Complex Systems 5 (1991) 19-30

De Bruijn Graphs and Linear Cellular Automata

Klaus Sutner
Stevens Institute of Technology, Hoboken, NJ 07030 USA

Abstract. De Bruijn graphs provide a convenient way to describe
configurations of linear cellular automata (CAs). Using these graphs,
we give a simple quadratic time algorithm to determine whether a
linear CA is reversible. Similarly, one can decide in quadratic time
whether the global map of the automaton is surjective. We also show
that every recursive configuration that has a predecessor on a linear
CA already has a recursive predecessor. By contradistinction, it is in
general impossible to compute such a predecessor effectively.

1. Introduction

Cellular automata (CAs) are dynamic systems: the space of all configura-
tions is compact under the usual product topology and the global CA map
is a continuous shift-invariant operator on this space. On the other hand,
configurations of a one-dimensional or linear CA may also be construed as
a biinfinite word over the state set of the automaton. Correspondingly, the
global rule of the CA may be interpreted as a finite-state transducer that
acts on the space biinfinite words. With this interpretation one can then
apply ideas from the theory of formal languages to the study of linear CAs.

Our work was motivated by the search for those properties of CAs that are
effectively decidable. It was shown by Amoroso and Patt that it is decidable
whether the global map of a one-dimensional CA is injective [1]. It is well
known that CAs are reversible—in the sense that there exists another CA
over the same alphabet that reverses the evolution of configurations on the
first—if and only if the global function is injective, that is, reversible in
the set-theoretic sense. This was shown in [16]. Hence reversibility of one-
dimensional CAs is decidable. By contradistinction reversibility of higher-
dimensional CAs fails to be decidable as was recently shown by Kari [9].
The proof is based on the existence of a combinatorial structure in the plane,
namely a special directed tiling, which has no counterpart in one dimension.
Similarly one can show that surjectivity of the global map is decidable for
linear CAs but fails to be decidable for all dimensions higher than one.

The argument by Amoroso and Patt is purely combinatorial. Alterna-
tive proofs were given by Culik [8] and Head [6] using automata theoretic

© 1991 Complex Systems Publications, Inc.

20 Klaus Sutner

methods. Culik uses the fact that a CA in dimension one is a special type
of generalized sequential mapping and brings to bear results about these
mappings. In Head’s work, the de Bruijn graphs introduced in [20] are used
to reduce injectivity and surjectivity to an ambiguity problem for finite au-
tomata.

Decidability by itself is still a rather weak condition: the existing algo-
rithm may demand unreasonable computational resources. Thus a property
of a CA my be decidable but intractable. For example, to test for surjectiv-
ity one can determine whether a certain nondeterministic finite automaton
(NFA) accepts all strings over its alphabet. The NFA can be described con-
veniently in terms of de Bruijn graphs, as shown in section 2 below. The
standard algorithm to determine whether an NFA accepts all inputs involves
the construction of a deterministic simulation automaton and in general re-
quires exponential time as well as exponential space. Indeed, for arbitrary
NFAs it is PSPACE-hard to test whether the automaton accepts all inputs
(see [3]).

However, we will show that for the NFAs arising from linear CAs the
problem can be solved in quadratic time. Hence surjectivity of a linear CA
map can be tested in quadratic time. Our algorithm uses only standard graph
theoretic methods and is straightforward to implement. Complete programs
written in Mathematica are available from the author. A slight modification
of our algorithm allows one to determine reversibility of a linear CA quadratic
time.

One of the historically first problems to be studied in connection with CAs
is the existence of configurations without predecessors. These configurations
are often referred to as Gardens-of-Eden [2, 12, 14]. Clearly a Garden-of-Eden
exists if and only if the global map of the automaton fails to be surjective.
The de Bruijn graphs in our decision algorithms can also be applied to the
study of predecessor configurations in linear CAs.

The existence of a predecessor configuration of a given target configu-
ration Y is tantamount to the existence of a path in the de Bruijn graph
whose label sequence is Y. For spatially periodic configurations on linear
CAs, one can easily see that such a path existence problem can be solved in
nondeterministic logarithmic space. It is shown in [18] that the problem is
indeed NLOG-complete.

Returning to infinite CAs, Golze [4] studied restrictions of the global map
to various classes of configurations, namely finite configurations, spacially
periodic configurations, and recursive configurations. It is shown there that
for linear CAs any finite configuration that has a predecessor already has a
periodic predecessor.

In this paper we will demonstrate that in any linear CA a recursive con-
figuration with a predecessor must already have a recursive predecessor. Our
proof is based on a slightly more general result about the existence of re-
cursive paths in time-dependent graphs (see section 3). Note that there is
no analogous result for dimensions larger than one. Indeed, it was shown by
Hanf and Myers [5, 13] that one can construct sets of tiles that permit a tiling

De Bruijn Graphs and Linear Cellular Automata 21

of the whole plane, but any such tiling must be nonrecursive. It follows that
for some two-dimensional CA the homogeneous target configuration consist-
ing of 0’s only has no recursive predecessor, but fails to be a Garden-of-Eden
(see also [4]).

At any rate, even in one dimension the recursive predecessor in general
cannot be effectively constructed from the target configuration. Even if it
is known that there are only finite possible predecessors, all of which are
recursive, it is impossible to choose the proper one algorithmically.

Note that a rough upper bound for the complexity of a predecessor of a
recursive configuration can be derived from the Kreisel Basis Theorem: the
class of all predecessors of a recursive configuration Y is I19. Hence, by the
theorem, ¥ must have a AJ predecessor (see [17]). Our results improve this
upper bound to AY.

Apart from the introduction this paper contains three sections. In sec-
tion 2 we present quadratic time algorithms for injectivity and surjectivity.
Section 3 contains the results for recursive predecessors. Lastly, in section 4
we summarize our results and pose some open problems. To keep this pa-
per reasonably short we will not review the basic definitions from language
theory and recursion theory. We refer the reader to references [7] and [17].

2. Definitions

We will mostly consider one-dimensional cellular automata. Thus a configu-
ration of the automaton is a map X : Z — ¥ from the set of all cells to the
alphabet. Here Z denotes the integers and ¥ is the collection of states. For
our purposes it is convenient to think of configurations as biinfinite words.
For any alphabet ¥ denotes by ¥*, 3¢, “¥ and “X* the collection of finite
words, infinite words, coinfinite words, and biinfinite words over ¥, respec-
tively (our w notation is taken from [15]). For a word X let X; be the
ith symbol in X and for —co < n < m < oo let X[n:m] be the subword
XouXnt1 .. X of X. Define the s-fusion operation on words in ¥* as follows:

u@Qu=w <= dz € X% ug,vy € 2*(u=uox,v :zvo,wzuoxvo)

Note that ® is a partial operation. The s-blocking operation on ¥* is defined
by B(z) = (z[1:s],...,z[n — s+ 1:n]), where n := |z|. Similarly one defines
fusion and blocking on infinite words. Since the appropriate s will always be
clear from context, we have chosen not to burden our notation by displaying
it, say as a subscript.

A linear CA may now be described as follows. A local rule is a map
p: 271 — 3. Here r > 1 is the radius of the rule. For X € “3“ define the
global rule (also denoted by p) by

p(X)(@) == p(B(X):)

An elegant representation of linear CAs uses labeled de Bruijn graphs
(see [20]). To this end let ¥ be an alphabet and s > 1 a number, and define

22 Klaus Sutner

Figure 1: The de Bruijn graphs B(2,{0,1}) and Bjs for rule 150.

the de Bruijn graph B(s,X) as follows: B(s,X) has vertex set ¥* and edges
(az, zb) for all a,b € T, z € T, Figure 1 shows B(2,{0,1}).

Now consider a rule p of radius 7 > 1 over alphabet 3. Define B, to be the
de Bruijn graph B(2r, 3), where edge (az, zb) is labeled by p(azb) € =. Note
that this is equivalent to labeling edge (u,v) by p(u ® v). Here ® denotes
(2r — 1)-fusion. A biinfinite path U in B, is but a biinfinite word over % .
We associate two biinfinite words over X, the trace of U and the labeling of
U, with U as follows:

t’I‘(U) = O U,,
lab(U) = p(U; © Uia)

It is clear from the definitions that p(tr(U)) = lab(U). Thus B, may be
construed as a Fischer automaton (a nondeterministic finite automaton where
every state is initial as well as final) that recognizes biinfinite words in p(*X*).

For the purpose of our injectivity testing algorithm, recall that a subset
Vo of a directed graph G = (V, F) is strongly connected if and only if for
any two vertices x and y in V; there exists a path from z to y. A strongly
connected component (SCC) is a maximal strongly connected subset. It is
well known that the SCCs of a graph can be computed in time linear in the
size of the graph (see [11]). After computing the SCCs, one can form a new
directed graph D, the collapse of G. D contains one node for each SCC of
G. There is an edge in D from C to C’ if and only if there is a path in G
from some vertex in C to some vertex in C'. Plainly, D is acyclic. Hence D

De Bruijn Graphs and Linear Cellular Automata 23

can be topologically sorte; that is, one can enumerate the vertices of D as
{C4,...,Cy} in such a way that whenever there is an edge (C;, C;) in D then
i < j. Indeed, the sorting can again be accomplished in linear time (see [11]).

The topological sorting can be used to eliminate all transient points of G,
that is, vertices that fail to lie on at least one biinfinite path in G. Call an
SCC trivial if and only if its induced subgraph contains no edges. Observe
that a vertex is nontransient if and only if it lies in a nontrivial SCC or
it lies on a path from a nontrivial SCC to another. This gives rise to the
following algorithm to delete all the nontransient points. First mark all the
nontrivial SCCs in the collapse D. Then sweep across the graph in order of
the topological sort. Whenever a marked vertex is encountered, mark all its
immediate successors. Upon completion of the sweep, delete all unmarked
nodes. Then reverse all arcs in D and repeat the process. It is easy to see
that upon completion of the second step exactly those SCCs survive that
contain nontransient vertices of G. Both sweeps are linear in the size of G.
For future reference, denote by G the graph obtained from G by deleting all
transient points.

An interesting property of CAs is that they are reversible—in the sense
that there exists another CA over the same alphabet that reverses the evo-
lution of configurations on the first—if and only if the global function p is
injective. This was shown in [16]. Since injectivity can be tested in quadratic
time, we have the following theorem.

Theorem 2.1. For one-dimensional cellular automata, reversibility is decid-
able in quadratic time.

Proof. It follows from the previous remarks that rule p fails to be injective
if and only if there are two distinct biinfinite paths V' and U in the de Bruijn
graph B, with the same sequence of labels: lab(V') = lab(U).

The latter condition can be tested as follows. Define a new graph Bg
that has vertices £2" x 2. Furthermore, [(az,by), (za’,yb')] is an edge in
B2 if and only if p(aza’) = p(byb'). Also, let A := { (w,w) | w € £*" } denote
the diagonal in B2. It is well known that de Bruijn graphs are Hamiltonian.
Since A is an isomorphic copy of B,, it follows that A is contained in one
SCC Cx of B;‘:. As described in the remarks preceding the theorem, let Fﬁ
be the graph obtained from Bz by removing all transient points.

Claim: Rule p is injective if and only if A = Fg.

Note that any two biinfinite paths U and V' in B, with the same labeling
trace a biinfinite path in Bg and hence in B2. The converse also holds.

To verify the claim, first suppose p fails to be injective. Then we can
choose U # V but with p(t'r(U)) = p(tr(V)), that is, with the same
labeling in B,. Then, however, the corresponding path in B_Z cannot lie
entirely within A, and it follows that A # Fg.

24 Klaus Sutner

For the opposite direction suppose we have a biinfinite path W = (Vi, U;))
in B2, not entirely in A. Letting V = (V;) and U = (Uj) it is clear that U

pl
and V are distinct, but p(tr(V)) = p(tr(U)) Hence p is not injective and
we are through. B

As pointed out above we can construct B_g in time linear in the size of Bf,
and therefore quadratic in the size of B,. However, the size of the de Bruijn
graph is precisely the same as the size of the local rule p, specified as a table.
Thus, a one-dimensional rule p can be tested for injectivity in quadratic time.

Reversibility in the last lemma refers to injectivity of the global function
for arbitrary configurations. One frequently studies the subclass of finite
configurations, namely, biinfinite words of the form “0Z0%, where Z € ©*
and 0 is a special symbol. Let us call p locally injective if and only if, for all
finite configurations X and Y, p(X) = p(Y') implies X =Y. Let X =*Y iff
X and Y disagree only in a finite number of places. It is straightforward to
show that p is locally injective if and only if, for all configurations X =* Y,
p(X) = p(Y) implies X =Y. It can be shown that local injectivity of p is
equivalent to surjectivity of p (see [16] and [10]). The latter characterization
is the basis for the next theorem.

Theorem 2.2. For one-dimensional cellular automata, surjectivity of the
global map is decidable in quadratic time.

Proof. Let Fﬁ be the nontransient part of the product de Bruijn graph as
in the last proof. Recall that Ca denotes the SCC containing A.

Claim: Rule p is locally injective if and only if A = Cx.

To see this, first assume that p fails to be locally injective. Then by the
remark preceding the theorem, there are two configurations X # Y that
disagree only in a finite number of places and map to the same configuration
under p. Let W be the corresponding biinfinite path in B_g. Plainly, W has
an infinite initial segment and an infinite final segment in A. However, since
X #Y the path W cannot be entirely in A; consequently, A # Ca.

For the opposite direction suppose that A # Ca. Then there exists a
biinfinite path W in B_;‘j such that W has an infinite initial segment and
an infinite final segment in A, but W does not lie entirely in A. W read-
ily translates into two configurations that witness p’s failure to be locally
injective.

As in the last theorem it can be seen that the necessary computations
take only quadratic time. B

Example. Consider the elementary rule p with code number 150 (addition
modulo 2). The SCC of B}, containing A consists only of A itself. Indeed,
there are exactly two SCCs: A, and all other vertices. Hence, rule 150 is
locally injective but not injective. Similarly for rule 90 one can see that B,

De Bruijn Graphs and Linear Cellular Automata 25

is partitioned into exactly three SCCs, one of them being A. Hence rule 90
is also locally injective but not injective.

Rule 30 produces a product graph with two nontrivial SCCs, one of them
A and the other containing 8 vertices. Two vertices in B3, are transient, and
the collapse of _E%; has diamond shape. Again, rule 30 is locally injective but
not injective.

As an example of an injective elementary CA, consider rule 15. B% has
13 SCCs, but only one nontrivial SCC, namely A.

Lastly, BZ, is strongly connected. Thus rule 37 is not even locally injec-
tive.

3. Recursive predecessors

In answer to a question posed by Golze [4] we now show that, in any linear
cellular automata, a recursive configuration with a predecessor must already
have a recursive predecessor. To demonstrate the existence of a recursive
predecessor, we first establish a slightly more general result about the ex-
istence of recursive infinite paths in certain recursive graphs. The graphs
under consideration are given by a finite static graph and a recursive func-
tion that describes the evolution of the static graph in time. A similar type
of time-dependent graph was used in [19] to establish PSPACE-hardness of
motion planning problems in the presence of moving obstacles.

A time-dependent graph G(W) consists of a finite directed graph G =
(V, E) and an alphabet & C P(E). For any word W € £* the time-dependent
graph G(W) is defined as follows. The vertices of G(W) are V x N, and the
edges are given by E(W) = { ((p, t), (q,t+ 1)) | (p,q) € W(t)}.

G is the underlying static graph. For later use let us define the reachable
set of a vertex (p,t) at time s as

R((p,t),s) := {q € V| there exists a path from (p,t) to (g, s)
in G(W)}

For a set P of points in V' x N let R(P,s) = U,ep R(z,5). We will be
interested mostly in the case where W construed as a map from N to X is
a recursive function. G(W) is then called a recursive time-dependent graph.
Note that, in a recursive time-dependent graph, R((p,t),s) is computable
uniformly in p, s, and ¢.

Example. Let G = (V, E) be the complete directed graph on two points
with self-loops; thus V' = {0,1} and E = {(0,0), (0,1),(1,0),(1,1)}. Define
alphabet ¥ = {S, B, L, R} by S := E, B := {(0,0),(1,1)}, L = {(0,0)}, and
R = {(1,1)}. Here S stands for switch, B for both, L for left, and R for
right (see figure 2).

Now let W € ¥¥ be an infinite word. A moment’s thought reveals that
G(W) has an infinite path if and only if W does not contain a subword of
the form LB*R or RB*L. Thus the collection of all time-dependent graphs

26 Klaus Sutner

S
©
©

Figure 2: The four components of the time-dependent graph G.

over G with an infinite path forms a regular set in the sense of [15]. This is
true for all time-dependent graphs.

We claim that for the static graph G defined as above any recursive time-
dependent graph G(W) with an infinite path has a recursive infinite path.
To see this, note that we can distinguish the following two cases.

Case 1. W contains only finitely many symbols S. Then there is a recursive
path of the form P = Py where P is finite and ¢ =0 or 2 = 1.

Case 2. W contains symbol S infinitely often. In this situation we can ob-
tain a recursive path by searching for the next occurrence of S and
choosing, say, the lexicographically first finite path to that next occur-
rence of S. More precisely, suppose we have already constructed an
initial segment of the recursive path P up to some time ¢ such that
W (t) = S. Then we can compute ¢’ > ¢ minimal such that W(t') = S.
Since W(t:t'] € S(B+L)*S+S(B+ R)*S, we can extend P up to time
.

It should be noted, however, that the recursive path cannot be generated

effectively from W; see also lemma 3.1 below.

Theorem 3.1. Every recursive time-dependent graph with an infinite path
has a recursive infinite path.

Proof. Let G(W) be a recursive time-dependent graph with an infinite path.
For ¢t > 0 define the support of ¢ by spt(t) := { P(¢) | P an infinite path }.
A set Q C V is persistent if and only if there are infinitely many ¢ such that

De Bruijn Graphs and Linear Cellular Automata 27

spt(t) = Q. Since G(W) contains an infinite path, we may pick a nonempty
persistent set Q. Note that {¢ | spt(t) not persistent } is necessarily finite.
Hence there exists a ¢y > 0 such that spt(ty) = @, and for all ¢ > ¢, the
support of ¢ is persistent. Let us define a predicate P(r,s) on N x N as
follows:

P(r,s) <= Vg€ R(Q x {r},s) — Q3t > s (R((g,5),t) =10)

Thus P(r,s) holds if and only if no path in G(W) starting at some node in
Q at time r and passing through a node not in @ at time t has an infinite
extension. Clearly P is recursively enumerable. Also note that the domain
of P contains all times ¢ such that spt(t) = Q. We have the following claim.

Claim: For all t > ty, P(to,t) if and only if spt(t) = Q.

First suppose that P(to,t) holds. Since every infinite path must pass
through @ at time tp, no infinite path can fail to pass through @ at time ¢.
All paths through @ x {to} and (V — Q) X {t} are finite by our assumption.
Hence spt(t) C Q, and therefore spt(t) = @ by the minimality of Q.

For the opposite direction let spt(t) = Q. Consider a point ¢ not in @, but
with (g,t) reachable from @ x {to}. If we had V¢’ > t(R((gq,1),t') # 0) then,
by compactness, there would be an infinite path starting at (g,t). However,
g would then be in the support of £ and hence in @, which is a contradiction.
Thus P(to,t) holds as required. B

Using ¥;-uniformization we may choose a partial recursive function f
that uniformizes P. Since the domain of f is the same as the domain of P,
it must include all times ¢ such that spt(t) = Q. Define t,, := f™({o) for all
n > 0. It follows from the claim that the sequence (t;);>0 is well defined.
Also note that (¢;);>o is strictly increasing.

We can now construct a recursive infinite path through G(W) as follows.
First choose an initial segment from time ¢ = 0 to a point py in @ at time
to. Suppose a part of the path up to (p;,t;) has been constructed, so p; €
Q. Since spt(t;) = spt(tiy1) = Q, it follows that there exists a path from
(piyti) to (pit1,tip1) for some p;y1 € Q. Choose one such path, say the
lexicographically first. Since the sequence (;);> is computable, we obtain a
computable infinite path through G(W).

Theorem 3.2. In any linear cellular automata the existence of a predecessor
of a recursive configuration implies the existence of a recursive predecessor.

Proof. In light of the last theorem it suffices to show how the existence of
recursive predecessors can be translated into the existence of infinite recursive
paths in a suitable time-dependent graph. As we saw in the last section, the
existence of a predecessor of some configuration X € “¥¥ is equivalent to the
existence of an biinfinite path in the de Bruijn graph of the automaton. Now
let B} be the graph obtained from B, by reversing all the edges. Clearly there
is a biinfinite path labeled X in B, if and only if for every decomposition

28 Klaus Sutner

X=X,0Z0X,, X, e¥Y, Z e X¥ 1 X, € X¥ there is an infinite path
(one-way!) in B, starting at Z labeled Xy, and an infinite path in B] starting
at Z labeled Xj;.

Now fix some decomposition X = Xq® Z ® X;. For any symbol 0 € &
let E, := {e| e an edge in B, labeled o }. Thus, for any word Z ® V € X,
we have a time-dependent graph B,(Z ® V) that contains an infinite path
starting at Z if and only if there exists a biinfinite word X such that p(X) =
UoZoV. If X is recursive, so is B,(Z ® V). Hence, by the last theorem
there exists a recursive infinite path in B,(Z ® V) if there exists any path at
all.

The argument for the reverse graph Bj is entirely similar. Thus we have
two recursive paths in the two time-dependent graphs that can be combined
to produce one recursive biinfinite path in the original de Bruijn graph B,,.
As we have seen, this path corresponds to a recursive predecessor of X .

The proof of theorem 3.1 suggests that the recursive path cannot in gen-
eral be obtained effectively from the target configuration. For example, it is
not hard to show that persistence is not a recursive property. Thus one can-
not hope to compute the parameter @ used in the definition of the sequence
(ti)i>0. The same holds for parameter t5. The following lemma shows that
indeed recursive predecessors in one-dimensional CAs cannot in general be
constructed effectively.

Lemma 3.1. Let p be a linear cellular automaton. Then in general there
is no effective method to determine a recursive predecessor for a recursive
configuration with a predecessor.

Proof. It is routine to construct a linear CA with alphabet ¥ = {a, b, ¢, d}
such that

p(“aba”) = “aba®
p(Yede?) = “aca®
pa) = plec) = vas

All other blocks are mapped to d. For e > 0, define a word Y, € “X* as
follows.

b if n <0 is minimal such that {e},(e) ~ 0,
Y.(n) :=< ¢ if n <0 is minimal such that {e},(e) ~ 1,
a otherwise

Here {e},(z) ~ y means the eth partial recursive function on input z con-
verges after n steps with output y. Similarly {e}(z) ~ y means the eth partial
recursive function on input z converges on output y. To determine whether
{e}(e) = y for some y is the Halting problem and well known to be undecid-
able (see [17]). Note that Y, = “a”, Y, = “aba®, or Y, = “aca®, depending on
whether a certain computation diverges, converges on 0, or converges on 1.

De Bruijn Graphs and Linear Cellular Automata 29

Thus every configuration Y, has a recursive predecessor. Now suppose that
such a predecessor (or rather, an index thereof) could be computed effec-
tively. Then the set A :={e | X(0) = a, X the predecessor of Y, } would be
recursive. By the S theorem there is a primitive recursive function p such
that {p(e)}(z) = 1 for all z if and only if {e}(e) converges and {p(e)}(z) di-
verges for all z otherwise. But then {e}(e) converges if and only if p(e) ¢ A.
It follows from the undecidability of the Halting problem that A is not re-
cursive, and we have the desired contradiction. B

Note that the configurations Y, from above provide a simple proof for the
assertion that in two-dimensional CAs a recursive target configuration may
fail to have a recursive predecessor, but still not be a Garden-of-Eden. To
this end one arranges all these configurations into a two-dimensional tar-
get configuration, say parallel to the z-axis in the upper half-plane and
separated by blanks. Any predecessor of this configuration restricted to
the y-axis is essentially the characteristic function of the diagonal set K =
{e | {e}(e) converges }. Hence no predecessor can be recursive.

4. Conclusion

We have shown that reversibility of a one-dimensional cellular automaton
is decidable in quadratic time using standard graph theoretic algorithms.
Similarly one can decide in quadratic time whether the limit set of the au-
tomaton is the whole space of configurations. Both properties are known to
be undecidable even in two dimensions (see [9]).

Our proof shows that one can determine in polynomial time whether
certain restricted nondeterministic automata accept every string over their
input alphabet. The automata under consideration here have the special
property that all states are initial and final. Such devices are usually referred
to as Fischer automata. We do not know whether acceptance of all inputs can
be tested in polynomial time for arbitrary Fischer automata. For arbitrary
nondeterministic automata the problem is known to be PSPA CE-complete.

By unfolding de Bruijn graphs into an associated infinite graph, we have
shown that all recursive configurations with an arbitrary predecessor must
already have a recursive predecessor. However, the recursive predecessor in
general cannot be effectively computed from the target configuration. Again,
there are no analogous results for two-dimensional CAs; in a two-dimensional
CA even a trivial target configuration may have only nonrecursive predeces-
sors (see [5, 13]).

References

[1] S. Amoroso and Y. N. Patt, “Decision Procedures for Surjectivity and Injec-
tivity of Parallel Maps for Tesselation Structures,” Journal of Computers and
System Science, 6 (1972) 448-464.

[2] A. W. Burks, Essays on Cellular Automata (University of Illinois Press,
Urbana-Champaign, Illinois, 1970).

30

(3]

[4]

[5]

(6]

(7]

[10]

(1]

[12]

(13]

(14]

[15)

[16]

it
18]
[19]

Klaus Sutner

M. R. Garey and D. S. Johnson, Computers and Intractability (Freeman,
1979).

U. Golze, “Differences between 1- and 2-Dimensional Cell Spaces,” in
Automata, Languages and Development, edited by A. Lindenmayer and
G. Rozenberg, pp. 369-384 (North-Holland, 1976).

W. Hanf, “Nonrecursive Tilings of the Plane I,” Journal of Symbolic Logic,
39(2) (1974) 283-285.

T. Head, “Linear Cellular Automata: Injectivity from Ambiguity,” forthcom-
ing.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation (Addison-Wesley, 1979).

K. Culik II, “On Invertible Cellular Automata,” Complex Systems, 1(6)
(1987) 1035-1044.

J. Kari, “The Undecidability of Injectivity and Surjectivity of Two-
Dimensional CAs,” CA’89, Los Alamos, New Mexico.

A. Maruoka and M. Kimura, “Injectivity and Surjectivity of Parallel Maps
for Cellular Automata,” Journal of Computers and System Science, 18 (1979)
47-57.

K. Mehlhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness (Springer-Verlag, Berlin, 1984).

E. F. Moore, “Machine Models of Self-Reproduction,” in Essays on Cellular
Automata [2].

D. Myers, “Nonrecursive Tilings of the Plane II,” Journal of Symbolic Logic,
39(2) (1974) 286-294.

J. Myhill, “The Converse of Moore’s Garden-of-Eden Theorem,” in Essays on
Cellular Automata [2].

M. Nivat and D. Perrin, “Ensembles Reconnaisable de Mots Biinfinis,” Tech-
nical Report 84-68, Université Paris 7.

D. Richardson, “Tesselation with Local Transformation,” Journal of Comput-
ers and System Science, 6 (1972) 373-388.

J. R. Shoenfield, Mathematical Logic (Addison-Wesley, 1967).
K. Sutner, “The Complexity of Finite Cellular Automata,” forthcoming.

K. Sutner and W. Maass, “Motion Planning among Time-Dependent Obsta-
cles,” Acta Informatica, 26 (1988) 93-122.

S. Wolfram, “Computation Theory of Cellular Automata,” Communications
in Mathematical Physics, 96(1) (1984) 15-57.

