
Complex Sy stem s 5 (1991) 19- 30

De Bruijn Graphs and Linear Cellular Automata

Klaus Sutner
St evens Institute of Technology, Hoboken, NJ 07030 USA

Abstract. De Bruijn graphs provide a convenient way to describe
configura tions of linear cellular automata (CAs). Using these graphs,
we give a simple quadra tic time algorithm to determine whether a
linear CA is reversible. Similarly, one can decide in quadratic time
whether the global map of the auto mato n is surjective. We also show
that every recursive configuration that has a predecessor on a linear
CA already has a recursive predecessor. By contradistinction, it is in
general impossible to comput e such a predecessor effectively.

1. Introduction

Cellul ar auto mata (CAs) are dyn amic systems : the space of all configur a­
ti ons is compact under the usu al product to po logy and the global CA map
is a cont inuous shift-invariant op erator on this space. On the ot her hand ,
configurations of a one-dimensional or linear CA may also be construed as
a biinfinite word over the state set of the automaton . Correspondingly, the
glob al rule of the CA may be interpreted as a finite-st ate t ran sducer that
acts on the sp ace biinfin it e words. With this interpretation one can then
apply ideas from the theory of formal languages to t he study of linear CAs.

Our work was motivated by the search for those pr operti es of CAs that are
effect ively decidab le. It was shown by Amoroso and Pat t that it is decidable
whether the global map of a one-d imensional CA is injective [1]. It is well
known that CAs are reversible- in the sense that there exists another CA
over the same alphabe t that reverses the evolut ion of configur ations on the
first-if and only if t he glob al fun ct ion is inj ecti ve, t hat is, reversible in
the set-t heoret ic sense. T his was shown in [16]. Hence reversibi lity of one­
dimensional CAs is decidable. By cont radist inction reversibility of higher­
dimensional CAs fails to be decidab le as was recently shown by Kar i [9].
The proo f is based on the existence of a combinatorial st ru ct ure in the plan e,
namely a spec ial directed tiling , which has no counte rpart in one dimension .
Simi larl y one can show that sur ject ivity of the global map is decidab le for
linear CAs bu t fails to be decidab le for all dimensions higher than one.

T he argument by Amoroso and Patt is purely combinatorial. Alt ern a­
t ive proofs were given by Culik [8] and Head [6] using automata theoret ic

© 1991 Complex Systems Publications, Inc.

20 Klaus Sut ner

methods. Cu lik uses the fact that a CA in dimension one is a spec ial type
of generalized sequent ial mapping and br ings to bear results about these
mappin gs. In Head 's work, the de Bruij n graphs intr oduced in [20] are used
to reduce injecti vity and surject ivity to an ambiguity problem for finit e au­
tomata .

Decidab ility by itself is sti ll a rather weak condition : the exist ing algo­
ri thm may demand unreasonabl e computational resources. Thus a property
of a CA my be decidab le but intract able. For example, to test for surject iv­
ity one can det ermine whether a certain nondeterministic finit e automaton
(NFA) accepts all st rings over it s alphabet . The NFA can be described con­
veniently in term s of de Bruijn graphs, as shown in sect ion 2 below. The
st andard algorit hm to determine whet her an NFA accepts all inpu ts involves
the const ruc t ion of a det erministi c simulat ion automaton and in general re­
quires exponent ial t ime as well as expo nenti al space. Indeed , for arbitrary
NFAs it is PSPACE-hard to test whether the automato n accepts all inputs
(see [3]).

However , we will show that for the NFAs arising from linear CAs the
problem can be solved in qu adratic time. Hence sur ject ivity of a linear CA
map can be test ed in quadratic time. Our algorithm uses only standard graph
theoretic met hods and is st raight forward to implement. Complet e pr ograms
written in Mathematica are available from the author. A slight modificat ion
of our algor it hm allows one to determine reversibility of a linear CA quadr atic
t ime.

One of the historically first probl ems to be studied in connection with CAs
is the exis tence of configurations wit hout pr edecessors. T hese configur at ions
are ofte n referred to as Gardens-of-Eden [2, 12, 14]. Clearly a Gard en-of-Eden
exists if and only if the global map of the auto maton fails to be surject ive.
The de Bruijn graphs in our decision algorithms can also be applied to the
study of pr edecessor configurat ions in linear CAs.

T he existence of a pr edecessor configurat ion of a given target configu­
rat ion Y is tan tamount to the existence of a path in the de Bruijn graph
whose label sequence is Y. For spat ially period ic configurat ions on linear
CAs, one can easily see that such a path existence problem can be solved in
nondeterministi c logarithmic space. It is shown in [18] that the pr oblem is
indeed NLOG-complete.

Ret urning to infinite CAs, Golze [4] studied restrict ions of the global map
to vario us classes of configur at ions , namely finit e configur at ions, spacially
periodic configurations, and recursive configurat ions . It is shown there that
for linear CAs any finite configurat ion that has a predecessor already has a
periodic predecessor .

In this pap er we will demonstrate that in any linear CA a recursive con­
figur ati on wit h a pr edecessor must already have a recurs ive predecessor. Our
pro of is based on a slight ly more general resul t ab out the existence of re­
cursive pat hs in time-dependent graphs (see sect ion 3). Note that there is
no analogous result for dimensions larger than one . Indeed , it was shown by
Hanf and Myers [5, 13] that one can const ruct sets of t iles that permit a t iling

De Bruijn Graph s and Lin ear Cellular A utom at a 21

of the whole plane, but any such tiling must be nonrecursive. It follows that
for some two-dimensional CA the homogeneous target configuration consist­
ing of O's only has no recursive pr edecessor , but fails to be a Gard en-of-Eden
(see also [4]).

At any rate, even in one dimension the recursive pr edecessor in general
cannot be effect ively const ru cte d from the target cor-figuration . Even if it
is kn own that there are only finit e possible pr edecessors, all of which are
recur sive, it is impossible to choose the proper one algorithmically.

Note that a rough upper bound for the complexity of a pr edecessor of a
recursive configur at ion can be derived from the Kreisel Basis Theorem: the
class of all pr edecessors of a recursive configuration Y is II~. Hence, by the
theorem , Y must have a .6.g pr edecessor (see [17]). Our resul ts impr ove this
up per bound to .6.~.

Apart from the introdu ct ion this pap er contains three sect ions. In sec­
tion 2 we present quadrat ic t ime algorithms for inject ivity and surject ivity.
Secti on 3 cont ains the result s for recursive pr edecessors. Lastly, in sect ion 4
we summarize our result s and pose some open problems. To keep this pa­
per reasonab ly short we will not review the basic definitions from lan guage
theory and recursion theory. We refer the read er to references [7] and [17].

2 . Definitions

We will mostly consider one-dimensional cellular automata. Thus a configu­
ration of the automaton is a map X : Z ----> ~ from the set of all cells to th e
alphabet . Here Z denotes the integers and ~ is the collect ion of states . For
our purposes it is convenient to think of configur at ions as biinfinit e words.
For any alphab et ~ denotes by ~' , ~w , w~ and w~w t he collect ion of finite
words, infini t e words, coinfinite words, and biinfinit e word s over ~ , resp ec­
ti vely (our w notation is taken from [15]). For a word X let X i be the
ith symbol in X and for -00 :::; n :::; m :::; 00 let X[n :m] be the subword
X nXn +1 .. . X m of X. Define the s-fusion operat ion on words in E" as follows:

U <::) v = w ¢=} 3x E ~s , Uo ,Vo E ~. (U = uox ,v = xVo,w = uoxvo)

Not e that <::) is a partial operation . T he s-b locking operation on ~. is defined
by (3 (x) := (x [l: s], . .. , x [n - s + l:n]) , where n := [z]. Similarly one defines
fusion and blocking on infinite words. Since the app ropriate s will always be
clear from context , we have chosen not to burden our notation by displaying
it , say as a subscript .

A linear CA may now be described as follows. A local rule is a map
p : ~2r+1 ----> ~ . Here r ~ 1 is the radi us of the rule. For X E w~w define the
global rule (also denoted by p) by

p(X)(i) := p((3(X)i)

An elegant represent at ion of linear CAs uses lab eled de Bruijn graphs
(see [20]). To this end let ~ be an alphabet and s ~ 1 a number , and define

22 Klaus Sutner

Figure 1: The de Bruijn graphs B (2, {O, I }) and B 150 for rule 150.

the de Bruijn graph B (s , I;) as follows: B (s , I;) has vertex set I;s and edges
(ax , xb) for all a,b E I; , x E I;s-l. Figure I shows B (2,{O,I}) .

Now consider a ru le p of radius r ::::: lover alphabet I; . Define B p to be the
de Bruijn graph B(2r, I;) , where edge (ax ,xb) is lab eled by p(axb) E I;. Note
that this is equivalent to lab eling edge (u,v) by p(u 0 v). Here 0 denotes
(21' - l j-fusion. A biinfinite path U in Bp is but a biinfinite word over I;2r.

We associate two biinfinit e words over I; , the trace of U and t he labeling of
U, with U as follows:

tr (U) = QUi

lab(U) = p(Ui 0 Ui+l)

It is clear from the definitions that p(t1'(U)) = lab(U). Thus Bp may be
const rued as a Fischer automato n (a nondeterminist ic finit e auto maton where
every state is init ial as well as final) that recognizes biinfinit e words in p(WI;W).

For the purpose of our injectivity test ing algorithm, recall tha t a subset
Vo of a dir ected graph G = (V, E) is strongly connected if and only if for
any two vertices x and y in Vo there exists a path from x to y. A strongly
connected component (SCC) is a maximal st rongly connecte d subset . It is
well known that the SCCs of a graph can be computed in t ime linear in t he
size of the graph (see [11]). After computing the SCCs, one can form a new
directed graph 1), t he collapse of G . 1) contains one node for each SCC of
G. There is an edge in 1) from C to C' if and only if there is a path in G
from some vertex in C to some vertex in C'. Plainl y, 1) is acyclic. Hence 1)

De Bruijn Graph s and Linear Cellular Automata 23

can be topologically sorte ; that is, one can enumerate the vertices of D as
{C1 , . . . , Cd in such a way that whenever there is an edge (Ci , Cj) in D t hen
i < j . Indeed, the sorting can again be accomplished in linear time (see [11]).

The top ological sort ing can be used to eliminate all transien t p oints of G,
that is, vert ices that fail to lie on at least one biinfinit e path in G. Call an
SCC trivial if and only if its induced subgraph contains no edges. Observe
that a vertex is nontransient if and only if it lies in a nontrivial SCC or
it lies on a path from a nont rivial SCC to another. This gives rise to the
following algorithm to delete all the nontransient points. First mark all the
nontrivial SCCs in the collapse D. Then sweep across the graph in order of
the topological sort . Whenever a marked vertex is encounte red , mark all its
immediat e successors. Upon complet ion of the sweep , delete all unm arked
nodes. Then reverse all arcs in D and repeat the pro cess. It is easy to see
that upon complet ion of the second step exactly those SCCs surv ive that
contain nont ransient vert ices of G . Both sweeps are linear in the size of G.
For future reference, denote by G the graph obtained from G by delet ing all
transient po int s.

An interesti ng property of CAs is tha t t hey are reversible- in the sense
that there exists another CA over the same alphabet tha t reverses the evo­
lution of configurat ions on the first- if and only if the global funct ion p is
injective. This was shown in [16]. Since injectivi ty can be tested in quadratic
t ime , we have the following t heorem.

Theorem 2 .1. For one-dimensional cellular automata, reversibility is decid­
able in quadratic time.

Proof. It follows from the previous remarks that rule p fails to be injective
if and only if there are two distinct biinfinite paths V and U in the de Bruijn
graph Bp with the same sequence of labels: lab(V) = lab(U).

T he lat ter condit ion can be tested as follows. Define a new graph B;
that has vert ices ~2r X ~2r. Fur thermore, [(ax, by), (xa' ,yb')J is an edge in
B; if and only if p(axa') = p(byb'). Also, let 6. := { (w,w) Iw E ~2r} denot e
the diagonal in B;. It is well known that de Bruijn graphs are Hamil tonian.
Since 6. is an isomorphi c copy of Bp , it follows that 6. is contained in one
SCC Ce:,. of B; . As described in the remarks precedin g the theorem, let B~

be the graph obtained from B;by removing all t ransient points.

Claim: Rul e p is inject ive if and only if 6. = B~ .

ote that any two biinfinit e paths U and V in Bp wit h the same labeling
t race a biinfinite path in B; and hence in B~. The converse also holds .

To verify the claim , first suppose p fails to be injective. T hen we can
choose U '" V but with p(tr(U)) = p(tr (V)) , tha t is, with the same

labeling in Bp . Then, however , the corresponding path in B~ cannot lie

ent irely wit hin 6. , and it follows that 6. '" B~ .

24 Klaus Sutner

For the oppos ite direction suppose we have a biinfinite path W = ((Vi,Ui))

in B~ , not ent irely in t:. . Letting V = (Vi) and U = (Ui) it is clear that U

and V are distinct , but p(tr (V)) = p(tr(U)) . Hence p is not injecti ve and
we are through.•

As pointed out above we can construct B~ in ti me linear in the size of B;
and therefore quadratic in the size of Bp . However , the size of the de Bru ijn
graph is pr ecisely the same as the size of the local rule p, spec ified as a table.
T hus , a one-dimensional rul e p can be test ed for injectivity in quadratic t ime .

Reversibi lity in the last lemma refers to injecti vity of the global functi on
for arbitrary configurations . One frequently studies the subclass of finite
configurat ions , nam ely, biinfinite words of the form wozow , wher e Z E I;*

and 0 is a spec ial symbo l. Let us call p locally injective if an d only if, for all
finit e configurations X and Y , p(X) = p(Y) implies X = Y . Let X = * Y iff
X and Y disagree only in a finit e number of places. It is straight forward to
show that p is locally injective if and only if, for all configurat ions X = * Y,
p(X) = p(Y) implies X = Y . It can be shown that local injectivity of p is
equivalent to surjectivity of p (see [16] and [10]). T he latter characterizat ion
is the basis for the next theorem.

Theorem 2 .2 . For one-dim ensional cellular automata, surjectivity of the
global m ap is decidable in quadratic tim e.

Proof. Let B~ be the nontr ansient part of the product de Bruijn graph as
in the last proof. Recall that Ceo. denotes the SCC containing t:. .

Claim: Ru le p is locally inj ect ive if and only if t:. = Ceo. .

To see this, first assume t hat p fails to be locally injecti ve. Then by the
remark preceding the theorem, there are two configur at ions X 01= Y that
disagree only in a finite number of places and map to the same configuration
under p. Let W be the corresponding biinfinite path in B~. Plainly, W has
an infini te init ial segment and an infinite fina l segment in t:. . However , since
X 01= Y t he path W cannot be entirely in t:. ; consequently, t:. 01= Cs .

For the opposite dir ect ion suppose that t:. 01= Ceo.. Then there exists a
biinfinit e pat h W in B~ such that W has an infinite init ial segment and
an infinite final segment in t:. , but W do es not lie ent irely in t:.. W read­
ily translat es into two configurat ions that witness p's failur e to be locally
injective.

As in the last theorem it can be seen that the necessar y computat ions
take only quadrat ic t ime. •

Ex am ple. Consider the elementary ru le p with code number 150 (add it ion
mo dulo 2). The SCC of B~50 containing t:. consists only of t:. itself. Indeed ,
there are exactly two SCCs: t:. , and all other vertices. Hence, rule 150 is
locally injective but not inject ive. Similarly for rule 90 one can see th at BJo

De Br uijn Graphs and Linear Cellular A utomata 25

is par ti ti oned into exact ly three SCCs, one of them being 1::>.. Hence rul e 90
is also locally injective but not injective.

Rule 30 produces a pro duct graph with two nontrivial SCCs, one of them
I::>. and the ot her containing 8 vert ices. Two vertices in B io are tran sient, and
the collapse of B jo has diamond shape. Again , rul e 30 is locally injective bu t
not inj ective.

As an example of an injective elementary CA , consider ru le 15. B is has
13 sccs, but only one nontrivial SCC , namely 1::>..

Lastl y, Bi7 is st rongly connect ed . Thus rul e 37 is not even locally injec­
tive.

3 . Recursive predecessors

In answer to a question posed by Golze [4J we now show that , in any linear
cellular automata , a recurs ive configur at ion with a pr edecessor must already
have a recursive predecessor. To demonstr ate the existence of a recursive
pr edecessor , we first establish a slight ly more general resul t about the ex­
ist ence of recur sive infinit e path s in cert ain recurs ive graphs . The graphs
under considerat ion are given by a finite st atic graph and a recursive func­
ti on that descr ibes the evolut ion of the static graph in time. A similar type
of t ime-depend ent graph was used in [19J to establish PSPACE-hardness of
motion planning problems in the presence of moving obstacles.

A tim e-dependent graph G(W) consist s of a finite direct ed graph G =

(V,E) and an alph ab et ~ C P(E). For any word W E ~w the time-depend ent
graph G(W) is defined as follows. The vertices of G(W) are V x N , and the

edges are given by E(W) := { ((p,t) , (q,t + 1)) I (p,q) E W(t) }.
G is the underlying static graph. For lat er use let us define the reachable

set of a vertex (p,t) at time s as

R((p,t), s) := {q E V I t here exists a path from (p,t) to (q,s)
in G(W) }

For a set P of po ints in V x N let R(P, s) = U XEP R(x , s). We will be
int erest ed mostl y in t he case where W const rue d as a map from N to ~ is
a recursive function. G(W) is then called a recursive t ime-depend ent grap h.
Note that , in a recursive time-depend ent graph, R((p,t), s) is computable
uniform ly in p , s , and t .

Example. Let G = (V,E) be the complete directed graph on two points
with self-loops; thus V = {O, I} and E = {(O , 0), (0, 1) , (1,0) , (1, In . Define
alphabet ~ = {S, B , L, R} by S := E , B := {(O , 0) , (1, In , L = {(O, on , and
R = {(I , In . Here S stands for switch , B for both, L for left , and R for
righ t (see figur e 2).

Now let W E ~w be an infin ite word . A moment 's thought revea ls that
G(W) has an infinite path if and only if W does not contain a subword of
the form L B kR or RBkL . Thus the collect ion of all t ime-dependent grap hs

26

I
L

CD

CD

I
@

@

B

R

Klaus Sutner

I
I

Figure 2: The four components of the time-dependent graph G.

over G with an infinit e path forms a regular set in the sense of [15J. This is
t rue for all t ime-dep endent grap hs.

We claim that for the st atic graph G defined as above any recursive t ime­
dependent graph G(W) with an infinite path has a recursive infinit e path.
To see t his, note that we can disti nguish the following two cases.

Case 1. W contains only finit ely many symbols S . Then there is a recursive
path of the form P = Poiw where Po is finit e and i = 0 or i = 1.

Case 2. W contains sym bol S infini tely often. In this situation we can ob­
tain a recursive path by sear ching for the next occurrence of S and
choosing, say, the lexicographically first finit e path to that next occur­
rence of S . More precisely, suppose we have already const ructe d an
ini tial segment of the recursive path P up to some t ime t such that
W(t) = S . Then we can comp ute t' > t mini mal such that W (t') = S .
Since W[t:t'J E S(B + L)*S+S(B+R)*S , we can exte nd P up to t ime
tl

It should be noted , however , that the recurs ive path cannot be generated
effect ively from W; see also lemma 3.1 below.

Theorem 3.1. Every recursive tim e-dep endent graph with an in fini te path
bas a recursive in finite path .

Proof. Let G(W) be a recursive t ime-dependent grap h with an infinite path.
For t .:::: 0 define the support of t by spt(t) := { P (t) I P an infini te path} .
A set Q c V is persist ent if and only if there are infinitely many t such that

De Bruijn Graph s and Lin ear Cellular Autom ata 27

spt(t) = Q . Since G(W) cont ains an infinit e pat h , we may pick a nonempty
persistent set Q. Not e that {t I spt(t) not persistent} is necessari ly finite.
Hence there exists a to 2: 0 such that spt (to) = Q , and for all t 2: to the
support of t is persist ent. Let us define a pr edicate P (T, s) on N x N as
follows:

P (T,S) <¢===? Vq E R(QX {T},S)- Q3 t> s (R ((q,s) , t) = 0)

Thus P (T, s) holds if and only if no pat h in G(W) st arting at some node in
Q at time T and passing through a node not in Q at time t has an infini te
ext ension. Clearly P is recursively enumerable. Also note that the dom ain
of P contains all t imes t such that spt(t) = Q. We have the following claim.

Claim : For all t 2: to, P (to, t) if and only if spt(t) = Q.

First suppose that P (to, t) holds. Since every infinite pat h must pass
through Q at time to, no infini te path can fail to pass through Q at time t .
All paths through Q x {to} and (V - Q) x {t} are finite by our assumption .
Hence spt (t) C Q , and ther efore spt (t) = Q by the minimality of Q.

For the opposit e direction let spt (t) = Q. Consider a po int q not in Q , but
with (q, t) reachab le from Q x {to}. If we had Vt' > t (R ((q,t),t') # 0) then,
by compactness , there would be an infinite path starting at (q,t). However ,
q would then be in the support oft and hence in Q, which is a cont radict ion .
T hus P (to, t) holds as required . •

Using L;I-uniformization we may choose a parti al recursive function f
that un iformizes P . Since the domain of f is the same as the domain of P ,
it must include all ti mes t such that spt(t) = Q. Define tn := r(to) for all
n 2: o. It follows from the claim that the sequence (ti)i>Ois well defined.
Also note that (ti)i>O is st rict ly increasing.

We can now const ruct a recur sive infini te path through G(W) as follows.
First choose an init ial segment from time t = 0 to a po int Po in Q at t ime
to. Suppose a par t of the path up to (Pi, ti) has been const ructe d, so Pi E
Q. Since spt(t i) = Spt (ti+l) = Q , it follows that there exists a path from
(Pi, ti) to (Pi+ I, ti+!) for some Pi+! E Q . Choose one such path, say the
lexicographically first . Since the sequence (ti)i>Ois computable, we obtain a
computab le infini te path thro ugh G(W). -

Theorem 3.2. In any linear cellular automata the existence of a predecessor
of a recursive con figuration implies th e existence of a recursive predecessor.

Proof. In light of the last theorem it suffices to show how the existence of
recursive pr edecessors can be translated into the existence of infinite recursive
paths in a suitable time-dep end ent grap h . As we saw in the last sect ion , the
existence of a pr edecessor of some configuration X E wL;w is equivalent to the
exist ence of an biinfinite path in the de Bru ijn grap h of the automaton. Now
let B; be the graph obtain ed from B p by reversing all the edges. Clearly there
is a biinfinite pat h labeled X in Bp if and only if for every decomposition

28 Klaus Sutner

x = X o 0 Z 0 X l> X o E wL; , Z E L;2r - \ .x, E L;w, t here is an infinit e path
(one-way !) in Bp starting at Z labeled X o, and an infinit e path in B; start ing
at Z labeled Xl'

Now fix some decomposition X = X o 0 Z 0 Xl . For any symbol (J E L;

let E" := { e I e an edge in Bp lab eled (J}. Thus, for any word Z 0 V E L;w,

we have a t ime-depend ent graph Bp(Z 0 V) that contains an infini t e path
starting at Z if and only if there exist s a biinfinit e word X such that p(X) =
U 0 Z 0 V . If X is recursive, so is Bp(Z 0 V). Hence, by t he last t heorem
there exists a recursive infinit e path in Bp(Z 0 V) if t here exists any path at
all.

The argume nt for the reverse graph B; is ent irely similar. T hus we have
two recursive paths in the two t ime-depe ndent graphs that can be combined
to produce one recursive biinfinit e path in the original de Bruijn graph Bp .

As we have seen , this path corresponds to a recur sive predecessor of X . •
T he proof of theorem 3.1 suggests that the recursive path cannot in gen­

eral be obtained effect ively from t he target configuration . For example, it is
not hard to show t hat persist ence is not a recurs ive proper ty. T hus one can­
not hop e to compute the paramet er Q used in t he definit ion of the sequence
(tik:~ O ' The same holds for paramet er to. T he following lemma shows t hat
indeed recursive predecessors in one-dime nsional CAs cannot in general be
constructe d effectively.

Lemma 3 .1. Let p be a linear cellular automaton . Then in general th ere
is no effective m eth od to determine a recursive predecessor for a recursive
configuration with a predecessor.

Proof. It is routine to const ruct a linear CA with alphabe t L; = {a,b, c, d}
such that

p(WabaW)

p(WcdcW)

p(W aW)

All other blocks are mapped to d. For e 2: 0, define a word 1";, E wL;w as
follows .

Y, (n) . ~ { ~
if n :::; 0 is mi nim al such that {e}n(e) ~ 0,
if n :::; 0 is minimal such tha t {e}n(e) ~ 1,
otherwise

Here {e}n(x) ~ y means the et h parti al recursive fun cti on on input x con­
verges afte r n steps wit h output y. Sim ilarly {e}(x) ~ y means t he et h partial
recursive fun ct ion on input x converges on out put y . To de termine whether
{e}(e) ~ y for some y is the Halting problem and well known to be undecid­
able (see [17]) . Note that Ye = waw , 1";, = W abor', or 1";, = W aca" , dep ending on
whet her a certain computation diverges, converges on 0, or converges on 1.

De Bruijn Graphs and Linear Cellular A utomata 29

Thus every configuration 1';, has a recursive predecessor. Now supp ose that
such a predecessor (or rather, an index thereof) could be computed effec­
t ively. T hen the set A := { e I X(O) = a, X the pr edecessor of 1';, } would be
recursive. By the S;;:' theorem there is a pr imit ive recursive fun ction p such
t hat {p(e)}(x) ~ 1 for all x if and on ly if {e}(e) converges and {p(e)}(x) di­
verges for all x otherwise. But then {e}(e) converges if and only if p(e) 'f- A.
It follows from the und ecidability of the Halt ing problem that A is not re­
curs ive, and we have the desired cont radict ion . •

Not e t hat t he configurat ions Ye from above provide a simple proo f for the
assert ion that in two-dimensional CAs a recursi ve t arget configuration may
fail to have a recur sive predecessor , but st ill not be a Garden-of-Eden . To
this end one arranges all t hese configurations into a two-dimensional tar­
get configurat ion , say parallel to the z-axis in the upper half-plan e and
separate d by blanks . Any pr edecessor of this configurat ion rest ricte d to
the y-axis is essentially the characteristic func tion of the diago nal set K =

{ e I {e}(e) converges }. Hence no predecessor can be recursive.

4. Conclusion

We have shown that reversibility of a one-dimensional cellular automaton
is decidab le in quadrat ic time using standard graph theoretic algor it hms.
Simil arly one can decide in quadratic time whe ther the limi t set of the au­
tomaton is the whole space of configurations . Both prope rt ies ar e known to
be un decidable even in two dimensions (see [9]) .

Our pro of shows that one can det ermine in polynomial t ime whether
cert ain restrict ed nondeterminist ic automata accept every string over their
input alphab et . T he automata under consideration here have the sp ecial
property that all states are ini ti al and fina l. Such devices are usually referr ed
to as Fischer automata . We do not know whether acceptance of all inputs can
be tested in po lynomial time for ar bit ra ry Fischer automata. For arb it rary
nondet erministi c aut omata the problem is known to be PSPACE -complete .

By unfolding de Bruijn graphs int o an associated infinite graph, we have
shown that all recursive configurations with an ar bit ra ry predecessor must
already have a recur sive predecessor. However , t he recur sive pr edecessor in
genera l cannot be effect ively comput ed from the target configurat ion . Again ,
there are no analogous resul t s for two-d imensional CAs; in a two-dimensional
CA even a t rivial t ar get configuration may have only nonrecur sive pr edeces­
sors (see [5, 13]) .

References

[1] S. Amoroso and Y . N . Patt , "Decision P rocedures for Sur je ct ivity and Injec­
t ivity of Parallel Maps for Tesselation Struct ur es ," Journal of Com p uters and
System Science, 6 (1972) 448-464.

[2] A . W. Burks , Essay s on Cellular A utom at a (University of Illinois P ress,
Urbana-Champaign, Illinois, 1970) .

30 Klaus Sutner

[3] M. R. Garey and D. S. Johnson , Comp uters and In tractabili ty (Freeman,
1979).

[4] U. Golze, "Differences between 1- and 2-Dimensional Cell Spaces," in
Automata, Languages and Development , edited by A. Lindenmayer and
G. Rozenberg , pp. 369-384 (North-Holland, 1976).

[5] W. Hanf, "Nonrecursive T ilings of the P lane I ," Journal of Symbolic Logic,
39(2) (1974) 283-285.

[6] T . Head , "Linear Cellular Automata: Inj ect ivity from Ambiguity," forthco m­
ing.

[7] J. E . Hopcroft and J. D. Ullman , In trodu ction to A utom ata Th eory, Lan­
g uages and Comp utation (Addison-Wesley, 1979).

[8] K. Culik II , "On Invertible Cellular Automata," Complex System s, 1(6)
(1987) 1035-1044.

[9] J . Kari , "T he Undecidability of Inj ectivity and Surj ecti vity of Two­
Dimensional CAs," CA '89 , Los Alamos, New Mexico.

[10] A. Maruoka and M. Kimura, "Injec tivity an d Surj ectivity of Par allel Map s
for Cellular Au tomata," Journal of Computers and System Science, 18 (1979)
47-57.

[11] K. Mehlhorn , Da ta St ructures and Algoritbms 2: Grapb A lgoritbms and NP­
Completeness (Springer-Verlag, Berlin , 1984) .

[12] E. F . Moore, "Machine Models of Self-Reproduction ," in Essays on Cellular
A utomata [2] .

[13] D. Myers , "Nonr ecur sive T ilings of the P lane II," Journal of Symbolic Logic,
39(2) (1974) 286-294.

[14] J. My hill, "T he Converse of Moore 's Gard en-of-Eden T heorem," in Essays on
Cellular A utomata [2].

[15] M. Nivat and D. Pe rrin , "Ensembles Reconna isa ble de Mot s Biinfinis," Tech­
nical Repor t 84-68 , Un iversite Paris 7.

[16] D. Richar dso n, "Tesselat ion wit h Local Transformation ," Journ al of Compu t-
ers and System Science, 6 (1972) 373-388.

[17] J . R. Shoenfield , Me ihemeiicsl Logic (Addison-Wesley, 1967).

[18] K. Sutner , "T he Complexity of F init e Cellular Automata ," forthcoming.

[19] K. Sutner and W . Maass, "Mot ion P lan ning among Time-Dependent Obst a­
cles," Acta Inform atica, 26 (1988) 93-122.

[20] S. Wolfram, "Comp utation T heory of Cellular Au tomata ," Communicat ions
in Matbemat ical Physics, 96 (1) (1984) 15- 57.

