and more of the

chromosome evolved on the basis of what had been fixed.  This in turn meant that it

would be difficult for a population to switch to a different premise.  So flexibility was

given up so that the advantages of commitment could be reaped.

b. There is also a tradeoff between short and long term gains in the way

selection was done in the simulation experiments.  In any given generation there would

typically be some individuals that did much better than the average, and some that did

only a little better than the average.  In the short run, the way to maximize the expected

performance of the next generation would be to have virtually all of the offspring come

from the very best individuals in the present generation.  But this would imply a rapid

reduction in the genetic variability of the population, and a consequent slowing of the

evolutionary process later on.  If the moderately successful were also given a chance to

have some offspring, this would help the long term prospects of the population at the

cost of optimizing in the short run.  Thus there is an inherent tradeoff between

exploitation and exploration, i.e. between exploiting what already works best and

exploring possibilities that might eventually evolve into something even better (Holland,

1975, p. 160).

5. Evolutionary commitments can be irreversible.  For example, in most of the

populations facing the environment of the eight representatives, the individuals evolved

strategies which are very similar to TIT FOR TAT.  Since TIT FOR TAT had done best

in the computer tournament itself, I did not think that it would be possible to do much

better with an evolutionary process.  But as noted earlier, in about a quarter of the

simulation runs with sexual reproduction, the population did indeed evolve substantially

better strategies - strategies which were quite different from TIT FOR TAT.  These

highly effective strategies defected on the very first move, and often on the second move

as well, in order get information to determine whether the other player was the type that

could be exploited or not.  The more common populations of strategies cooperated from
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the beginning and employed reciprocity in a manner akin to TIT FOR TAT.  While these

more common strategies might easily mutate to try a defection at the start of the game,

such behavior would be extremely costly unless the individual already had effective ways

of using the information that resulted.  Moreover, once the population had evolved to be

about as effective as TIT FOR TAT, such mutation would have to be quite effective in

order to survive long enough to be perfected.  Thus, once the population takes a specific

route (in this case towards reciprocity) it can easily become trapped in a local maxima.

Indeed, only the fact that enough simulation runs were conducted lead to the discovery

that in this particular environment reciprocity was only a local maxima, and that

something better was in fact possible.  In a field situation such a discovery might not be

possible since there might be essentially just one gene pool.

Topics Amenable to Simulation

The methodology for the genetic simulation developed in this paper can be used to

explore learning processes in game theoretic settings.  Here is a list of issues that can be

studied with genetic simulations, inspired by analogs to evolutionary biology.

1. Mutation.  The simulation approach developed here suggests that there is an

inherent tradeoff for a gene pool between exploration of possibilities (best done with a

high mutation rate), and exploitation of the possibilities already contained in the current

gene pool (best done with a low mutation rate).  This in turn suggests the advantage of

having mutation rates adapt to the rate of change in the environment.8

2. Crossover.  In sexual reproduction, crossover serves to give each offspring

genetic material from both parents.  Crossover rates that are too low would frequently

give whole chromosomes of genetic material from a single parent to an offspring.  But

crossover rates that are too high would frequently split up co-adapted sets of alleles that

are on the same chromosome.  Perhaps the existence of a multiplicity of chromosomes
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(rather than one long chromosome) is more than a mechanical convenience, but is an

adaptation to the need from low crossover rates without the disadvantage of having each

offspring being likely to get genetic material from only one parent.

3. Inversion.  Inversion changes the order of the genes in a chromosome.  It can

bring co-adapted sets of alleles closer together on the chromosome so that they will be

split apart by crossover less often.  How is the ideal rate of inversion determined?

4. Coding principles.  Biological chromosomes are known to contain material that

does not directly code for proteins, but performs other roles such as marking the

boundaries of genes, or perhaps provides no function at all.  Genetic material may also

appear in highly redundant form in the chromosome.  Genetic simulation experiments

might shed new light on the theoretical implications of various coding schemes, and their

possible role in error reduction and regulation.  Or they might show how some genetic

material can exist as "free riders."

5. Dominant and recessive genes.  Mendel's famous experiments demonstrate that

dominant and recessive alleles serve to overcome Darwin's concern that blending of

parental characteristics would eliminate the variability of a population.  Genetic

simulation can be used to explore the implications of these and other genetic mechanisms

for the maintenance of population variability in the face of selection pressure for local

optimality.  In particular, it should be possible to explore just which types of phenotypic

features are best coded in terms of dominant and recessive genes, and which are best

coded in other systems of genetic expression.

6. Gradual vs. punctuated evolution.  Genetic simulation experiments might also

shed light on the contemporary debate about whether evolution proceeds in gradual steps

or whether it tends to move it fits and starts.  This type of work might require

simulations of tens of thousands of generations, but runs of such length are feasible.

7. Population viscosity.  Obstacles to random mating may exist due to geographic

or other forces tending to favor subdivisions of the population.  Some computer modeling
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has already been done for models of this type (Boorman and Levitt, 1980, pp. 78-87;

Tanese 1989) revealing clues about the qualitative features of the spread of a social trait

based upon frequency dependent selection.

8. Speciation and ecological niches.  When distinct ecological niches exist, a single

species tends to differentiate into two or more species to take advantage of the different

opportunities offered by the different niches.  In learning terms, differentiation into two

or more species means that a new strategy is formed from ideas represented in only part

of the total population.  Genetic simulation can explore this process by helping to specify

the conditions under which the advantages of specialization outweigh the disadvantages of

narrower mating opportunities and reduced ecological flexibility.  The fundamental point

is that thinking about genetics as a simulation problem gives a new perspective on the

functioning of learning processes.

The genetic simulations provided in this paper are highly abstract systems.  The

populations are very small, and the number of generations is few.  More significantly, the

genetic process have only two operators, mutation and crossover.  Compared to biological

genetics, this is a highly simplified system.  Nevertheless, the genetic algorithm displayed

a remarkable ability to evolve sophisticated and effective strategies in a complex

environment.
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Table 1-2

The Basic Simulation

* set up initial population with random chromosomes

* for each of 50 generations

   - for each of 20 individuals

      * for each of the 8 representatives

         - use premise part of the chromosome as individual's

           assumption about the three previous moves

         - for each of 151 moves

            * make the individual's choice of cooperate (C) or

              defect (D) based upon the gene that encodes

              what to do given the three previous moves

            * make the representative's choice of C or D based

              upon its own strategy applied to the history of the

              game so far

            * update the individual's score based upon the

              outcome of this move (add 3 points if both
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              cooperated, add 5 points if the representative

              cooperated and the individual defected, etc.)

   - reproduce the next generation

      * for each individual assign the likely number of matings

        based upon the scaling function (1 for an average

        score, 2 for a score one standard deviation above

        average, etc.)

      * for each of 10 matings construct two offspring from

        the two selected parents using crossover and mutation
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  Figure 1-1
  Prisoner's Dilemma 
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1I thank Stephanie Forrest and Reiko Tanese for their help with the computer programming,

Michael D. Cohen and John Holland for their helpful suggestions, and the Harry Frank

Guggenheim Foundation and the National Science Foundation for their financial support.

2The six premise genes encode the presumed C or D choices made by the individual and the

other player in each of the three moves before the interaction actually begins.
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3Some of these chromosomes give rise to equivalent strategies since certain genes might

code for histories that could not arise given how loci are set.  This does not necessarily

make the search process any easier, however.

4The score is actually a weighted average of its scores with the eight representative, the

weights having been chosen to give the best representation of the entire set of strategies in

the second round of the tournament.

5The criterion for being substantially better than TIT FOR TAT is a median score of 450

points, which compares to TIT FOR TAT's weighted score of 428 with these eight

representatives.

6This happened in 5 of the 40 runs with asexual reproduction compared to 11 of the 40

runs with sexual reproduction.  This difference is significant at the .05 level using the one

tailed chi-squared test.

7In biology, sexual reproduction comes at the cost of reduced fecundity.  Thus if males

provide little or no aid to offspring, a high (up to 2-fold) average extra fitness has to emerge

as a property of sexual reproduction if sex is to be stable.  The advantage must presumably

come from recombination but has been hard to identify in biology.  A simulation model has

demonstrated that the advantage may well lie in the necessity to recombine defenses to

defeat numerous parasites (Hamilton, Axelrod and Tanese, 1990).  Unlike biology, in

artificial intelligence applications, the added (computational) cost of sexuality is small.

8I owe this suggestion to Michael D. Cohen.


